Difference between revisions of "Aufgaben:Exercise 3.7: Optimal Nyquist Equalization once again"

From LNTwww
 
Line 70: Line 70:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  In general, for all frequencies $f \ge  0$:    
+
'''(1)'''  In general,  for all frequencies  $f \ge  0$:    
 
:$$|H_{\rm SK}(f)|= {\rm sinc}(f T) \cdot {\rm e}^{ -9.2
 
:$$|H_{\rm SK}(f)|= {\rm sinc}(f T) \cdot {\rm e}^{ -9.2
 
\cdot \sqrt{2 \cdot |f| \cdot T}  }\hspace{0.05cm}.$$  
 
\cdot \sqrt{2 \cdot |f| \cdot T}  }\hspace{0.05cm}.$$  
Line 83: Line 83:
  
  
'''(2)'''  The graph shows that $H_{\rm TF}(f)$ becomes maximal at $f = f_{\rm Nyq}$. It follows with the given equation that
+
'''(2)'''  The graph shows that  $H_{\rm TF}(f)$  becomes maximal at  $f = f_{\rm Nyq}$. 
 +
 
 +
*It follows with the given equation that
 
:$${\sum\limits_{\kappa = -\infty}^{+\infty}  |H_{\rm SK}(f -
 
:$${\sum\limits_{\kappa = -\infty}^{+\infty}  |H_{\rm SK}(f -
 
  \frac{\kappa}{T})
 
  \frac{\kappa}{T})
 
  |^2}$$
 
  |^2}$$
  
is minimal at the Nyquist frequency. However, for $f = f_{\rm Nyq}$, of the infinite sum, only the terms with $\kappa = 0$ and $\kappa = 1$ contribute relevantly to the result.
+
:is minimal at the Nyquist frequency. 
*From this follows further with the result from '''(1)''':
+
*However,  for $f = f_{\rm Nyq}$,  of the infinite sum, only the terms with  $\kappa = 0$  and  $\kappa = 1$  contribute relevantly to the result.
 +
*From this follows further with the result from subtask  '''(1)''':
 
:$${\rm Max} \left [ H_{\rm TF}(f) \right ] \ = \ H_{\rm TF}(f = f_{\rm
 
:$${\rm Max} \left [ H_{\rm TF}(f) \right ] \ = \ H_{\rm TF}(f = f_{\rm
 
  Nyq})=
 
  Nyq})=
Line 98: Line 101:
  
  
'''(3)'''  Approximating the integral over $H_{\rm TF}(f)$ by the triangular area plotted in the graph, we obtain:
+
'''(3)'''  Approximating the integral over  $H_{\rm TF}(f)$  by the triangular area plotted in the graph,  we obtain:
 
:$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2  = T \cdot
 
:$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2  = T \cdot
 
\int_{0}^{1/T} H_{\rm TF}(f) \,{\rm d} f \approx  T \cdot
 
\int_{0}^{1/T} H_{\rm TF}(f) \,{\rm d} f \approx  T \cdot
Line 105: Line 108:
  
  
'''(4)'''  According to the given equation, we obtain for the (mean) symbol error probability:
+
'''(4)'''  According to the given equation,  we obtain for the (mean) symbol error probability:
 
:$$p_{\rm S} = {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T}{N_0 \cdot \sigma_{d,\hspace{0.05cm} {\rm norm}}^2}} \right
 
:$$p_{\rm S} = {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T}{N_0 \cdot \sigma_{d,\hspace{0.05cm} {\rm norm}}^2}} \right
 
  ) = {\rm Q}\left ( \sqrt{\frac{10^{8}}{1.7
 
  ) = {\rm Q}\left ( \sqrt{\frac{10^{8}}{1.7
Line 112: Line 115:
 
\hspace{0.3cm} p_{\rm S} \hspace{0.15cm}\underline {\approx 0.8 \%} \hspace{0.05cm}.$$
 
\hspace{0.3cm} p_{\rm S} \hspace{0.15cm}\underline {\approx 0.8 \%} \hspace{0.05cm}.$$
  
:Since a Nyquist system is present, the worst–case probability $p_{\rm U}$ is just as large.
+
:Since a binary Nyquist system is present,  the worst–case probability  $p_{\rm U}$  is just as large.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
[[Category:Digital Signal Transmission: Exercises|^3.5 Linear Nyquist Equalization^]]
 
[[Category:Digital Signal Transmission: Exercises|^3.5 Linear Nyquist Equalization^]]

Latest revision as of 10:38, 23 June 2022

Transversal filter
frequency response

We assume the following for this exercise:

  • binary bipolar NRZ rectangular pulses
$$|H_{\rm S}(f)|= {\rm sinc}(f T) \hspace{0.05cm},$$
  • coaxial cable with characteristic cable attenuation  $a_* = 9.2 \ {\rm Np} \ (\approx 80 \ \rm dB)$:
$$|H_{\rm K}(f)|= {\rm e}^{ -9.2 \cdot \sqrt{2 \cdot |f| \cdot T} }\hspace{0.05cm},$$
  • optimal Nyquist equalizer consisting of matched filter and transversal filter:
$$H_{\rm E}(f) = H_{\rm MF}(f) \cdot H_{\rm TF}(f)$$
$$\hspace{0.8cm}{\rm where}\hspace{0.2cm}H_{\rm MF}(f) = H_{\rm S}^{\star}(f) \cdot H_{\rm K}^{\star}(f)\hspace{0.05cm},\hspace{0.2cm} H_{\rm TF}(f) = \frac{1}{\sum\limits_{\kappa = -\infty}^{+\infty} |H_{\rm SK}(f - {\kappa}/{T}) |^2}\hspace{0.05cm}.$$
Here,  $H_{\rm SK}(f) = H_{\rm S}(f) \cdot H_{\rm K}(f)$  denotes the product of transmitter and channel frequency response.


