Difference between revisions of "Aufgaben:Exercise 1.11: Syndrome Decoding"

From LNTwww
 
(10 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
{{quiz-Header|Buchseite=Channel_Coding/Decoding_of_Linear_Block_Codes}}
 
{{quiz-Header|Buchseite=Channel_Coding/Decoding_of_Linear_Block_Codes}}
  
[[File:P_ID2397__KC_A_1_11.png|right|frame|Syndrome and coset leaders (incomplete list) of  $\rm HC \ (7, \, 4, \, 3)$ ]]
+
[[File:EN_KC_A_1_11.png|right|frame|Syndrome and coset leaders <br>$($incomplete list$)$&nbsp; of &nbsp;$\rm HC \ (7, \, 4, \, 3)$ ]]
  
To decode a &nbsp;$(7, \, 4, \, 3)$ Hamming code, which is defined by its parity-check matrix
+
To decode a &nbsp;$(7, \, 4, \, 3)$&nbsp; Hamming code,&nbsp; which is defined by its parity-check matrix
  
:$${ \boldsymbol{\rm H}}_{\rm } = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0\\ 1 &0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}$$
+
:$${ \boldsymbol{\rm H}}_{\rm } = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0\\ 1 &0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm},$$
  
"syndrome decoding" is also suitable. Since all Hamming codes are perfect, the result is as good as with the (in the general case) more complicated maximum likelihood detection.
+
"syndrome decoding"&nbsp; is also suitable.&nbsp; Since all Hamming codes are perfect,&nbsp; the result is as good as with the&nbsp; $($in the general case$)$&nbsp; more complicated maximum likelihood decoding.
  
 
For&nbsp; [[Channel_Coding/Decoding_of_Linear_Block_Codes#Principle_of_syndrome_decoding|"syndrome decoding"]]&nbsp; one proceeds as follows:
 
For&nbsp; [[Channel_Coding/Decoding_of_Linear_Block_Codes#Principle_of_syndrome_decoding|"syndrome decoding"]]&nbsp; one proceeds as follows:
*From the receive vector&nbsp; $\underline{y}$&nbsp; one forms the syndrome&nbsp; $($it holds&nbsp; $m = n - k)$:
+
*From the received vector&nbsp; $\underline{y}$ &nbsp; one forms the syndrome&nbsp; $($it holds&nbsp; $m = n - k)$:
 
:$$\underline{s} = \underline{y} \cdot { \boldsymbol{\rm H}}^{\rm T} \in {\rm GF}(2^m) \hspace{0.05cm}.$$
 
:$$\underline{s} = \underline{y} \cdot { \boldsymbol{\rm H}}^{\rm T} \in {\rm GF}(2^m) \hspace{0.05cm}.$$
  
*In&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Channel_.E2.80.93_BSC|"BSC channel"]]&nbsp; the receive word is also&nbsp; $\underline{y} = \underline{x} \, ({\rm codeword}) + \underline{e} \, ({\rm error\:vector})$&nbsp; an element of&nbsp; ${\rm GF}(2^n)$, and it holds because of&nbsp; $ \underline{x} · \boldsymbol {{\rm H} }^{\rm T} =  
+
*In&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Channel_.E2.80.93_BSC|"BSC channel"]]&nbsp; the received word &nbsp; $\underline{y} = \underline{x} \, ({\rm code\:word}) + \underline{e} \, ({\rm error\:vector})$ &nbsp; is also an element of&nbsp; ${\rm GF}(2^n)$,&nbsp; and it holds because of&nbsp;&nbsp; $ \underline{x} · \boldsymbol {{\rm H} }^{\rm T} =  
  \underline{0}$&nbsp; equally:
+
  \underline{0}$:
 
:$$\underline{s} = \underline{e} \cdot { \boldsymbol{\rm H}}^{\rm T} \hspace{0.05cm}.$$
 
:$$\underline{s} = \underline{e} \cdot { \boldsymbol{\rm H}}^{\rm T} \hspace{0.05cm}.$$
  
*Many error patterns&nbsp; $\underline{e}$&nbsp; lead to the same syndrome&nbsp; $\underline{s}$. One now groups those error patterns with the same syndrome&nbsp; $\underline{s}_{\mu}$&nbsp; to the coset&nbsp; ${\it \Psi}_{\mu}$&nbsp;.
+
*Many error patterns&nbsp; $\underline{e}$&nbsp; lead to the same syndrome&nbsp; $\underline{s}$.&nbsp; One now groups those error patterns with the same syndrome&nbsp; $\underline{s}_{\mu}$&nbsp; to the coset&nbsp; ${\it \Psi}_{\mu}$.
  
