Difference between revisions of "Aufgaben:Exercise 4.3: Different Frequencies"

From LNTwww
 
(One intermediate revision by the same user not shown)
Line 29: Line 29:
 
<quiz display=simple>
 
<quiz display=simple>
 
{Describe the signal set&nbsp; $\{s_i(t)\}$&nbsp; with&nbsp;  $0 &#8804; i &#8804; 4$&nbsp; as compactly as possible. <br>Which description form is correct?
 
{Describe the signal set&nbsp; $\{s_i(t)\}$&nbsp; with&nbsp;  $0 &#8804; i &#8804; 4$&nbsp; as compactly as possible. <br>Which description form is correct?
|type="[]"}
+
|type="()"}
 
- $s_i(t) = A \cdot \cos {(2\pi \cdot i \cdot t/T)}$.
 
- $s_i(t) = A \cdot \cos {(2\pi \cdot i \cdot t/T)}$.
 
+ $s_i(t) = A \cdot \cos {(2\pi \cdot i \cdot t/T)}$&nbsp; for &nbsp;$0 &#8804; t < T$, &nbsp;otherwise $0$.
 
+ $s_i(t) = A \cdot \cos {(2\pi \cdot i \cdot t/T)}$&nbsp; for &nbsp;$0 &#8804; t < T$, &nbsp;otherwise $0$.
Line 53: Line 53:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Correct is the <u>solution 2</u>:
+
'''(1)'''&nbsp; Correct is the&nbsp; <u>solution 2</u>:
* This takes into account the different frequencies and the limitation to the range $0 &#8804; t < T$.  
+
* This takes into account the different frequencies and the limitation to the range&nbsp; $0 &#8804; t < T$.
*The signals $s_i(t)$ according to suggestion 3, on the other hand, do not differ with respect to frequency, but have different phase positions.
+
 +
*The signals&nbsp; $s_i(t)$&nbsp; according to suggestion 3,&nbsp; on the other hand,&nbsp; do not differ with respect to frequency,&nbsp; but have different phase positions.
  
  
  
'''(2)'''&nbsp; The energy-limited signals $s_i(t) = A \cdot \cos {(2\pi \cdot i \cdot t/T)}$ are all orthogonal to each other, that is, the inner product of two signals $s_i(t)$ and $s_k(t)$ with $i &ne; k$ is always $0$:
+
'''(2)'''&nbsp; The energy-limited signals &nbsp; $s_i(t) = A \cdot \cos {(2\pi \cdot i \cdot t/T)}$ &nbsp; are orthogonal to each other &nbsp; &rArr; &nbsp; the inner product of two signals&nbsp; $s_i(t)$,&nbsp; $s_k(t)$&nbsp; with&nbsp; $i &ne; k$&nbsp; is always&nbsp; $0$:
 
:$$< \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} A^2 \cdot \int_{0}^{T}\cos(2\pi \cdot i \cdot t/T) \cdot \cos(2\pi \cdot k \cdot t/T)\,{\rm d} t $$
 
:$$< \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} A^2 \cdot \int_{0}^{T}\cos(2\pi \cdot i \cdot t/T) \cdot \cos(2\pi \cdot k \cdot t/T)\,{\rm d} t $$
 
:$$ \Rightarrow \hspace{0.3cm} < \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm}  {A^2}/{2} \cdot \int_{0}^{T}\cos(2\pi (i-k) t/T) \,{\rm d} t +
 
:$$ \Rightarrow \hspace{0.3cm} < \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm}  {A^2}/{2} \cdot \int_{0}^{T}\cos(2\pi (i-k) t/T) \,{\rm d} t +
Line 65: Line 66:
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*With $i &#8712; \{0, \ \text{...} \ , 4\}$ and $k &#8712; \{0, \ \text{...}\ , 4\}$ as well as $i &ne; j$, both $i \, &ndash; k$ is integer not equal to $0$, as is the sum $i + k$.  
+
*With&nbsp; $i &#8712; \{0, \ \text{...} \ , 4\}$&nbsp; and&nbsp; $k &#8712; \{0, \ \text{...}\ , 4\}$&nbsp; as well as&nbsp; $i &ne; j$,&nbsp; both&nbsp; $i \, - k$&nbsp; is integer&nbsp; $\ne0$,&nbsp; as is the&nbsp; sum $i + k$.  
*Thus, both integrals yield the result zero:
+
*Thus,&nbsp; both integrals yield the result zero:
 
:$$< \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm}= 0  
 
:$$< \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm}= 0  
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}  \hspace{0.05cm}\hspace{0.15cm}\underline {N = M = 5}
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}  \hspace{0.05cm}\hspace{0.15cm}\underline {N = M = 5}
Line 72: Line 73:
  
  
'''(3)'''&nbsp; The energy of the signal $s_0(t)$, which is constant within $T$, is equal to
+
'''(3)'''&nbsp; The energy of the signal&nbsp; $s_0(t)$,&nbsp; which is constant within&nbsp; $T$,&nbsp; is equal to
 
:$$E_0 = ||s_0(t)||^2 = A^2 \cdot T  
 
:$$E_0 = ||s_0(t)||^2 = A^2 \cdot T  
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} ||s_0(t)|| = A \cdot \sqrt{T}  \hspace{0.3cm}  
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} ||s_0(t)|| = A \cdot \sqrt{T}  \hspace{0.3cm}  
Line 81: Line 82:
 
\\  {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$
 
\\  {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$
  
Therefore, <u>solution 2</u> is correct.
+
Therefore,&nbsp; <u>solution 2</u>&nbsp; is correct.
  
