Difference between revisions of "Aufgaben:Exercise 2.2Z: Galois Field GF(5)"

From LNTwww
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Einige Grundlagen der Algebra}}
+
{{quiz-Header|Buchseite=Channel_Coding/Some_Basics_of_Algebra}}
  
[[File:P_ID2494__KC_Z_2_2.png|right|frame|Addition/Multiplikation für  $\{a, \, b, \, c, \, d, \, e\}$]]
+
[[File:P_ID2494__KC_Z_2_2.png|right|frame|Addition/multiplication for  $\rm \{a, \, b, \, c, \, d, \, e\}$]]
Wie in der  [[Aufgaben:2.2_Eigenschaften_von_Galoisfeldern|Aufgabe 2.2]]  betrachten wir einen endlichen Körper der Ordnung  $q = 5$  und damit das Galoisfeld
+
As in the  [[Aufgaben:Exercise_2.2:_Properties_of_Galois_Fields|"Exercise 2.2"]]  we consider a finite field of order  $q = 5$  and thus the Galois field
:$${\rm GF}(5) = \{{a}, { b},{c},{d},{e}\}\hspace{0.05cm}.$$
+
:$$\rm GF(5) = \{{a}, { b},{c},{d},{e}\}\hspace{0.05cm}.$$
  
Über die Elemente werden weiter keine Aussagen getroffen. Es können sowohl ganze Zahlen sein oder irgendwelche mathematische Ausdrücke.
+
No further statements are made about the elements. They can be integers or any mathematical expressions.
  
Das Galoisfeld wird ausschließlich bestimmt durch
+
The Galois field is determined exclusively by
* eine Additionstabelle modulo 5,
+
* an addition table modulo 5,
* eine Multiplikationstabelle modulo 5,
 
  
 +
* a multiplication table modulo 5.
  
Die wichtigsten Eigenschaften eines Galoisfeldes sind auf der  [[Channel_Coding/Einige_Grundlagen_der_Algebra#Definition_eines_Galoisfeldes|ersten Theorieseite]]  zusammengestellt. Hier wird Bezug genommen auf
 
* das Kommutativ– und das Distributivgesetz,
 
* die neutralen Elemente von Addition und Multiplikation,
 
* die inversen Elemente von Addition und Multiplikation, sowie
 
* die Bestimmung primitiver Elemente.
 
  
 +
The main properties of a Galois field are compiled on the  [[Channel_Coding/Some_Basics_of_Algebra#Definition_of_a_Galois_field|"first theory page"]].  There,  reference is made to
 +
* the commutative and distributive laws,
  
Im vorliegenden Beispiel wäre  $\beta$  ein primitives Element, wenn  $\beta^2, \ \beta^3$  und  $\beta^4$  (allgemein:  $\beta^{q-1})$  die übrigen Elemente des Galoisfeldes  $\rm GF(5)$  mit Ausnahme des Nullelementes ergeben.
+
* the neutral elements of addition and multiplication,
 +
 +
* the inverse elements of addition and multiplication, and
  
 +
* the determination of primitive elements.
  
  
 +
In the present example  $\beta$  would be a primitive element if  $\beta^2, \ \beta^3$  and  $\beta^4$  $($in general:  $\beta^{q-1})$  yield the remaining elements of the Galois field  $\rm GF(5)$  except for the zero element.
  
  
  
''Hinweise:''
+
Hint:  The exercise is related to the topic of the chapter  [[Channel_Coding/Some_Basics_of_Algebra| "Some Basics of Algebra"]].
* Die Aufgabe bezieht ich auf das Themengebiet des Kapitels  [[Channel_Coding/Einige_Grundlagen_der_Algebra| Einige Grundlagen der Algebra]].
 
* Lassen Sie sich bitte nicht verwirren, dass im Text die Menge  $ \{{a}, { b},{c},{d},{e}\}$  verwendet wird und in den Tabellen  $ \rm \{{a}, { b},{c},{d},{e}\}$. Entschuldigung!
 
  
  
 
+
===Questions===
===Fragebogen===
 
 
<quiz display=simple>
 
<quiz display=simple>
{Bestimmen Sie das neutrale Element der Addition.
+
{Determine the neutral element of addition.
 
|type="()"}
 
|type="()"}
- $N_{\rm A} = a$,
+
- $N_{\rm A} = \rm a$,
- $N_{\rm A} = b$,
+
- $N_{\rm A} = \rm b$,
- $N_{\rm A} = c$,
+
- $N_{\rm A} = \rm c$,
+ $N_{\rm A} = d$,
+
+ $N_{\rm A} = \rm d$,
- $N_{\rm A} = e$.
+
- $N_{\rm A} = \rm e$.
  