*The coset leader&nbsp; $\underline{e}_{\mu}$&nbsp; is the fault vector that has the lowest Hamming weight within the class&nbsp; ${\it \Psi}_{\mu}$&nbsp; and is accordingly the most probable. If there are several of these, one chooses one of them arbitrarily.
+
*The coset leader&nbsp; $\underline{e}_{\mu}$&nbsp; is the fault vector that has the lowest Hamming weight within the class&nbsp; ${\it \Psi}_{\mu}$&nbsp; and is accordingly the most probable.&nbsp; If there are several of these,&nbsp; one chooses one of them arbitrarily.
  
  
The above graph shows the incomplete list of coset leaders&nbsp; $\underline{e}_{\mu}$&nbsp; for each&nbsp; $\underline{s}_{\mu}$ .  
+
The above graph shows the incomplete list of coset leaders&nbsp; $\underline{e}_{\mu}$&nbsp; for each&nbsp; $\underline{s}_{\mu}$.  
 
The most likely error vectors
 
The most likely error vectors
 
*$\underline{e}_{3}$&nbsp; with syndrome&nbsp; $\underline{s}_{3} = (0, 1, 1)$,
 
*$\underline{e}_{3}$&nbsp; with syndrome&nbsp; $\underline{s}_{3} = (0, 1, 1)$,
Line 30: Line 30:
  
  
are to be determined in the subtasks '''(4)''' and '''(5)'''.
+
are to be determined in the subtasks&nbsp; '''(4)'''&nbsp; and&nbsp; '''(5)'''.
  
  
Line 38: Line 38:
  
 
Hints:
 
Hints:
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Decoding_of_Linear_Block_Codes|"Decoding of Linear Block Codes"]].  
+
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Decoding_of_Linear_Block_Codes|"Decoding of Linear Block Codes"]].
* Underlying is a Hamming code with parameters&nbsp; $n = 7$&nbsp; and&nbsp; $k = 4$ &nbsp; &rArr; &nbsp; $m = 3$. All code words have the following format:
+
 +
* Underlying is a Hamming code with parameters&nbsp; $n = 7$,&nbsp; $k = 4$ &nbsp; &rArr; &nbsp; $m = 3$.&nbsp; All code words have the following format:
 
:$$\underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_6, x_7) = ( u_1, u_2, u_3, u_4, p_1, p_2, p_{3}) \hspace{0.05cm}.$$
 
:$$\underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_6, x_7) = ( u_1, u_2, u_3, u_4, p_1, p_2, p_{3}) \hspace{0.05cm}.$$
*The parity-check equations are illustrated on the information sheet for&nbsp; [[Aufgaben:Exercise_1.11Z:_Syndrome_Decoding_again|"Exercise 1.11Z"]]&nbsp; which considers the same constellation as in the present exercise.  
+
*The parity-check equations are illustrated on the information sheet for&nbsp; [[Aufgaben:Exercise_1.11Z:_Syndrome_Decoding_again|"Exercise 1.11Z"]]&nbsp; which considers the same constellation as in the present exercise.
*In the last subtask '''(6)''', use the BSC parameter&nbsp; $ \varepsilon = 0.1$.
+
 +
*In the last subtask&nbsp; '''(6)''',&nbsp; use the BSC parameter&nbsp; $ \varepsilon = 0.1$.
 
   
 
   
  
Line 50: Line 52:
 
===Questions===
 
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{How many received words&nbsp; $(N_{0})$&nbsp; lead to the syndrome.&nbsp; $\underline{s} = \underline{s}_{0} = (0, 0, 0)$?
+
{How many received words&nbsp; $(N_{0})$&nbsp; lead to the syndrome&nbsp; $\underline{s} = \underline{s}_{0} = (0, 0, 0)$?
 
|type="{}"}
 
|type="{}"}
 
$N_{0} \ = \ $ { 16 3% }
 
$N_{0} \ = \ $ { 16 3% }
Line 58: Line 60:
 
$N_{7} \ = \ $ { 16 3% }
 
$N_{7} \ = \ $ { 16 3% }
  
{What are the characteristics of all coset leaders&nbsp; $\underline{e}_{\mu}$&nbsp;?
+
{What are the characteristics of all coset leaders&nbsp; $\underline{e}_{\mu}$?
 
|type="[]"}
 
|type="[]"}
 
- The last three bits of&nbsp; $\underline{e}_{\mu}$&nbsp; are identical to&nbsp; $\underline{s}_{\mu}$ .
 
