Difference between revisions of "Aufgaben:Exercise 5.3Z: Analysis of the BSC Model"

From LNTwww
 
(One intermediate revision by the same user not shown)
Line 2: Line 2:
 
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Binary_Symmetric_Channel_(BSC)}}
 
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Binary_Symmetric_Channel_(BSC)}}
  
[[File:P_ID1832__Dig_Z_5_3.png|right|frame|Given error sequence]]
+
[[File:P_ID1832__Dig_Z_5_3.png|right|frame|The given error sequence]]
 
We consider two different BSC models with the following parameters:
 
We consider two different BSC models with the following parameters:
 
* Model $M_1 \text{:} \hspace{0.4cm} p = 0.01$,
 
* Model $M_1 \text{:} \hspace{0.4cm} p = 0.01$,
Line 8: Line 8:
  
  
The graph shows an error sequence of length  $N = 1000$, but it is not known from which of the two models this sequence originates.
+
The graph shows an error sequence of length  $N = 1000$,  but it is not known from which of the two models this sequence originates.
  
 
The two models are to be analyzed on the basis of
 
The two models are to be analyzed on the basis of
* the error distance probabilities
+
* the  '''error distance probabilities'''
 
:$${\rm Pr}(a = k) = (1-p)^{k-1}\cdot p \hspace{0.05cm},$$
 
:$${\rm Pr}(a = k) = (1-p)^{k-1}\cdot p \hspace{0.05cm},$$
* the error distance distribution
+
* the  '''error distance distribution'''  $\rm (EDD)$
 
:$$V_a(k) =  {\rm Pr}(a \ge k) =  (1-p)^{k-1}\hspace{0.05cm},$$
 
:$$V_a(k) =  {\rm Pr}(a \ge k) =  (1-p)^{k-1}\hspace{0.05cm},$$
* the error correlation function
+
* the  '''error correlation function'''  $\rm (ECF)$
 
:$$\varphi_{e}(k) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  {\rm
 
:$$\varphi_{e}(k) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  {\rm
 
E}\big[e_{\nu} \cdot e_{\nu + k}\big] \ \ = \ \
 
E}\big[e_{\nu} \cdot e_{\nu + k}\big] \ \ = \ \
Line 25: Line 25:
  
  
 +
Notes:
 +
* The exercise belongs to the chapter  [[Digital_Signal_Transmission/Binary_Symmetric_Channel_(BSC)| "Binary Symmetric Channel"]].
  
 
+
*By counting,  we would see that the error sequence of length  $N = 1000$  contains exactly  $22$  "ones".
 
 
 
 
''Notes:''
 
* The exercise belongs to the chapter  [[Digital_Signal_Transmission/Binary_Symmetric_Channel_(BSC)| "Binary Symmetric Channel (BSC)"]].
 
*By counting, we would see that the error sequence of length  $N = 1000$  contains exactly  $22$  ones.
 
 
   
 
   
  
Line 49: Line 46:
 
|type="()"}
 
|type="()"}
 
- Model $M_1$,
 
- Model $M_1$,
+ Model $M_2$.
+
+ model $M_2$.
  
 
{What is the mean error distance of model  $M_1$?
 
{What is the mean error distance of model  $M_1$?
Line 70: Line 67:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  In the BSC model, the mean error probability $p_{\rm M}$ is always equal to the characteristic probability $p$.  
+
'''(1)'''  In the BSC model,   the mean error probability $p_{\rm M}$  is always equal to the characteristic probability  $p$.
 +
 
*For the error correlation function and the error distance distribution are valid
 
*For the error correlation function and the error distance distribution are valid
 
:$$\varphi_{e}(k) =
 
:$$\varphi_{e}(k) =
Line 76: Line 74:
 
  p^2 \end{array} \right.\quad
 
  p^2 \end{array} \right.\quad
 
\begin{array}{*{1}c} f{\rm or }\hspace{0.15cm}k = 0  \hspace{0.05cm},
 
\begin{array}{*{1}c} f{\rm or }\hspace{0.15cm}k = 0  \hspace{0.05cm},
\\  f{\rm or }\hspace{0.15cm} k \ne 0 \hspace{0.05cm},\\ \end{array}
+
\\  f{\rm or }\hspace{0.15cm} k \ne 0 \hspace{0.05cm},\\ \end{array}$$
\hspace{0.4cm}V_a(k) = (1-p)^{k-1}\hspace{0.05cm}.$$
+
:$$V_a(k) = (1-p)^{k-1}\hspace{0.05cm}.$$
  
*$p$  can be determined from all the given characteristics, except $V_a(k = 1)$. This EDD value is independent of  $p$  equal to  $(1–p)^0 = 1$.  
+
*$p$  can be determined from all the given characteristics,  except $V_a(k = 1)$.  This EDD value is independent of  $p$   equal to   $(1–p)^0 = 1$.
*Therefore, the <u>solutions 1, 2, 4 and 5</u> are correct.
+
 +
*Therefore, the&nbsp; <u>solutions 1, 2, 4 and 5</u>&nbsp; are correct.
  