{Bestimmen Sie das neutrale Element der Multiplikation.
+
{Determine the neutral element of multiplication.
 
|type="()"}
 
|type="()"}
- $N_{\rm M} = a$,
+
- $N_{\rm M} = \rm a$,
- $N_{\rm M} = b$,
+
- $N_{\rm M} = \rm b$,
+ $N_{\rm M} = c$,
+
+ $N_{\rm M} = \rm c$,
- $N_{\rm M} = d$,
+
- $N_{\rm M} = \rm d$,
- $N_{\rm M} = e$.
+
- $N_{\rm M} = \rm e$.
  
{Ist das Kommutativgesetz erfüllt,
+
{If the commutative law is satisfied,
 
|type="[]"}
 
|type="[]"}
+ hinsichtlich Addition, zum Beispiel&nbsp; $a + b = b + a, \hspace{0.05cm}\text{ ...} \hspace{0.1cm}, \ d + e = e + d$,
+
+ with respect to addition,&nbsp; e.g.&nbsp; $\rm a + b = b + a, \hspace{0.05cm}\text{ ...} \hspace{0.1cm}, \ d + e = e + d$,
+ hinsichtlich Multiplikation, zum Beispiel&nbsp; $a \cdot b = b \cdot a, \hspace{0.05cm}\text{ ...} \hspace{0.1cm}, \ d \cdot e = e \cdot d$.
+
+ with respect to multiplication,&nbsp; e.g.&nbsp; $\rm a \cdot b = b \cdot a, \hspace{0.05cm}\text{ ...} \hspace{0.1cm}, \ d \cdot e = e \cdot d$.
  
{Für welche Ausdrücke ist das Distributivgesetz erfüllt?
+
{For which expressions is the distributive law satisfied?
 
|type="[]"}
 
|type="[]"}
+ $a \cdot (b + c) = a \cdot b + a \cdot c$,
+
+ $\rm a \cdot (b + c) = a \cdot b + a \cdot c$,
+ $d \cdot (b + c) = d \cdot b + d \cdot c$,
+
+ $\rm d \cdot (b + c) = d \cdot b + d \cdot c$,
+ $e \cdot (a + b) = e \cdot a + e \cdot b$.
+
+ $\rm e \cdot (a + b) = e \cdot a + e \cdot b$.
  
{Ersetzen Sie&nbsp; $a, \ b, \ c, \ d, \ e$&nbsp; durch Elemente der Zahlenmenge&nbsp; $\{0, \, 1, \, 2, \, 3, \, 4\}$, so dass sich gleiche Operationstabellen ergeben.
+
{Replace&nbsp; $\rm a, \ b, \ c, \ d, \ e$&nbsp; with elements of the number set&nbsp; $\{0, \, 1, \, 2, \, 3, \, 4\}$&nbsp; so that equal operation tables result.
 
|type="{}"}
 
|type="{}"}
$a \hspace{0.2cm} = \ ${ 3 }
+
$\rm a \hspace{0.25cm} = \ ${ 3 }
$b \hspace{0.25cm}  = \ ${ 2 }
+
$\rm b \hspace{0.25cm}  = \ ${ 2 }
$c \hspace{0.25cm}  = \ ${ 1 }
+
$\rm c \hspace{0.25cm}  = \ ${ 1 }
$d \hspace{0.2cm}  = \ ${ 0. }
+
$\rm d \hspace{0.25cm}  = \ ${ 0. }
$e \hspace{0.2cm}  = \ ${ 4 }
+
$\rm e \hspace{0.25cm}  = \ ${ 4 }
  
{Welche Aussagen gelten hinsichtlich der inversen Elemente?
+
{What statements are true regarding inverse elements?
 
|type="[]"}
 
|type="[]"}
+ Für alle&nbsp; $z_i &#8712; \{0, \, 1, \, 2, \, 3, \, 4\}$&nbsp; gibt es eine additive Inverse.  
+
+ For all&nbsp; $z_i &#8712; \{0, \, 1, \, 2, \, 3, \, 4\}$&nbsp; there is an additive inverse.  
- Nur für&nbsp; $z_i &#8712; \{1, \, 2, \, 3, \, 4\}$&nbsp; gibt es eine additive Inverse.
+
- Only for&nbsp; $z_i &#8712; \{1, \, 2, \, 3, \, 4\}$&nbsp; there is an additive inverse.
- Für alle&nbsp; $z_i &#8712; \{0, \, 1, \, 2, \, 3, \, 4\}$&nbsp; gibt es eine multiplikative Inverse.
+
- For all&nbsp; $z_i &#8712; \{0, \, 1, \, 2, \, 3, \, 4\}$&nbsp; there is a multiplicative inverse.
+ Nur für&nbsp; $z_i &#8712; \{1, \, 2, \, 3, \, 4\}$&nbsp; gibt es eine multiplikative Inverse.
+
+ Only for&nbsp; $z_i &#8712; \{1, \, 2, \, 3, \, 4\}$&nbsp; there is a multiplicative inverse.
  