- The last three bits of&nbsp; $\underline{e}_{\mu}$&nbsp; are identical to&nbsp; $\underline{s}_{\mu}$ .
- All&nbsp; $\underline{e}_{\mu}$&nbsp; contain a single&nbsp; $1$ each.
+
- All&nbsp; $\underline{e}_{\mu}$&nbsp; contain a single&nbsp; "$1$"&nbsp; each.
+ All&nbsp; $\underline{e}_{\mu}$&nbsp; include at most one&nbsp; $1$.
+
+ All&nbsp; $\underline{e}_{\mu}$&nbsp; include at most one&nbsp; "$1$".
  
{What syndrome&nbsp; $\underline{s}_{\mu}$&nbsp; does the error vector&nbsp; $(1, 0, 0, 0, 0, 0, 0)$ lead to?
+
{What syndrome&nbsp; $\underline{s}_{\mu}$&nbsp; does the error vector&nbsp; $(1, 0, 0, 0, 0, 0, 0)$&nbsp; lead to?
 
|type="{}"}
 
|type="{}"}
 
$\underline{e} = (1, 0, 0, 0, 0, 0, 0) \text{:} \hspace{0.4cm} {\rm Index} \ \mu \ = \ $ { 5 }
 
$\underline{e} = (1, 0, 0, 0, 0, 0, 0) \text{:} \hspace{0.4cm} {\rm Index} \ \mu \ = \ $ { 5 }
  
{Calculate the syndrome in each case&nbsp; $\underline{s}_{\mu}$&nbsp; $($Input: &nbsp;Index $\mu)$&nbsp; for
+
{Calculate the syndrome&nbsp; $\underline{s}_{\mu}$&nbsp; $($Input: &nbsp;Index $\mu)$&nbsp; for
 
|type="{}"}
 
|type="{}"}
 
$\ \underline{e} = (0, 1, 0, 0, 0, 0, 0) \text{:} \hspace{0.4cm} {\rm Index} \ \mu \ = \ $ { 6 }
 
$\ \underline{e} = (0, 1, 0, 0, 0, 0, 0) \text{:} \hspace{0.4cm} {\rm Index} \ \mu \ = \ $ { 6 }
Line 82: Line 84:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; There are a total of $2^7 = 128$ different codewords $\underline{x}$ and according to the BSC model also $2^7$ different received words $y$ and as many error vectors $\underline{e}$.
+
'''(1)'''&nbsp; There are a total of&nbsp; $2^7 = 128$&nbsp; different code words&nbsp; $\underline{x}$&nbsp; and according to the BSC model also&nbsp; $2^7$&nbsp; different received words&nbsp; $y$&nbsp; and as many error vectors&nbsp; $\underline{e}$.
  
*With $m = 3$ parity bits, there are $2^3 = 8$ distinct values for the syndrome,   
+
*With&nbsp; $m = 3$&nbsp; parity bits,&nbsp; there are&nbsp; $2^3 = 8$&nbsp; distinct values for the syndrome,   
  
 
:$$\underline{s} \hspace{0.05cm} \in \hspace{0.05cm} \{ \underline{s}_0, \underline{s}_1,\hspace{0.05cm} \text{...} \hspace{0.05cm} , \underline{s}_7\} = \{ \underline{s}_{\mu} \}\hspace{0.05cm}, \hspace{0.2cm} \mu = 0, \hspace{0.05cm} \text{...} \hspace{0.05cm} , 7 \hspace{0.05cm},$$
 
:$$\underline{s} \hspace{0.05cm} \in \hspace{0.05cm} \{ \underline{s}_0, \underline{s}_1,\hspace{0.05cm} \text{...} \hspace{0.05cm} , \underline{s}_7\} = \{ \underline{s}_{\mu} \}\hspace{0.05cm}, \hspace{0.2cm} \mu = 0, \hspace{0.05cm} \text{...} \hspace{0.05cm} , 7 \hspace{0.05cm},$$
  
:and just as many cosets.   
+
:and just as many&nbsp; "cosets".   
  
*Since in the Hamming code, which is perfect, all error vectors belong to one of the eight cosets ${\it \Psi}_{\mu}$ and, moreover, the number of all vectors in all cosets is the same ("Why should it be different?" Is that enough proof for you?), we get
+
*Since in the Hamming code,&nbsp; which is perfect,&nbsp; all error vectors belong to one of the eight cosets&nbsp; ${\it \Psi}_{\mu}$&nbsp; and,&nbsp; moreover,&nbsp; the number of all vectors in all cosets is the same&nbsp; ("Why should it be different?" Is that enough proof for you?),&nbsp; we get:
  
 
:$$ N_0 = \frac{2^n}{2^m} = 2^k \hspace{0.15cm} \underline{= 16} \hspace{0.05cm}.$$
 
