Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.3: Different Frequencies"

From LNTwww
 
(One intermediate revision by the same user not shown)
Line 29: Line 29:
 
<quiz display=simple>
 
<quiz display=simple>
 
{Describe the signal set&nbsp; {si(t)}&nbsp; with&nbsp;  0 &#8804; i &#8804; 4&nbsp; as compactly as possible. <br>Which description form is correct?
 
{Describe the signal set&nbsp; {si(t)}&nbsp; with&nbsp;  0 &#8804; i &#8804; 4&nbsp; as compactly as possible. <br>Which description form is correct?
|type="[]"}
+
|type="()"}
 
- si(t)=Acos(2πit/T).
 
- si(t)=Acos(2πit/T).
 
+ si(t)=Acos(2πit/T)&nbsp; for &nbsp;0 &#8804; t < T, &nbsp;otherwise 0.
 
+ si(t)=Acos(2πit/T)&nbsp; for &nbsp;0 &#8804; t < T, &nbsp;otherwise 0.
Line 53: Line 53:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Correct is the <u>solution 2</u>:
+
'''(1)'''&nbsp; Correct is the&nbsp; <u>solution 2</u>:
* This takes into account the different frequencies and the limitation to the range 0 &#8804; t < T.  
+
* This takes into account the different frequencies and the limitation to the range&nbsp; 0 &#8804; t < T.
*The signals si(t) according to suggestion 3, on the other hand, do not differ with respect to frequency, but have different phase positions.
+
 +
*The signals&nbsp; si(t)&nbsp; according to suggestion 3,&nbsp; on the other hand,&nbsp; do not differ with respect to frequency,&nbsp; but have different phase positions.
  
  
  
'''(2)'''&nbsp; The energy-limited signals si(t)=Acos(2πit/T) are all orthogonal to each other, that is, the inner product of two signals si(t) and sk(t) with i &ne; k is always 0:
+
'''(2)'''&nbsp; The energy-limited signals &nbsp; si(t)=Acos(2πit/T) &nbsp; are orthogonal to each other &nbsp; &rArr; &nbsp; the inner product of two signals&nbsp; si(t),&nbsp; sk(t)&nbsp; with&nbsp; i &ne; k&nbsp; is always&nbsp; 0:
 
:<si(t),sk(t)> = A2T0cos(2πit/T)cos(2πkt/T)dt
 
:<si(t),sk(t)> = A2T0cos(2πit/T)cos(2πkt/T)dt
 
:$$ \Rightarrow \hspace{0.3cm} < \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm}  {A^2}/{2} \cdot \int_{0}^{T}\cos(2\pi (i-k) t/T) \,{\rm d} t +
 
:$$ \Rightarrow \hspace{0.3cm} < \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm}  {A^2}/{2} \cdot \int_{0}^{T}\cos(2\pi (i-k) t/T) \,{\rm d} t +
Line 65: Line 66:
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*With i &#8712; \{0, \ \text{...} \ , 4\} and k &#8712; \{0, \ \text{...}\ , 4\} as well as i &ne; j, both $i \, &ndash; k$ is integer not equal to $0,asisthesumi + k$.  
+
*With&nbsp; i &#8712; \{0, \ \text{...} \ , 4\}&nbsp; and&nbsp; k &#8712; \{0, \ \text{...}\ , 4\}&nbsp; as well as&nbsp; i &ne; j,&nbsp; both&nbsp; $i \, - k$&nbsp; is integer&nbsp; $\ne0$,&nbsp; as is the&nbsp; sum i+k.  
*Thus, both integrals yield the result zero:
+
*Thus,&nbsp; both integrals yield the result zero:
 
:$$< \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm}= 0  
 
:$$< \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm}= 0  
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}  \hspace{0.05cm}\hspace{0.15cm}\underline {N = M = 5}
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}  \hspace{0.05cm}\hspace{0.15cm}\underline {N = M = 5}
Line 72: Line 73:
  
  
'''(3)'''&nbsp; The energy of the signal s0(t), which is constant within T, is equal to
+
'''(3)'''&nbsp; The energy of the signal&nbsp; s0(t),&nbsp; which is constant within&nbsp; T,&nbsp; is equal to
 
:$$E_0 = ||s_0(t)||^2 = A^2 \cdot T  
 
:$$E_0 = ||s_0(t)||^2 = A^2 \cdot T  
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} ||s_0(t)|| = A \cdot \sqrt{T}  \hspace{0.3cm}  
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} ||s_0(t)|| = A \cdot \sqrt{T}  \hspace{0.3cm}  
Line 81: Line 82:
 
\\  {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$
 
\\  {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$
  
Therefore, <u>solution 2</u> is correct.
+
Therefore,&nbsp; <u>solution 2</u>&nbsp; is correct.
  