{Welche der Elemente sind primitiv?
+
{Which of the elements are primitive?
 
|type="[]"}
 
|type="[]"}
+ $a = 3$.
+
+ $\rm a = 3$.
+ $b = 2$,
+
+ $\rm b = 2$,
- $e = 4$.
+
- $\rm e = 4$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Das neutrale Element hinsichtlich Addition (genannt $N_{\rm A}$) muss für alle Elemente $z_i (i = 0, \hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ q-1)$ die folgende Gleichung erfüllen:
+
'''(1)'''&nbsp; The neutral element with respect to addition&nbsp;  $($called&nbsp; $N_{\rm A})$&nbsp; must satisfy the following equation for all elements&nbsp; $z_i (i = 0, \hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ q-1)$:
 
:$$z_i + N_{\rm A} = N_{\rm A} + z_i = z_i\hspace{0.05cm}.$$
 
:$$z_i + N_{\rm A} = N_{\rm A} + z_i = z_i\hspace{0.05cm}.$$
  
Aus der Additionstabelle folgt $N_{\rm A} \ \underline{= d}$.
+
*From the addition table it follows&nbsp; $N_{\rm A} \ \underline{= \rm d}$.
  
  
  
'''(2)'''&nbsp; Dagegen erfüllt das neutrale Element der Multiplikation $(N_{\rm M})$ für alle Elemente $z_i (i = 1,\hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ q-1)$ die folgende Bedingung:
+
'''(2)'''&nbsp; In contrast,&nbsp; for all elements&nbsp; $z_i (i = 1,\hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ q-1)$,&nbsp; the neutral element of multiplication&nbsp; $(N_{\rm M})$&nbsp; satisfies the following condition:
 
:$$z_i \cdot N_{\rm M} = N_{\rm M}\cdot z_i = z_i\hspace{0.05cm}.$$
 
:$$z_i \cdot N_{\rm M} = N_{\rm M}\cdot z_i = z_i\hspace{0.05cm}.$$
  
Aus der Multiplikationstabelle erkennt man $N_{\rm M} \ \underline{= c}$.
+
*From the multiplication table,&nbsp; one can see&nbsp; $N_{\rm M} \ \underline{= \rm c}$.
  
  
  
'''(3)'''&nbsp; Das Kommutativgesetz ist bei diesem Galoisfeld in <u>beiden Fällen</u> (Addition und Multiplikation) erfüllt, da Additionstabelle und Multiplikationstabelle jeweils symmetrisch zur Tabellendiagonalen sind.
+
'''(3)'''&nbsp; The commutative law is satisfied for this Galois field in&nbsp; <u>both cases</u>&nbsp; (addition and multiplication),&nbsp; <br> &nbsp; &nbsp; &nbsp; &nbsp; since the addition table and multiplication table are each symmetric about the table diagonal.
  
  
  
'''(4)'''&nbsp; Betrachten wir zunächst den ersten Ausdruck. Bei Gültigkeit des Distributivgesetzes muss gelten:
+
'''(4)'''&nbsp; Let us first consider the first expression.&nbsp; If the distributive law is valid,&nbsp; it must hold:
:$$a \cdot (b+c) = a \cdot b+ a \cdot c \hspace{0.05cm}.$$
+
:$$\rm a \cdot (b+c) = a \cdot b+ a \cdot c \hspace{0.05cm}.$$
  
Für die linke Seite erhält man:
+
*For the left side you get:
:$$a \cdot (b+c) = a \cdot a =e \hspace{0.05cm},$$
+
:$$\rm a \cdot (b+c) = a \cdot a =e \hspace{0.05cm},$$
  
und für die rechte Seite:
+
:and for the right side:
:$$a \cdot b+ a \cdot c =  c + a = e\hspace{0.05cm}.$$
+
:$$\rm a \cdot b+ a \cdot c =  c + a = e\hspace{0.05cm}.$$
  