:$$ N_0 = \frac{2^n}{2^m} = 2^k \hspace{0.15cm} \underline{= 16} \hspace{0.05cm}.$$
  
*The cosets ${\it \Psi}_{0}$ include for example - see sample solution to [[Aufgaben:Exercise_1.11Z:_Syndrome_Decoding_again|Exercise 1.11Z]] - the vectors
+
*The cosets&nbsp; ${\it \Psi}_{0}$&nbsp; include for example - see sample solution to&nbsp; [[Aufgaben:Exercise_1.11Z:_Syndrome_Decoding_again|"Exercise 1.11Z"]] - the vectors
  
 
:$$\underline{e} = (1, 1, 0, 0, 0, 0, 1),$$
 
:$$\underline{e} = (1, 1, 0, 0, 0, 0, 1),$$
:$$\underline{e} = (1, 1, 0, 0, 0, 0, 1).$$
+
:$$\underline{e} = (1, 1, 1, 1, 1, 1, 1).$$
  
  
  
'''(2)'''&nbsp; According to the comments of the last partial result, the following applies equally $N_{7} \ \underline{= 16}$.
+
'''(2)'''&nbsp; According to the comments of the last partial result,&nbsp; the following applies equally:&nbsp; $N_{7} \ \underline{= 16}$.
  
  
  
'''(3)'''&nbsp; Correct is <u>answer 3</u>:  
+
'''(3)'''&nbsp; Correct is&nbsp; <u>answer 3</u>:  
*The coset leader $\underline{e}_{\mu}$ is the error vector $\underline{e}$ with the lowest [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding|Hamming weight]] $w_{\rm H}(\underline{e})$ that leads to the syndrome $\underline{s}_{\mu}$.  
+
*The coset leader&nbsp; $\underline{e}_{\mu}$&nbsp; is the error vector&nbsp; $\underline{e}$&nbsp; with the lowest [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding|"Hamming weight"]]&nbsp; $w_{\rm H}(\underline{e})$&nbsp; that leads to the syndrome&nbsp; $\underline{s}_{\mu}$.
*The Hamming code considered here (7, 4, 3) is perfect. That is, all eight coset leaders therefore contain.
+
:*either no "one" ($\underline{e}_{0}$ &nbsp; ⇒ &nbsp; no correction is required), or
+
*The (7, 4, 3) Hamming code considered here is perfect.&nbsp; That is,&nbsp; all eight coset leaders therefore contain.
:*exactly a single "one" ($\underline{e}_{1}, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \underline{e}_{7}$ &nbsp; ⇒ &nbsp; an information or parity bit must be corrected).
+
:*either no&nbsp; "one"&nbsp; $(\underline{e}_{0}$ &nbsp; ⇒ &nbsp; no correction is required$)$,&nbsp; or
 +
:*exactly a single&nbsp; "one"&nbsp; $(\underline{e}_{1}, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \underline{e}_{7}$ &nbsp; ⇒ &nbsp; an information or parity bit must be corrected$)$.
  
  
  
'''(4)'''&nbsp;  It holds $\underline{s} = \underline{e} · \boldsymbol{\rm H}^{\rm T}$:
+
'''(4)'''&nbsp;  It holds&nbsp; $\underline{s} = \underline{e} · \boldsymbol{\rm H}^{\rm T}$:
 
:$$\underline{s} = \begin{pmatrix} 1 &0 &0 &0 &0 &0 &0 \end{pmatrix} \cdot \begin{pmatrix} 1 &0 &1\\ 1 &1 &0\\ 0 &1 &1\\ 1 &1 &1\\ 1 &0 &0\\ 0 &1 &0\\ 0 &0 &1 \end{pmatrix} = \begin{pmatrix} 1 &0 &1 \end{pmatrix} = \underline{s}_5 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} \hspace{0.15cm} \underline{ \mu= 5} \hspace{0.05cm}.$$
 
:$$\underline{s} = \begin{pmatrix} 1 &0 &0 &0 &0 &0 &0 \end{pmatrix} \cdot \begin{pmatrix} 1 &0 &1\\ 1 &1 &0\\ 0 &1 &1\\ 1 &1 &1\\ 1 &0 &0\\ 0 &1 &0\\ 0 &0 &1 \end{pmatrix} = \begin{pmatrix} 1 &0 &1 \end{pmatrix} = \underline{s}_5 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} \hspace{0.15cm} \underline{ \mu= 5} \hspace{0.05cm}.$$
  
 
   
 
   