  
  
'''(2)'''&nbsp; The relative error frequency of the given sequence is equal to $h_{\rm F} = 22/1000 \approx 0.022$.  
+
'''(2)'''&nbsp; The relative error frequency of the given sequence is equal to&nbsp; $h_{\rm F} = 22/1000 \approx 0.022$.  
*It is quite obvious that the error sequence was generated by the model $M_2$ &nbsp;&#8658;&nbsp; $p_{\rm M} = 0.02$.  
+
*It is quite obvious that the error sequence was generated by the model&nbsp; $M_2$&nbsp; &nbsp; &#8658; &nbsp; $p_{\rm M} = 0.02$.
*Because of the short sequence, $h_{\rm F}$ does not match $p_{\rm M}$ exactly, but at least approximates &nbsp;&#8658;&nbsp; <u>solution 2</u>.
+
 +
*Because of the short sequence,&nbsp; $h_{\rm F}$&nbsp; does not match&nbsp; $p_{\rm M}$&nbsp; exactly,&nbsp; but at least approximates &nbsp;&#8658;&nbsp; <u>solution 2</u>.
  
  
  
'''(3)'''&nbsp; The mean error distance &ndash; that is, the expected value of the random variable&nbsp; $a$ &ndash; is equal to the inverse of the mean error probability &#8658; ${\rm E}\big[a\big] = 1/0.1 \ \underline {= 10}$.
+
'''(3)'''&nbsp; The mean error distance &ndash; that is,&nbsp; the expected value of the random variable&nbsp; $a$&nbsp; &ndash; is equal to the inverse of the mean error probability &#8658;  
 +
:$${\rm E}\big[a\big] = 1/0.1 \ \underline {= 10}.$$
  
  
  
'''(4)'''&nbsp; According to the equation&nbsp; ${\rm Pr}(a = k) = (1&ndash;p)^{k&ndash;1} \cdot p$&nbsp; we obtain:
+
'''(4)'''&nbsp; According to the equation &nbsp; ${\rm Pr}(a = k) = (1&ndash;p)^{k&ndash;1} \cdot p$ &nbsp; we obtain:
 
:$${\rm Pr}(a = 1) \hspace{0.15cm}\underline {=
 
:$${\rm Pr}(a = 1) \hspace{0.15cm}\underline {=
 
0.1}\hspace{0.05cm},$$
 
0.1}\hspace{0.05cm},$$
Line 112: Line 113:
 
\hspace{0.15cm}\underline {=0.3874}\hspace{0.05cm},\hspace{0.2cm}V_a(k = 11)= 0.9^{10}   
 
\hspace{0.15cm}\underline {=0.3874}\hspace{0.05cm},\hspace{0.2cm}V_a(k = 11)= 0.9^{10}   
 
\hspace{0.15cm}\underline {=0.3487}.$$
 
\hspace{0.15cm}\underline {=0.3487}.$$
To check in comparison with subtask (4):
+
*To check in comparison with subtask&nbsp; '''(4)''':
 
:$${\rm Pr}(a = 10) = V_a(k = 10) - V_a(k =
 
:$${\rm Pr}(a = 10) = V_a(k = 10) - V_a(k =
 
11) = 0.3874 - 0.3487  {= 0.0387}\hspace{0.05cm}.$$
 
11) = 0.3874 - 0.3487  {= 0.0387}\hspace{0.05cm}.$$

Latest revision as of 14:52, 5 September 2022

The given error sequence

We consider two different BSC models with the following parameters:

  • Model $M_1 \text{:} \hspace{0.4cm} p = 0.01$,
  • Model $M_2 \text{:} \hspace{0.4cm} p = 0.02$.


The graph shows an error sequence of length  $N = 1000$,  but it is not known from which of the two models this sequence originates.