  
'''(4)'''&nbsp; The <u>last solution</u> is correct because of
+
'''(4)'''&nbsp; The&nbsp; <u>last solution</u>&nbsp; is correct because of
 
:$$E_1 = ||s_1(t)||^2 = \frac{A^2 \cdot T}{2}  
 
:$$E_1 = ||s_1(t)||^2 = \frac{A^2 \cdot T}{2}  
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} ||s_1(t)|| = A \cdot \sqrt{{T}/{2}} \hspace{0.3cm}  
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} ||s_1(t)|| = A \cdot \sqrt{{T}/{2}} \hspace{0.3cm}  

Latest revision as of 16:56, 13 July 2022

Given signal set  {si(t)}

In the diagram  M=5  different signals  si(t)  are shown.  Contrary to the nomenclature in the theory section,  the indexing variable  i  can have the values  0, ... ,M1

To be noted:

  • All signals are time-limited to  0  ...   T;  thus the energy of all signals is finite.
  • The signal  s1(t)  has the period  T0=T.  The frequency is therefore  f0=1/T.
  • The signals  si(t)  with  i0  are cosine oscillations with frequency  if0.
  • In contrast,  s0(t)  is constant between  0  and  T
  • The maximum value of all signals is  A  and  |si(t)|A holds.


In this exercise we are looking for the  N  basis functions,  which are numbered here with  j=0, ... ,N1


Note:  The exercise belongs to the chapter  "Signals, Basis Functions and Vector Spaces".



Question

1

Describe the signal set  {si(t)}  with  0i4  as compactly as possible.
Which description form is correct?

si(t)=Acos(2πit/T).
si(t)=Acos(2πit/T)  for  0t<T,  otherwise 0.
s_i(t) = A \cdot \cos {(2\pi t/T \, – \, i \cdot \pi/2)}  for  0 ≤ t < T,  otherwise 0.

2

Specify the number  N  of basis functions required.

N \ = \

3

What is the basis function  \varphi_0(t) that is equal in form to  s_0(t)

\varphi_0(t) = s_0(t),
\varphi_0(t) = \sqrt{1/T}  for  0 ≤ t < T,  outside  0.
\varphi_0(t) = \sqrt{2/T}  for  0 ≤ t < T,  outside  0.

4

What is the basis function  \varphi_1(t)  that is equal in form to  s_1(t)

\varphi_1(t) = s_1(t),
\varphi_1(t) = \sqrt{1/T} \cdot \cos {(2\pi t/T)} for 0 ≤ t < T,  outside 0.
\varphi_1(t) =\sqrt{2/T} \cdot \cos {(2\pi t/T)} for 0 ≤ t < T,  outside 0.


Solution

(1)  Correct is the  solution 2:

  • This takes into account the different frequencies and the limitation to the range  0 ≤ t < T.
  • The signals  s_i(t)  according to suggestion 3,  on the other hand,  do not differ with respect to frequency,  but have different phase positions.


(2)  The energy-limited signals   s_i(t) = A \cdot \cos {(2\pi \cdot i \cdot t/T)}   are orthogonal to each other   ⇒   the inner product of two signals  s_i(t)s_k(t)  with  i ≠ k  is always  0:

< \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} A^2 \cdot \int_{0}^{T}\cos(2\pi \cdot i \cdot t/T) \cdot \cos(2\pi \cdot k \cdot t/T)\,{\rm d} t
\Rightarrow \hspace{0.3cm} < \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} {A^2}/{2} \cdot \int_{0}^{T}\cos(2\pi (i-k) t/T) \,{\rm d} t + \frac{A^2}{2} \cdot \int_{0}^{T}\cos(2\pi (i+k) t/T) \,{\rm d} t \hspace{0.05cm}.
  • With  i ∈ \{0, \ \text{...} \ , 4\}  and  k ∈ \{0, \ \text{...}\ , 4\}  as well as  i ≠ j,  both  i \, - k  is integer  \ne0,  as is the  sum i + k.
  • Thus,  both integrals yield the result zero:
< \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm}= 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \hspace{0.05cm}\hspace{0.15cm}\underline {N = M = 5} \hspace{0.05cm}.


(3)  The energy of the signal  s_0(t),  which is constant within  T,  is equal to

E_0 = ||s_0(t)||^2 = A^2 \cdot T \hspace{0.3cm}\Rightarrow \hspace{0.3cm} ||s_0(t)|| = A \cdot \sqrt{T} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \varphi_0 (t) = \frac{s_0(t)}{||s_0(t)||} = \left\{ \begin{array}{c} 1/\sqrt{T} \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}

Therefore,  solution 2  is correct.


(4)  The  last solution  is correct because of

E_1 = ||s_1(t)||^2 = \frac{A^2 \cdot T}{2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} ||s_1(t)|| = A \cdot \sqrt{{T}/{2}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \varphi_1 (t) = \frac{s_1(t)}{||s_1(t)||} = \left\{ \begin{array}{c} \sqrt{2/T} \cdot \cos(2\pi t/T) \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}