Das Distributivgesetz ist hier ebenso erfüllt wie auch bei den beiden anderen vorgegebenen Ausdrücken:
+
*The distributive law is satisfied here as well as for the other two given expressions:
:$$d \cdot (b+c) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} d \cdot a =d \hspace{0.05cm}, \hspace{0.5cm}d \cdot b+ d \cdot c =  d + d = d\hspace{0.05cm},$$
+
:$$\rm d \cdot (b+c) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} d \cdot a =d \hspace{0.05cm}, \hspace{0.5cm}d \cdot b+ d \cdot c =  d + d = d\hspace{0.05cm},$$
:$$e \cdot (a+c) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} e \cdot e =c \hspace{0.05cm}, \hspace{0.5cm}e \cdot a+ e \cdot c =  b + e = c\hspace{0.05cm}.$$
+
:$$\rm e \cdot (a+c) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} e \cdot e =c \hspace{0.05cm}, \hspace{0.5cm}e \cdot a+ e \cdot c =  b + e = c\hspace{0.05cm}.$$
  
<u>Alle Lösungsvorschläge</u> treffen zu.
+
<u>All proposed solutions</u>&nbsp; apply.
  
  
  
[[File:P_ID2495__KC_Z_2_2e.png|right|frame|Umgewandelte Operationstabellen]]  
+
[[File:P_ID2495__KC_Z_2_2e.png|right|frame|Transformed tables]]  
 
'''(5)'''&nbsp;  
 
'''(5)'''&nbsp;  
Das Nullelement&nbsp; $N_{\rm A} = d$&nbsp; wird zu&nbsp; $N_{\rm A} = 0 \Rightarrow d = 0$, das Einselelement&nbsp; $N_{\rm M} = c$&nbsp; zu $N_{\rm M} = 1 \Rightarrow c = 1$. Die weiteren Elemente&nbsp; $a, \ b$&nbsp; und&nbsp; $e$&nbsp; können modulo&nbsp; $5$&nbsp; aus der Additionstabelle oder der Multiplikationstabelle bestimmt werden. Zum Beispiel folgt aus der ersten Zeile der Additionstabelle
+
The zero element &nbsp; $N_{\rm A} = \rm d$ &nbsp; becomes &nbsp; $N_{\rm A} = 0 \ \Rightarrow \ \rm d = 0$,&nbsp; the identity element &nbsp; $N_{\rm M} = \rm c$ &nbsp; becomes $N_{\rm M} = 1 \ \Rightarrow \ \rm c = 1$.  
:$$(a + b) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = d = 0 \hspace{0.05cm}.$$
 
  
Da sowohl&nbsp; $a$&nbsp; als auch&nbsp; $b$&nbsp; nicht&nbsp; $0$&nbsp; oder&nbsp; $1$&nbsp; sein können (da diese bereits für&nbsp; $c$&nbsp; und&nbsp; $d$&nbsp; vergeben sind), ergibt sich als Folgerung:
+
*The other elements&nbsp; $\rm a, \ b$&nbsp; and&nbsp; $\rm e$&nbsp; can be determined modulo&nbsp; $5$&nbsp; from the addition table or the multiplication table.&nbsp; For example,&nbsp; from the first row of the addition table follows
:$$a = 2, \hspace{0.1cm} b = 3 \hspace{0.5cm}{\rm oder}\hspace{0.5cm} a = 3, \hspace{0.1cm} b = 2\hspace{0.05cm}.$$
+
:$$\rm (a + b) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = d = 0 \hspace{0.05cm}.$$
  
Aus der zweiten Zeile der Additionstabelle folgt beispielsweise:
+
*Since both&nbsp; $\rm a$&nbsp; and&nbsp; $\rm b$&nbsp; cannot be&nbsp; $0$&nbsp; or&nbsp; $1$&nbsp; (since these are already assigned for&nbsp; $\rm c$&nbsp; and&nbsp; $\rm d$&nbsp; ),&nbsp; the inference is:
:$$(b + b) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = e \hspace{0.05cm}.$$
+
:$$\rm a = 2, \hspace{0.3cm} b = 3 \hspace{0.5cm}{\rm or}\hspace{0.5cm} a = 3, \hspace{0.3cm} b = 2\hspace{0.05cm}.$$
  
Aus&nbsp; $b = 3$&nbsp; ergäbe sich&nbsp; $e = 1$. Dies ist aber wiederum nicht möglich, da bereits&nbsp; $c = 1$&nbsp; festgelegt wurde.
+
*For example,&nbsp; from the second row of the addition table it follows:
 +
:$$\rm (b + b) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = e \hspace{0.05cm}.$$
  