The two models are to be analyzed on the basis of

  • the  error distance probabilities
$${\rm Pr}(a = k) = (1-p)^{k-1}\cdot p \hspace{0.05cm},$$
  • the  error distance distribution  $\rm (EDD)$
$$V_a(k) = {\rm Pr}(a \ge k) = (1-p)^{k-1}\hspace{0.05cm},$$
  • the  error correlation function  $\rm (ECF)$
$$\varphi_{e}(k) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm E}\big[e_{\nu} \cdot e_{\nu + k}\big] \ \ = \ \ \left\{ \begin{array}{c} p \\ p^2 \end{array} \right.\quad \begin{array}{*{1}c} f{\rm or }\hspace{0.15cm}k = 0 \hspace{0.05cm}, \\ f{\rm or }\hspace{0.15cm} k \ne 0 \hspace{0.05cm}.\\ \end{array}$$


Notes:

  • By counting,  we would see that the error sequence of length  $N = 1000$  contains exactly  $22$  "ones".



Questions

1

Which parameters can be used to infer the mean error probability  $p_{\rm M}$  of the BSC model?

ECF value  $\varphi_e(k = 0)$,
ECF value  $\varphi_e(k = 10)$,
EDD value  $V_a(k = 1)$,
EDD value  $V_a(k = 2)$,
EDD value  $V_a(k = 10)$.

2

From which model does the given error sequence originate?

Model $M_1$,
model $M_2$.

3

What is the mean error distance of model  $M_1$?

${\rm E}\big[a\big] \ = \ $

4

What are the following probabilities for model  $M_1$? 

${\rm Pr}(a = 1) \ = \ $

${\rm Pr}(a = 2) \ = \ $

${\rm Pr}(a = {\rm E}\big[a\big]) \ = \ $

5

Calculate the following values of the error distance distribution for model  $M_1$: 

$V_a(k = 2) \ = \ $

$V_a(k = 10) \ = \ $

$V_a(k = 11) \ = \ $


Solution

(1)  In the BSC model,  the mean error probability $p_{\rm M}$  is always equal to the characteristic probability  $p$.

  • For the error correlation function and the error distance distribution are valid
$$\varphi_{e}(k) = \left\{ \begin{array}{c} p \\ p^2 \end{array} \right.\quad \begin{array}{*{1}c} f{\rm or }\hspace{0.15cm}k = 0 \hspace{0.05cm}, \\ f{\rm or }\hspace{0.15cm} k \ne 0 \hspace{0.05cm},\\ \end{array}$$
$$V_a(k) = (1-p)^{k-1}\hspace{0.05cm}.$$
  • $p$  can be determined from all the given characteristics,  except $V_a(k = 1)$.  This EDD value is independent of  $p$   equal to   $(1–p)^0 = 1$.
  • Therefore, the  solutions 1, 2, 4 and 5  are correct.


(2)  The relative error frequency of the given sequence is equal to  $h_{\rm F} = 22/1000 \approx 0.022$.

  • It is quite obvious that the error sequence was generated by the model  $M_2$    ⇒   $p_{\rm M} = 0.02$.
  • Because of the short sequence,  $h_{\rm F}$  does not match  $p_{\rm M}$  exactly,  but at least approximates  ⇒  solution 2.


(3)  The mean error distance – that is,  the expected value of the random variable  $a$  – is equal to the inverse of the mean error probability ⇒

$${\rm E}\big[a\big] = 1/0.1 \ \underline {= 10}.$$


(4)  According to the equation   ${\rm Pr}(a = k) = (1–p)^{k–1} \cdot p$   we obtain:

$${\rm Pr}(a = 1) \hspace{0.15cm}\underline {= 0.1}\hspace{0.05cm},$$
$${\rm Pr}(a = 2) = 0.9 \cdot 0.1 \hspace{0.15cm}\underline {= 0.09}\hspace{0.05cm},$$
$${\rm Pr}(a = {\rm E}[a]) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(a = 10)= 0.9^9 \cdot 0.1 \hspace{0.15cm}\underline {= 0.0387}\hspace{0.05cm}.$$


(5)  From the relation  $V_a(k) = (1–p)^{k–1}$  we obtain

$$V_a(k = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.9^1 \hspace{0.15cm}\underline {= 0.9 } \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm Pr}(a = 1) = V_a(k = 1) - V_a(k = 2) = 0.1\hspace{0.05cm},$$
$$V_a(k = 10)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.9^9 \hspace{0.15cm}\underline {=0.3874}\hspace{0.05cm},\hspace{0.2cm}V_a(k = 11)= 0.9^{10} \hspace{0.15cm}\underline {=0.3487}.$$
  • To check in comparison with subtask  (4):
$${\rm Pr}(a = 10) = V_a(k = 10) - V_a(k = 11) = 0.3874 - 0.3487 {= 0.0387}\hspace{0.05cm}.$$