Because of Nyquist equalization,  the eye is maximally open.  For the error probability holds:

$$p_{\rm S} \left ( = p_{\rm U} \right ) = {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T}{N_0 \cdot \sigma_{d,\hspace{0.05cm} {\rm norm}}^2}} \right ) \hspace{0.05cm}.$$

The normalized noise power at the decision is given by the following equations:

$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = T \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \,{\rm d} f \hspace{0.5cm} = \hspace{0.5cm} \sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = T \cdot \int_{-1/(2T)}^{+1/(2T)} H_{\rm TF}(f) \,{\rm d} f \hspace{0.5cm}= \hspace{0.5cm}T \cdot \int_{0}^{1/T} H_{\rm TF}(f) \,{\rm d} f \hspace{0.05cm}.$$

The validity of this equation follows from the periodicity of the transversal filter frequency response  $H_{\rm TF}(f)$.

  • In the graph,  the normalized noise power can be seen as the area highlighted in red.
  • As an approximation,  the normalized noise power can be calculated by the triangular area shown in blue in the graph.


Notes:


Questions

1

Calculate the magnitude of the transmitter channel frequency response for the frequencies  $f = 0$,  $f = 1/(2T)= f_{\rm Nyq}$  and  $f = 1/T = 2 \cdot f_{\rm Nyq}$.

$|H_{\rm SK} (f = 0)| \hspace{0.8cm} = \ $

$|H_{\rm SK} (f = f_{\rm Nyq})| \hspace{0.2cm} = \ $

$\ \cdot 10^{-5}$
$|H_{\rm SK} (f = 1/T)| \hspace{0.25cm} = \ $

2

Calculate the maximum value of  $H_{\rm TF}(f)$  at frequency  $f = f_{\rm Nyq}$.

$|H_{\rm TF} (f = f_{\rm Nyq})| \hspace{0.2cm} = \ $

$\ \cdot 10^8$

3

Calculate the normalized noise power according to the triangular approximation.

$\sigma_{d, \ \rm norm}^2 \hspace{0.2cm} = \ $

$\ \cdot 10^7$

4

What is the symbol error probability with  $s_0^2 \cdot T/N_0 = 10^8$?

$p_{\rm S} \hspace{0.2cm} = \ $

$\ \%$


Solution

(1)  In general,  for all frequencies  $f \ge 0$:  

$$|H_{\rm SK}(f)|= {\rm sinc}(f T) \cdot {\rm e}^{ -9.2 \cdot \sqrt{2 \cdot |f| \cdot T} }\hspace{0.05cm}.$$
  • This gives the special cases we are looking for:
$$f= 0 \text{:} \ \hspace{0.1cm}|H_{\rm SK}(f = 0)|= {\rm sinc}(0) \cdot {\rm e}^0 \hspace{0.15cm}\underline {= 1} \hspace{0.05cm},$$
$$ f= f_{\rm Nyq}\text{:} \ \hspace{0.1cm}|H_{\rm SK}(f = \frac{1}{2T})|= {\rm sinc}({1}/{2}) \cdot {\rm e}^{-9.2} \hspace{0.15cm}\underline { \approx 6.43 \cdot 10^{-5}} \hspace{0.05cm},$$
$$ f= {1}/{T} \text{:}\ \hspace{0.1cm}|H_{\rm SK}(f = \frac{1}{T})|= {\rm sinc}({1}) \cdot {\rm e}^{...} \hspace{0.15cm}\underline { = 0} \hspace{0.05cm}.$$


(2)  The graph shows that  $H_{\rm TF}(f)$  becomes maximal at  $f = f_{\rm Nyq}$. 

  • It follows with the given equation that
$${\sum\limits_{\kappa = -\infty}^{+\infty} |H_{\rm SK}(f - \frac{\kappa}{T}) |^2}$$
is minimal at the Nyquist frequency. 
  • However,  for $f = f_{\rm Nyq}$,  of the infinite sum, only the terms with  $\kappa = 0$  and  $\kappa = 1$  contribute relevantly to the result.
  • From this follows further with the result from subtask  (1):
$${\rm Max} \left [ H_{\rm TF}(f) \right ] \ = \ H_{\rm TF}(f = f_{\rm Nyq})= {1}/{2 \cdot |H_{\rm SK}(f = f_{\rm Nyq}) |^2} = \ \frac{1}{2 \cdot (6.43 \cdot 10^{-5})^2}= \frac{10^{10}}{82.69} \hspace{0.15cm}\underline {\approx 1.21 \cdot 10^{8}} \hspace{0.05cm}.$$


(3)  Approximating the integral over  $H_{\rm TF}(f)$  by the triangular area plotted in the graph,  we obtain:

$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = T \cdot \int_{0}^{1/T} H_{\rm TF}(f) \,{\rm d} f \approx T \cdot \frac{1}{2}\cdot 1.21 \cdot 10^{8}\cdot (0.64 -0.36)\hspace{0.15cm}\underline {\approx 1.7 \cdot 10^{7}} \hspace{0.05cm}.$$


(4)  According to the given equation,  we obtain for the (mean) symbol error probability:

$$p_{\rm S} = {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T}{N_0 \cdot \sigma_{d,\hspace{0.05cm} {\rm norm}}^2}} \right ) = {\rm Q}\left ( \sqrt{\frac{10^{8}}{1.7 \cdot 10^{7}}} \right ) \approx {\rm Q}(2.42)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm S} \hspace{0.15cm}\underline {\approx 0.8 \%} \hspace{0.05cm}.$$
Since a binary Nyquist system is present,  the worst–case probability  $p_{\rm U}$  is just as large.