  
  [[File:P_ID2398__KC_A_1_11d.png|right|frame|All coset leaders of the $(7, \, 4, \, 3)$ Hamming code. ]]  
+
  [[File:EN_KC_A_1_11d_v2.png|right|frame|All coset leaders of the&nbsp; $\rm HC (7, \, 4, \, 3)$ ]]  
'''(5)'''&nbsp; A comparison with the solution to the last subtask shows that $(0, 1, 0, 0, 0, 0) - \boldsymbol{\rm H}^{\rm T}$ as a syndrome gives the second row of the transposed matrix:
+
'''(5)'''&nbsp; A comparison with the solution to the last subtask shows that&nbsp; $(0, 1, 0, 0, 0, 0, 0) \cdot \boldsymbol{\rm H}^{\rm T}$&nbsp; as a syndrome gives the second row of the transposed matrix:
  
 
:$$\begin{pmatrix} 0 &1 &0 &0 &0 \hspace{0.2cm}\text{... }\end{pmatrix} \cdot { \boldsymbol{\rm H}}^{\rm T} = \begin{pmatrix} 1 &1 &0 \end{pmatrix} = \underline{s}_6$$
 
:$$\begin{pmatrix} 0 &1 &0 &0 &0 \hspace{0.2cm}\text{... }\end{pmatrix} \cdot { \boldsymbol{\rm H}}^{\rm T} = \begin{pmatrix} 1 &1 &0 \end{pmatrix} = \underline{s}_6$$
  
:$$\Rightarrow\hspace{0.45cm} \underline{ \mu= 6} \hspace{0.05cm}, \hspace{0.2cm} \underline{e}_6 = \begin{pmatrix} 0 &1 &0 &0 &0 &0 &0 \end{pmatrix}\hspace{0.05cm}.$$
+
:$$\Rightarrow\hspace{0.45cm} \underline{ \mu= 6} \hspace{0.05cm}, \hspace{0.5cm} \underline{e}_6 = \begin{pmatrix} 0 &1 &0 &0 &0 &0 &0 \end{pmatrix}\hspace{0.05cm}.$$
  
 
:$$\begin{pmatrix} 0 &0 &1 &0 &0 \hspace{0.2cm}\text{... }\end{pmatrix} \cdot { \boldsymbol{\rm H}}^{\rm T} = \begin{pmatrix} 0 &1 &1 \end{pmatrix} = \underline{s}_3$$
 
:$$\begin{pmatrix} 0 &0 &1 &0 &0 \hspace{0.2cm}\text{... }\end{pmatrix} \cdot { \boldsymbol{\rm H}}^{\rm T} = \begin{pmatrix} 0 &1 &1 \end{pmatrix} = \underline{s}_3$$
  
:$$\Rightarrow\hspace{0.45cm} \underline{ \mu= 3} \hspace{0.05cm}, \hspace{0.2cm} \underline{e}_3 = \begin{pmatrix} 0 &0 &1 &0 &0 &0 &0 \end{pmatrix}\hspace{0.05cm}.$$
+
:$$\Rightarrow\hspace{0.45cm} \underline{ \mu= 3} \hspace{0.05cm}, \hspace{0.5cm} \underline{e}_3 = \begin{pmatrix} 0 &0 &1 &0 &0 &0 &0 \end{pmatrix}\hspace{0.05cm}.$$
  
 
:$$\begin{pmatrix} 0 &0 &0 &1 &0 \hspace{0.2cm}\text{... } \end{pmatrix} \cdot { \boldsymbol{\rm H}}^{\rm T} = \begin{pmatrix} 1 &1 &1 \end{pmatrix} = \underline{s}_7$$
 
:$$\begin{pmatrix} 0 &0 &0 &1 &0 \hspace{0.2cm}\text{... } \end{pmatrix} \cdot { \boldsymbol{\rm H}}^{\rm T} = \begin{pmatrix} 1 &1 &1 \end{pmatrix} = \underline{s}_7$$
  
:$$\Rightarrow\hspace{0.45cm} \underline{ \mu= 7} \hspace{0.05cm}, \hspace{0.2cm} \underline{e}_7 = \begin{pmatrix} 0 &0 &0 &1 &0 &0 &0 \end{pmatrix}\hspace{0.05cm}.$$
+
:$$\Rightarrow\hspace{0.45cm} \underline{ \mu= 7} \hspace{0.05cm}, \hspace{0.5cm} \underline{e}_7 = \begin{pmatrix} 0 &0 &0 &1 &0 &0 &0 \end{pmatrix}\hspace{0.05cm}.$$
  
The adjacent graph summarizes again the results of the subtasks '''(4)''' and '''(5)'''.
+
The adjacent graph summarizes again the results of the subtasks&nbsp; '''(4)'''&nbsp; and&nbsp; '''(5)'''.
  