Also erhält man als Endergebnis:
+
*From&nbsp; $\rm b = 3$&nbsp; would result&nbsp; $\rm e = 1$.&nbsp; But this is again not possible,&nbsp; because already&nbsp; $\rm c = 1$&nbsp; has been defined.
:$$a \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},\hspace{0.2cm}b \hspace{0.15cm}\underline{= 2}\hspace{0.05cm},\hspace{0.2cm}
+
 
 +
*So you get as a final result:
 +
:$$\rm a \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},\hspace{0.2cm}b \hspace{0.15cm}\underline{= 2}\hspace{0.05cm},\hspace{0.2cm}
 
c \hspace{0.15cm}\underline{= 1}\hspace{0.05cm},\hspace{0.2cm}d \hspace{0.15cm}\underline{= 0}\hspace{0.05cm},\hspace{0.2cm}
 
c \hspace{0.15cm}\underline{= 1}\hspace{0.05cm},\hspace{0.2cm}d \hspace{0.15cm}\underline{= 0}\hspace{0.05cm},\hspace{0.2cm}
 
e \hspace{0.15cm}\underline{= 4}\hspace{0.05cm}.$$
 
e \hspace{0.15cm}\underline{= 4}\hspace{0.05cm}.$$
  
Die Grafik zeigt die Additions&ndash; und die Multiplikationstabelle für diese Zahlenmenge.
+
The graph shows the addition and multiplication table for this set of numbers.
 +
 
  
  
 +
'''(6)'''&nbsp; True are the &nbsp; <u>statements 1 and 4</u>:
 +
*In the addition table,&nbsp; one recognizes exactly one&nbsp; $\rm d = 0$&nbsp; in each row and column.&nbsp; That is: 
  
'''(6)'''&nbsp; Zutreffend sind die <u>Aussagen 1 und 4</u>:
+
*For all &nbsp; $z_i &#8712; \{0, \, 1, \, 2, \, 3, \, 4\}$ &nbsp; there exists a unique additive inverse.
*Man erkennt in der Additionstabelle in jeder Zeile und Spalte genau ein&nbsp;  $d = 0$. Das heißt: &nbsp; Für alle&nbsp; $z_i &#8712; \{0, \, 1, \, 2, \, 3, \, 4\}$&nbsp; existiert eine eindeutige additive Inverse.
 
  
Die multiplikative Inverse erkennt man in der Multiplikationstabelle durch den Eintrag&nbsp; $c = 1$. Die multiplikativen Inversen lauten wie folgt:
+
*The multiplicative inverse can be recognized in the multiplication table by the entry&nbsp; $\rm c = 1$.&nbsp; The multiplicative inverses are as follows:
:$${\rm Zeile \hspace{0.15cm}1\text{:}}\hspace{0.25cm} {\rm Inv_M}(a=3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} b = 2 \hspace{0.05cm},$$
+
:$${\rm Row \hspace{0.15cm}1\text{:}}\hspace{0.25cm} {\rm Inv_M}(a=3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \rm b = 2 \hspace{0.05cm},$$
:$${\rm Zeile\hspace{0.15cm} 2\text{:}}\hspace{0.25cm} {\rm Inv_M}(b=2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} a=3 \hspace{0.05cm},$$
+
:$${\rm Row\hspace{0.15cm} 2\text{:}}\hspace{0.25cm} {\rm Inv_M}(b=2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \rm a=3 \hspace{0.05cm},$$
:$${\rm Zeile\hspace{0.15cm} 3\text{:}}\hspace{0.25cm} {\rm Inv_M}(c=1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} c=1 \hspace{0.05cm},$$
+
:$${\rm Row\hspace{0.15cm} 3\text{:}}\hspace{0.25cm} {\rm Inv_M}(c=1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \rm c=1 \hspace{0.05cm},$$
:$${\rm Zeile\hspace{0.15cm} 5\text{:}}\hspace{0.25cm} {\rm Inv_M}(e=4) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} e=4 \hspace{0.05cm}.$$
+
:$${\rm Row\hspace{0.15cm} 5\text{:}}\hspace{0.25cm} {\rm Inv_M}(e=4) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \rm e=4 \hspace{0.05cm}.$$
  
Für das Nullelement&nbsp; $d = 0$&nbsp; existiert dagegen keine multiplikative Inverse.
+
*For the zero element&nbsp; $\rm d = 0$&nbsp; on the other hand,&nbsp;  no multiplicative inverse exists.
  