  
'''(4)'''&nbsp; The <u>last solution</u> is correct because of
+
'''(4)'''&nbsp; The&nbsp; <u>last solution</u>&nbsp; is correct because of
 
:$$E_1 = ||s_1(t)||^2 = \frac{A^2 \cdot T}{2}  
 
:$$E_1 = ||s_1(t)||^2 = \frac{A^2 \cdot T}{2}  
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} ||s_1(t)|| = A \cdot \sqrt{{T}/{2}} \hspace{0.3cm}  
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} ||s_1(t)|| = A \cdot \sqrt{{T}/{2}} \hspace{0.3cm}  

Latest revision as of 15:56, 13 July 2022

Given signal set  $\{s_i(t)\}$

In the diagram  $M = 5$  different signals  $s_i(t)$  are shown.  Contrary to the nomenclature in the theory section,  the indexing variable  $i$  can have the values  $0, \ \text{...} \ , M-1$. 

To be noted:

  • All signals are time-limited to  $0$  ...   $T$;  thus the energy of all signals is finite.
  • The signal  $s_1(t)$  has the period  $T_0 = T$.  The frequency is therefore  $f_0 = 1/T$.
  • The signals  $s_i(t)$  with  $i ≠ 0$  are cosine oscillations with frequency  $i \cdot f_0$.
  • In contrast,  $s_0(t)$  is constant between  $0$  and  $T$. 
  • The maximum value of all signals is  $A$  and  $|s_i(t)| ≤ A$ holds.


In this exercise we are looking for the  $N$  basis functions,  which are numbered here with  $j = 0, \ \text{...} \ , N-1$. 


Note:  The exercise belongs to the chapter  "Signals, Basis Functions and Vector Spaces".



Question

1

Describe the signal set  $\{s_i(t)\}$  with  $0 ≤ i ≤ 4$  as compactly as possible.
Which description form is correct?

$s_i(t) = A \cdot \cos {(2\pi \cdot i \cdot t/T)}$.
$s_i(t) = A \cdot \cos {(2\pi \cdot i \cdot t/T)}$  for  $0 ≤ t < T$,  otherwise $0$.
$s_i(t) = A \cdot \cos {(2\pi t/T \, – \, i \cdot \pi/2)}$  for  $0 ≤ t < T$,  otherwise $0$.

2

Specify the number  $N$  of basis functions required.

$N \ = \ $

3

What is the basis function  $\varphi_0(t)$ that is equal in form to  $s_0(t)$? 

$\varphi_0(t) = s_0(t)$,
$\varphi_0(t) = \sqrt{1/T}$  for  $0 ≤ t < T$,  outside  $0$.
$\varphi_0(t) = \sqrt{2/T}$  for  $0 ≤ t < T$,  outside  $0$.

4

What is the basis function  $\varphi_1(t)$  that is equal in form to  $s_1(t)$? 

$\varphi_1(t) = s_1(t)$,
$\varphi_1(t) = \sqrt{1/T} \cdot \cos {(2\pi t/T)}$ for $0 ≤ t < T$,  outside $0$.
$\varphi_1(t) =\sqrt{2/T} \cdot \cos {(2\pi t/T)}$ for $0 ≤ t < T$,  outside $0$.


Solution

(1)  Correct is the  solution 2:

  • This takes into account the different frequencies and the limitation to the range  $0 ≤ t < T$.
  • The signals  $s_i(t)$  according to suggestion 3,  on the other hand,  do not differ with respect to frequency,  but have different phase positions.


(2)  The energy-limited signals   $s_i(t) = A \cdot \cos {(2\pi \cdot i \cdot t/T)}$   are orthogonal to each other   ⇒   the inner product of two signals  $s_i(t)$,  $s_k(t)$  with  $i ≠ k$  is always  $0$:

$$< \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} A^2 \cdot \int_{0}^{T}\cos(2\pi \cdot i \cdot t/T) \cdot \cos(2\pi \cdot k \cdot t/T)\,{\rm d} t $$
$$ \Rightarrow \hspace{0.3cm} < \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} {A^2}/{2} \cdot \int_{0}^{T}\cos(2\pi (i-k) t/T) \,{\rm d} t + \frac{A^2}{2} \cdot \int_{0}^{T}\cos(2\pi (i+k) t/T) \,{\rm d} t \hspace{0.05cm}.$$
  • With  $i ∈ \{0, \ \text{...} \ , 4\}$  and  $k ∈ \{0, \ \text{...}\ , 4\}$  as well as  $i ≠ j$,  both  $i \, - k$  is integer  $\ne0$,  as is the  sum $i + k$.
  • Thus,  both integrals yield the result zero:
$$< \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm}= 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \hspace{0.05cm}\hspace{0.15cm}\underline {N = M = 5} \hspace{0.05cm}.$$


(3)  The energy of the signal  $s_0(t)$,  which is constant within  $T$,  is equal to

$$E_0 = ||s_0(t)||^2 = A^2 \cdot T \hspace{0.3cm}\Rightarrow \hspace{0.3cm} ||s_0(t)|| = A \cdot \sqrt{T} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \varphi_0 (t) = \frac{s_0(t)}{||s_0(t)||} = \left\{ \begin{array}{c} 1/\sqrt{T} \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$

Therefore,  solution 2  is correct.


(4)  The  last solution  is correct because of

$$E_1 = ||s_1(t)||^2 = \frac{A^2 \cdot T}{2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} ||s_1(t)|| = A \cdot \sqrt{{T}/{2}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \varphi_1 (t) = \frac{s_1(t)}{||s_1(t)||} = \left\{ \begin{array}{c} \sqrt{2/T} \cdot \cos(2\pi t/T) \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$