  
  
'''(6)'''&nbsp;  For the $(7, \, 4, \, 3)$ Hamming code under consideration, the correct information word is decided if at most one bit within the codeword is corrupted during transmission. It follows:
+
'''(6)'''&nbsp;  For the&nbsp; $(7, \, 4, \, 3)$&nbsp; Hamming code under consideration,&nbsp; the correct information word is decided if at most one bit within the code word is falsified during transmission.&nbsp; It follows:
  
 
:$${ \rm Pr(block\:errors)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} { \rm Pr(\ge 2\hspace{0.15cm}bit\hspace{0.15cm}errors\hspace{0.15cm})} =1 - { \rm Pr(0\hspace{0.15cm}bit\hspace{0.15cm}errors)} - { \rm Pr(1\hspace{0.15cm}bit\hspace{0.15cm}errors)} =1 - 0.9^7 - 7 \cdot 0.1 \cdot 0.9^7 \hspace{0.15cm} \underline{ = 0.15} \hspace{0.05cm}.$$
 
:$${ \rm Pr(block\:errors)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} { \rm Pr(\ge 2\hspace{0.15cm}bit\hspace{0.15cm}errors\hspace{0.15cm})} =1 - { \rm Pr(0\hspace{0.15cm}bit\hspace{0.15cm}errors)} - { \rm Pr(1\hspace{0.15cm}bit\hspace{0.15cm}errors)} =1 - 0.9^7 - 7 \cdot 0.1 \cdot 0.9^7 \hspace{0.15cm} \underline{ = 0.15} \hspace{0.05cm}.$$
  
*Uncoded transmission of a block with $n = k = 4$ bits would result in the same BSC channel:
+
*Uncoded transmission of a block with&nbsp; $n = k = 4$&nbsp; bits would result in the same BSC channel:
  
 
:$${ \rm Pr(block\:errors)}= 1 - 0.9^4 \approx 0.344 \hspace{0.05cm}.$$
 
:$${ \rm Pr(block\:errors)}= 1 - 0.9^4 \approx 0.344 \hspace{0.05cm}.$$
  
*The comparison is not entirely fair, however, since with $n = 4$ a smaller corruption probability $\varepsilon$ would have to be applied than with $n = 7$ (smaller symbol rate &nbsp; ⇒&nbsp; smaller bandwidth &nbsp; ⇒ &nbsp; smaller noise power).
+
*The comparison is not entirely fair,&nbsp; however,&nbsp; since with&nbsp; $n = 4$&nbsp; a smaller falsification probability&nbsp; $\varepsilon$&nbsp; would have to be applied than with&nbsp; $n = 7$&nbsp; $($smaller symbol rate &nbsp; ⇒ &nbsp; smaller bandwidth &nbsp; ⇒ &nbsp; smaller noise power$)$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 13:03, 21 April 2023

Syndrome and coset leaders
$($incomplete list$)$  of  $\rm HC \ (7, \, 4, \, 3)$

To decode a  $(7, \, 4, \, 3)$  Hamming code,  which is defined by its parity-check matrix

$${ \boldsymbol{\rm H}}_{\rm } = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0\\ 1 &0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm},$$

"syndrome decoding"  is also suitable.  Since all Hamming codes are perfect,  the result is as good as with the  $($in the general case$)$  more complicated maximum likelihood decoding.

For  "syndrome decoding"  one proceeds as follows:

  • From the received vector  $\underline{y}$   one forms the syndrome  $($it holds  $m = n - k)$:
$$\underline{s} = \underline{y} \cdot { \boldsymbol{\rm H}}^{\rm T} \in {\rm GF}(2^m) \hspace{0.05cm}.$$
  • In  "BSC channel"  the received word   $\underline{y} = \underline{x} \, ({\rm code\:word}) + \underline{e} \, ({\rm error\:vector})$   is also an element of  ${\rm GF}(2^n)$,  and it holds because of   $ \underline{x} · \boldsymbol {{\rm H} }^{\rm T} = \underline{0}$:
$$\underline{s} = \underline{e} \cdot { \boldsymbol{\rm H}}^{\rm T} \hspace{0.05cm}.$$
  • Many error patterns  $\underline{e}$  lead to the same syndrome  $\underline{s}$.  One now groups those error patterns with the same syndrome  $\underline{s}_{\mu}$  to the coset  ${\it \Psi}_{\mu}$.
  • The coset leader  $\underline{e}_{\mu}$  is the fault vector that has the lowest Hamming weight within the class  ${\it \Psi}_{\mu}$  and is accordingly the most probable.  If there are several of these,  one chooses one of them arbitrarily.