  
  
'''(7)'''&nbsp; Bezüglich der primitiven Elemente erhält man
+
'''(7)'''&nbsp; Concerning the primitive elements one obtains
:$$a \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 3  \hspace{0.05cm},\hspace{0.2cm} a^2 = 9 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 4
+
:$$\rm a \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 3  \hspace{0.05cm},\hspace{0.2cm} a^2 = 9 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 4
\hspace{0.05cm},\hspace{0.2cm} a^3 = 27 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 2\hspace{0.05cm},\hspace{0.2cm} a^4 = 81 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.13cm} \Rightarrow \hspace{0.13cm}{\rm primitiv}\hspace{0.05cm},$$
+
\hspace{0.05cm},\hspace{0.2cm} a^3 = 27 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 2\hspace{0.05cm},\hspace{0.2cm} a^4 = 81 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.13cm} \Rightarrow \hspace{0.13cm}{\rm primitive}\hspace{0.05cm},$$
:$$b \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 2  \hspace{0.05cm},\hspace{0.2cm} b^2 = 4  
+
:$$\rm b \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 2  \hspace{0.05cm},\hspace{0.2cm} b^2 = 4  
\hspace{0.05cm},\hspace{0.2cm} b^3 = 8 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 3\hspace{0.05cm},\hspace{0.2cm} b^4 = 16 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.13cm} \Rightarrow \hspace{0.13cm}{\rm primitiv}\hspace{0.05cm},$$
+
\hspace{0.05cm},\hspace{0.2cm} b^3 = 8 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 3\hspace{0.05cm},\hspace{0.2cm} b^4 = 16 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.13cm} \Rightarrow \hspace{0.13cm}{\rm primitive}\hspace{0.05cm},$$
:$$e \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 4  \hspace{0.05cm},\hspace{0.2cm} e^2 = 16 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1
+
:$$\rm e \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 4  \hspace{0.05cm},\hspace{0.2cm} e^2 = 16 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1
\hspace{0.05cm},\hspace{0.2cm} e^3 = \hspace{0.05cm} ...\hspace{0.05cm}= 4\hspace{0.05cm},\hspace{0.2cm} e^4 =\hspace{0.05cm} ...\hspace{0.05cm} = 1\hspace{0.13cm} \Rightarrow \hspace{0.13cm}{\rm nicht\hspace{0.15cm} primitiv}\hspace{0.05cm}.$$
+
\hspace{0.05cm},\hspace{0.2cm} e^3 = \hspace{0.05cm} ...\hspace{0.05cm}= 4\hspace{0.05cm},\hspace{0.2cm} e^4 =\hspace{0.05cm} ...\hspace{0.05cm} = 1\hspace{0.13cm} \Rightarrow \hspace{0.13cm}{\rm not\hspace{0.15cm} primitive}\hspace{0.05cm}.$$
  
Von der Menge $Z_5 = \{0, \, 1, \, 2, \, 3, \, 4\}$ sind "$2$" und "$3$" primitive Elemente &nbsp;&#8658;&nbsp; <u>Lösungsvorschläge 1 und 2</u>.
+
*From the set&nbsp; $Z_5 = \{0, \, 1, \, 2, \, 3, \, 4\}$ &nbsp; &rArr; &nbsp;  "$2$"&nbsp; and&nbsp; "$3$"&nbsp; are primitive elements &nbsp; &#8658; &nbsp; <u>solution suggestions 1 and 2</u>.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Channel Coding: Exercises|^2.1 Einige Grundlagen der Algebra^]]
+
[[Category:Channel Coding: Exercises|^2.1 Some Basics of Algebra^]]

Latest revision as of 16:04, 28 August 2022

Addition/multiplication for  $\rm \{a, \, b, \, c, \, d, \, e\}$

As in the  "Exercise 2.2"  we consider a finite field of order  $q = 5$  and thus the Galois field

$$\rm GF(5) = \{{a}, { b},{c},{d},{e}\}\hspace{0.05cm}.$$

No further statements are made about the elements. They can be integers or any mathematical expressions.

The Galois field is determined exclusively by

  • an addition table modulo 5,
  • a multiplication table modulo 5.


The main properties of a Galois field are compiled on the  "first theory page".  There,  reference is made to

  • the commutative and distributive laws,
  • the neutral elements of addition and multiplication,
  • the inverse elements of addition and multiplication, and
  • the determination of primitive elements.