The above graph shows the incomplete list of coset leaders  $\underline{e}_{\mu}$  for each  $\underline{s}_{\mu}$. The most likely error vectors

  • $\underline{e}_{3}$  with syndrome  $\underline{s}_{3} = (0, 1, 1)$,
  • $\underline{e}_{5}$  with syndrome  $\underline{s}_{5} = (1, 0, 1)$,
  • $\underline{e}_{6}$  with syndrome  $\underline{s}_{6} = (1, 1, 0)$,
  • $\underline{e}_{7}$  with syndrome  $\underline{s}_{7} = (1, 1, 1)$


are to be determined in the subtasks  (4)  and  (5).




Hints:

  • Underlying is a Hamming code with parameters  $n = 7$,  $k = 4$   ⇒   $m = 3$.  All code words have the following format:
$$\underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_6, x_7) = ( u_1, u_2, u_3, u_4, p_1, p_2, p_{3}) \hspace{0.05cm}.$$
  • The parity-check equations are illustrated on the information sheet for  "Exercise 1.11Z"  which considers the same constellation as in the present exercise.
  • In the last subtask  (6),  use the BSC parameter  $ \varepsilon = 0.1$.



Questions

1

How many received words  $(N_{0})$  lead to the syndrome  $\underline{s} = \underline{s}_{0} = (0, 0, 0)$?

$N_{0} \ = \ $

2

How many received words  $(N_{7})$  lead to the syndrome  $\underline{s} = \underline{s}_{7} = (1, 1, 1)$?

$N_{7} \ = \ $

3

What are the characteristics of all coset leaders  $\underline{e}_{\mu}$?

The last three bits of  $\underline{e}_{\mu}$  are identical to  $\underline{s}_{\mu}$ .
All  $\underline{e}_{\mu}$  contain a single  "$1$"  each.
All  $\underline{e}_{\mu}$  include at most one  "$1$".

4

What syndrome  $\underline{s}_{\mu}$  does the error vector  $(1, 0, 0, 0, 0, 0, 0)$  lead to?

$\underline{e} = (1, 0, 0, 0, 0, 0, 0) \text{:} \hspace{0.4cm} {\rm Index} \ \mu \ = \ $

5

Calculate the syndrome  $\underline{s}_{\mu}$  $($Input:  Index $\mu)$  for

$\ \underline{e} = (0, 1, 0, 0, 0, 0, 0) \text{:} \hspace{0.4cm} {\rm Index} \ \mu \ = \ $

$\ \underline{e} = (0, 0, 1, 0, 0, 0, 0) \text{:} \hspace{0.4cm} {\rm Index} \ \mu \ = \ $

$\ \underline{e} = (0, 0, 0, 1, 0, 0, 0) \text{:} \hspace{0.4cm} {\rm Index} \ \mu \ = \ $

6

What is the block error probability for the BSC model with falsification probability  $\varepsilon = 0.1$?

${\rm Pr(block\:error)} \ = \ $

$\ \%$


Solution

(1)  There are a total of  $2^7 = 128$  different code words  $\underline{x}$  and according to the BSC model also  $2^7$  different received words  $y$  and as many error vectors  $\underline{e}$.

  • With  $m = 3$  parity bits,  there are  $2^3 = 8$  distinct values for the syndrome,
$$\underline{s} \hspace{0.05cm} \in \hspace{0.05cm} \{ \underline{s}_0, \underline{s}_1,\hspace{0.05cm} \text{...} \hspace{0.05cm} , \underline{s}_7\} = \{ \underline{s}_{\mu} \}\hspace{0.05cm}, \hspace{0.2cm} \mu = 0, \hspace{0.05cm} \text{...} \hspace{0.05cm} , 7 \hspace{0.05cm},$$
and just as many  "cosets".
  • Since in the Hamming code,  which is perfect,  all error vectors belong to one of the eight cosets  ${\it \Psi}_{\mu}$  and,  moreover,  the number of all vectors in all cosets is the same  ("Why should it be different?" Is that enough proof for you?),  we get:
$$ N_0 = \frac{2^n}{2^m} = 2^k \hspace{0.15cm} \underline{= 16} \hspace{0.05cm}.$$
  • The cosets  ${\it \Psi}_{0}$  include for example - see sample solution to  "Exercise 1.11Z" - the vectors
$$\underline{e} = (1, 1, 0, 0, 0, 0, 1),$$
$$\underline{e} = (1, 1, 1, 1, 1, 1, 1).$$


(2)  According to the comments of the last partial result,  the following applies equally:  $N_{7} \ \underline{= 16}$.