In the present example  $\beta$  would be a primitive element if  $\beta^2, \ \beta^3$  and  $\beta^4$  $($in general:  $\beta^{q-1})$  yield the remaining elements of the Galois field  $\rm GF(5)$  except for the zero element.


Hint:  The exercise is related to the topic of the chapter  "Some Basics of Algebra".


Questions

1

Determine the neutral element of addition.

$N_{\rm A} = \rm a$,
$N_{\rm A} = \rm b$,
$N_{\rm A} = \rm c$,
$N_{\rm A} = \rm d$,
$N_{\rm A} = \rm e$.

2

Determine the neutral element of multiplication.

$N_{\rm M} = \rm a$,
$N_{\rm M} = \rm b$,
$N_{\rm M} = \rm c$,
$N_{\rm M} = \rm d$,
$N_{\rm M} = \rm e$.

3

If the commutative law is satisfied,

with respect to addition,  e.g.  $\rm a + b = b + a, \hspace{0.05cm}\text{ ...} \hspace{0.1cm}, \ d + e = e + d$,
with respect to multiplication,  e.g.  $\rm a \cdot b = b \cdot a, \hspace{0.05cm}\text{ ...} \hspace{0.1cm}, \ d \cdot e = e \cdot d$.

4

For which expressions is the distributive law satisfied?

$\rm a \cdot (b + c) = a \cdot b + a \cdot c$,
$\rm d \cdot (b + c) = d \cdot b + d \cdot c$,
$\rm e \cdot (a + b) = e \cdot a + e \cdot b$.

5

Replace  $\rm a, \ b, \ c, \ d, \ e$  with elements of the number set  $\{0, \, 1, \, 2, \, 3, \, 4\}$  so that equal operation tables result.

$\rm a \hspace{0.25cm} = \ $

$\rm b \hspace{0.25cm} = \ $

$\rm c \hspace{0.25cm} = \ $

$\rm d \hspace{0.25cm} = \ $

$\rm e \hspace{0.25cm} = \ $

6

What statements are true regarding inverse elements?

For all  $z_i ∈ \{0, \, 1, \, 2, \, 3, \, 4\}$  there is an additive inverse.
Only for  $z_i ∈ \{1, \, 2, \, 3, \, 4\}$  there is an additive inverse.
For all  $z_i ∈ \{0, \, 1, \, 2, \, 3, \, 4\}$  there is a multiplicative inverse.
Only for  $z_i ∈ \{1, \, 2, \, 3, \, 4\}$  there is a multiplicative inverse.

7

Which of the elements are primitive?

$\rm a = 3$.
$\rm b = 2$,
$\rm e = 4$.


Solution

(1)  The neutral element with respect to addition  $($called  $N_{\rm A})$  must satisfy the following equation for all elements  $z_i (i = 0, \hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ q-1)$:

$$z_i + N_{\rm A} = N_{\rm A} + z_i = z_i\hspace{0.05cm}.$$
  • From the addition table it follows  $N_{\rm A} \ \underline{= \rm d}$.


(2)  In contrast,  for all elements  $z_i (i = 1,\hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ q-1)$,  the neutral element of multiplication  $(N_{\rm M})$  satisfies the following condition:

$$z_i \cdot N_{\rm M} = N_{\rm M}\cdot z_i = z_i\hspace{0.05cm}.$$
  • From the multiplication table,  one can see  $N_{\rm M} \ \underline{= \rm c}$.


(3)  The commutative law is satisfied for this Galois field in  both cases  (addition and multiplication), 
        since the addition table and multiplication table are each symmetric about the table diagonal.


(4)  Let us first consider the first expression.  If the distributive law is valid,  it must hold:

$$\rm a \cdot (b+c) = a \cdot b+ a \cdot c \hspace{0.05cm}.$$
  • For the left side you get:
$$\rm a \cdot (b+c) = a \cdot a =e \hspace{0.05cm},$$
and for the right side:
$$\rm a \cdot b+ a \cdot c = c + a = e\hspace{0.05cm}.$$
  • The distributive law is satisfied here as well as for the other two given expressions:
$$\rm d \cdot (b+c) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} d \cdot a =d \hspace{0.05cm}, \hspace{0.5cm}d \cdot b+ d \cdot c = d + d = d\hspace{0.05cm},$$
$$\rm e \cdot (a+c) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} e \cdot e =c \hspace{0.05cm}, \hspace{0.5cm}e \cdot a+ e \cdot c = b + e = c\hspace{0.05cm}.$$

All proposed solutions  apply.