(3)  Correct is  answer 3:

  • The coset leader  $\underline{e}_{\mu}$  is the error vector  $\underline{e}$  with the lowest "Hamming weight"  $w_{\rm H}(\underline{e})$  that leads to the syndrome  $\underline{s}_{\mu}$.
  • The (7, 4, 3) Hamming code considered here is perfect.  That is,  all eight coset leaders therefore contain.
  • either no  "one"  $(\underline{e}_{0}$   ⇒   no correction is required$)$,  or
  • exactly a single  "one"  $(\underline{e}_{1}, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \underline{e}_{7}$   ⇒   an information or parity bit must be corrected$)$.


(4)  It holds  $\underline{s} = \underline{e} · \boldsymbol{\rm H}^{\rm T}$:

$$\underline{s} = \begin{pmatrix} 1 &0 &0 &0 &0 &0 &0 \end{pmatrix} \cdot \begin{pmatrix} 1 &0 &1\\ 1 &1 &0\\ 0 &1 &1\\ 1 &1 &1\\ 1 &0 &0\\ 0 &1 &0\\ 0 &0 &1 \end{pmatrix} = \begin{pmatrix} 1 &0 &1 \end{pmatrix} = \underline{s}_5 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} \hspace{0.15cm} \underline{ \mu= 5} \hspace{0.05cm}.$$


All coset leaders of the  $\rm HC (7, \, 4, \, 3)$

(5)  A comparison with the solution to the last subtask shows that  $(0, 1, 0, 0, 0, 0, 0) \cdot \boldsymbol{\rm H}^{\rm T}$  as a syndrome gives the second row of the transposed matrix:

$$\begin{pmatrix} 0 &1 &0 &0 &0 \hspace{0.2cm}\text{... }\end{pmatrix} \cdot { \boldsymbol{\rm H}}^{\rm T} = \begin{pmatrix} 1 &1 &0 \end{pmatrix} = \underline{s}_6$$
$$\Rightarrow\hspace{0.45cm} \underline{ \mu= 6} \hspace{0.05cm}, \hspace{0.5cm} \underline{e}_6 = \begin{pmatrix} 0 &1 &0 &0 &0 &0 &0 \end{pmatrix}\hspace{0.05cm}.$$
$$\begin{pmatrix} 0 &0 &1 &0 &0 \hspace{0.2cm}\text{... }\end{pmatrix} \cdot { \boldsymbol{\rm H}}^{\rm T} = \begin{pmatrix} 0 &1 &1 \end{pmatrix} = \underline{s}_3$$
$$\Rightarrow\hspace{0.45cm} \underline{ \mu= 3} \hspace{0.05cm}, \hspace{0.5cm} \underline{e}_3 = \begin{pmatrix} 0 &0 &1 &0 &0 &0 &0 \end{pmatrix}\hspace{0.05cm}.$$
$$\begin{pmatrix} 0 &0 &0 &1 &0 \hspace{0.2cm}\text{... } \end{pmatrix} \cdot { \boldsymbol{\rm H}}^{\rm T} = \begin{pmatrix} 1 &1 &1 \end{pmatrix} = \underline{s}_7$$
$$\Rightarrow\hspace{0.45cm} \underline{ \mu= 7} \hspace{0.05cm}, \hspace{0.5cm} \underline{e}_7 = \begin{pmatrix} 0 &0 &0 &1 &0 &0 &0 \end{pmatrix}\hspace{0.05cm}.$$

The adjacent graph summarizes again the results of the subtasks  (4)  and  (5).


(6)  For the  $(7, \, 4, \, 3)$  Hamming code under consideration,  the correct information word is decided if at most one bit within the code word is falsified during transmission.  It follows:

$${ \rm Pr(block\:errors)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} { \rm Pr(\ge 2\hspace{0.15cm}bit\hspace{0.15cm}errors\hspace{0.15cm})} =1 - { \rm Pr(0\hspace{0.15cm}bit\hspace{0.15cm}errors)} - { \rm Pr(1\hspace{0.15cm}bit\hspace{0.15cm}errors)} =1 - 0.9^7 - 7 \cdot 0.1 \cdot 0.9^7 \hspace{0.15cm} \underline{ = 0.15} \hspace{0.05cm}.$$
  • Uncoded transmission of a block with  $n = k = 4$  bits would result in the same BSC channel:
$${ \rm Pr(block\:errors)}= 1 - 0.9^4 \approx 0.344 \hspace{0.05cm}.$$
  • The comparison is not entirely fair,  however,  since with  $n = 4$  a smaller falsification probability  $\varepsilon$  would have to be applied than with  $n = 7$  $($smaller symbol rate   ⇒   smaller bandwidth   ⇒   smaller noise power$)$.