Transformed tables

(5)  The zero element   $N_{\rm A} = \rm d$   becomes   $N_{\rm A} = 0 \ \Rightarrow \ \rm d = 0$,  the identity element   $N_{\rm M} = \rm c$   becomes $N_{\rm M} = 1 \ \Rightarrow \ \rm c = 1$.

  • The other elements  $\rm a, \ b$  and  $\rm e$  can be determined modulo  $5$  from the addition table or the multiplication table.  For example,  from the first row of the addition table follows
$$\rm (a + b) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = d = 0 \hspace{0.05cm}.$$
  • Since both  $\rm a$  and  $\rm b$  cannot be  $0$  or  $1$  (since these are already assigned for  $\rm c$  and  $\rm d$  ),  the inference is:
$$\rm a = 2, \hspace{0.3cm} b = 3 \hspace{0.5cm}{\rm or}\hspace{0.5cm} a = 3, \hspace{0.3cm} b = 2\hspace{0.05cm}.$$
  • For example,  from the second row of the addition table it follows:
$$\rm (b + b) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = e \hspace{0.05cm}.$$
  • From  $\rm b = 3$  would result  $\rm e = 1$.  But this is again not possible,  because already  $\rm c = 1$  has been defined.
  • So you get as a final result:
$$\rm a \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},\hspace{0.2cm}b \hspace{0.15cm}\underline{= 2}\hspace{0.05cm},\hspace{0.2cm} c \hspace{0.15cm}\underline{= 1}\hspace{0.05cm},\hspace{0.2cm}d \hspace{0.15cm}\underline{= 0}\hspace{0.05cm},\hspace{0.2cm} e \hspace{0.15cm}\underline{= 4}\hspace{0.05cm}.$$

The graph shows the addition and multiplication table for this set of numbers.


(6)  True are the   statements 1 and 4:

  • In the addition table,  one recognizes exactly one  $\rm d = 0$  in each row and column.  That is:
  • For all   $z_i ∈ \{0, \, 1, \, 2, \, 3, \, 4\}$   there exists a unique additive inverse.
  • The multiplicative inverse can be recognized in the multiplication table by the entry  $\rm c = 1$.  The multiplicative inverses are as follows:
$${\rm Row \hspace{0.15cm}1\text{:}}\hspace{0.25cm} {\rm Inv_M}(a=3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \rm b = 2 \hspace{0.05cm},$$
$${\rm Row\hspace{0.15cm} 2\text{:}}\hspace{0.25cm} {\rm Inv_M}(b=2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \rm a=3 \hspace{0.05cm},$$
$${\rm Row\hspace{0.15cm} 3\text{:}}\hspace{0.25cm} {\rm Inv_M}(c=1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \rm c=1 \hspace{0.05cm},$$
$${\rm Row\hspace{0.15cm} 5\text{:}}\hspace{0.25cm} {\rm Inv_M}(e=4) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \rm e=4 \hspace{0.05cm}.$$
  • For the zero element  $\rm d = 0$  on the other hand,  no multiplicative inverse exists.


(7)  Concerning the primitive elements one obtains

$$\rm a \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 3 \hspace{0.05cm},\hspace{0.2cm} a^2 = 9 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 4 \hspace{0.05cm},\hspace{0.2cm} a^3 = 27 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 2\hspace{0.05cm},\hspace{0.2cm} a^4 = 81 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.13cm} \Rightarrow \hspace{0.13cm}{\rm primitive}\hspace{0.05cm},$$
$$\rm b \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 2 \hspace{0.05cm},\hspace{0.2cm} b^2 = 4 \hspace{0.05cm},\hspace{0.2cm} b^3 = 8 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 3\hspace{0.05cm},\hspace{0.2cm} b^4 = 16 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.13cm} \Rightarrow \hspace{0.13cm}{\rm primitive}\hspace{0.05cm},$$
$$\rm e \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 4 \hspace{0.05cm},\hspace{0.2cm} e^2 = 16 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1 \hspace{0.05cm},\hspace{0.2cm} e^3 = \hspace{0.05cm} ...\hspace{0.05cm}= 4\hspace{0.05cm},\hspace{0.2cm} e^4 =\hspace{0.05cm} ...\hspace{0.05cm} = 1\hspace{0.13cm} \Rightarrow \hspace{0.13cm}{\rm not\hspace{0.15cm} primitive}\hspace{0.05cm}.$$
  • From the set  $Z_5 = \{0, \, 1, \, 2, \, 3, \, 4\}$   ⇒   "$2$"  and  "$3$"  are primitive elements   ⇒   solution suggestions 1 and 2.