Difference between revisions of "Aufgaben:Exercise 2.5Z: Some Calculations about GF(2 power 3)"

From LNTwww
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
{{quiz-Header|Buchseite=Channel_Coding/Extension_Field}}
 
{{quiz-Header|Buchseite=Channel_Coding/Extension_Field}}
  
[[File:EN_KC_Z_2_5.png|right|frame|Elements of  $\rm GF(2^3)$  for the polynomial  $p(x) = x^3 + x + 1$]]
+
[[File:EN_KC_Z_2_5_neu.png|right|frame| $\rm GF(2^3)$  elements;  polynomial  $p(x) = x^3 + x + 1$   ]]
We now consider the extension field with eight elements   ⇒   $\rm GF(2^3)$  according to the adjacent table. Since the underlying polynomial
+
We consider the extension field with eight elements   ⇒   $\rm GF(2^3)$  according to the adjacent table.  Since the underlying polynomial
 
:$$p(x) = x^3 + x +1 $$
 
:$$p(x) = x^3 + x +1 $$
 
+
is both,  irreducible and primitive,  the Galois field can be stated in the following form:
is both irreducible and primitive, the Galois field at hand can be stated in the following form:
 
 
:$${\rm GF}(2^3) = \{\hspace{0.1cm}0\hspace{0.05cm},\hspace{0.1cm} 1,\hspace{0.05cm}\hspace{0.1cm}
 
:$${\rm GF}(2^3) = \{\hspace{0.1cm}0\hspace{0.05cm},\hspace{0.1cm} 1,\hspace{0.05cm}\hspace{0.1cm}
 
\alpha\hspace{0.05cm},\hspace{0.1cm} \alpha^{2}\hspace{0.05cm},\hspace{0.1cm} \alpha^{3}\hspace{0.05cm},\hspace{0.1cm} \alpha^{4}\hspace{0.05cm},\hspace{0.1cm} \alpha^{5}\hspace{0.05cm},\hspace{0.1cm} \alpha^{6}\hspace{0.1cm}\}\hspace{0.05cm}. $$
 
\alpha\hspace{0.05cm},\hspace{0.1cm} \alpha^{2}\hspace{0.05cm},\hspace{0.1cm} \alpha^{3}\hspace{0.05cm},\hspace{0.1cm} \alpha^{4}\hspace{0.05cm},\hspace{0.1cm} \alpha^{5}\hspace{0.05cm},\hspace{0.1cm} \alpha^{6}\hspace{0.1cm}\}\hspace{0.05cm}. $$
  
The element  $\alpha$  results thereby as solution of the equation  $p(\alpha) = 0$  in the Galois field  $\rm GF(2)$.  
+
The element   $\alpha$   results thereby as solution of the equation   $p(\alpha) = 0$   in the Galois field  $\rm GF(2)$.  
 
*This gives the following constraint:
 
*This gives the following constraint:
 
:$$\alpha^3 + \alpha +1 = 0\hspace{0.3cm} \Rightarrow\hspace{0.3cm} \alpha^3 = \alpha +1\hspace{0.05cm}.$$
 
:$$\alpha^3 + \alpha +1 = 0\hspace{0.3cm} \Rightarrow\hspace{0.3cm} \alpha^3 = \alpha +1\hspace{0.05cm}.$$
Line 18: Line 17:
 
:$$\alpha^6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^5 = \alpha \cdot (\alpha^2 +\alpha + 1)= \alpha^3 + \alpha^2 + \alpha=  \alpha + 1 + \alpha^2  + \alpha = \alpha^2+ 1\hspace{0.05cm}.$$
 
:$$\alpha^6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^5 = \alpha \cdot (\alpha^2 +\alpha + 1)= \alpha^3 + \alpha^2 + \alpha=  \alpha + 1 + \alpha^2  + \alpha = \alpha^2+ 1\hspace{0.05cm}.$$
  
In this exercise you are to do some algebraic transformations in the  Galois field $\rm GF(2^3)$ . Among other things you are asked for the multiplicative inverse of the element  $\alpha^4$ . Then it must hold:
+
In this exercise you are to do some algebraic transformations in the  Galois field $\rm GF(2^3)$.   
 +
*Among other things you are asked for the multiplicative inverse of the element  $\alpha^4$.   
 +
 
 +
*Then it must hold:
 
:$$\alpha^4 \cdot {\rm Inv_M}( \alpha^4) = 1 \hspace{0.05cm}.$$
 
:$$\alpha^4 \cdot {\rm Inv_M}( \alpha^4) = 1 \hspace{0.05cm}.$$
  
  
  
 +
Hints:
 +
* This exercise belongs to the chapter  [[Channel_Coding/Extension_Field|"Extension Field"]].
  
 
+
* This exercise is intended as a supplement to the slightly more difficult  [[Aufgaben:Exercise_2.5:_Three_Variants_of_GF(2_power_4)|"Exercise 2.5"]].
 
 
 
 
 
 
Hints:
 
* This exercise belongs to the chapter  [[Channel_Coding/Extension_Field| "extension field"]].
 
* This exercise is intended as a supplement to the slightly more difficult  [[Aufgaben:Exercise_2.5:_Three_Variants_of_GF(2_power_4)|"Exercise 2.5"]] .
 
  
  
Line 37: Line 35:
 
===Questions===
 
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Which of the statements are true for the higher powers of&nbsp; $\alpha^{i} \ (i &#8805; 7)$&nbsp; true?
+
{Which of the statements are true for the higher powers of&nbsp; $\alpha^{i} \ (i &#8805; 7)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
 
+ $\alpha^7 = 1$,
 
+ $\alpha^7 = 1$,
Line 52: Line 50:
 
- $A = \alpha^4$.
 
- $A = \alpha^4$.
  
{Which transformation is allowed for&nbsp; $B = \alpha^{16} - \alpha^{12} \cdot \alpha^3$&nbsp; permissible?
+
{Which transformation is allowed for&nbsp; $B = \alpha^{16} - \alpha^{12} \cdot \alpha^3$&nbsp;?
 
|type="()"}
 
|type="()"}
 
- $B = 1$,
 
- $B = 1$,
Line 84: Line 82:
 
- $E = \alpha^4$.
 
- $E = \alpha^4$.
  
{What statements hold for the multiplicative inverse to&nbsp; $\alpha^2 + \alpha$?
+
{What statements hold for the multiplicative inverse to&nbsp; $\alpha^2 + \alpha$&nbsp;?
 
|type="[]"}
 
|type="[]"}
 
- ${\rm Inv_M}(\alpha^2 + \alpha) = 1$,
 
- ${\rm Inv_M}(\alpha^2 + \alpha) = 1$,
Line 94: Line 92:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; For example, using the table given in the front, you can find:
+
'''(1)'''&nbsp; For example,&nbsp; using the table given in the front,&nbsp; you can find:
 
:$$\alpha^7 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^6 = \alpha \cdot (\alpha^2 + 1) = \alpha^3 + \alpha = (\alpha + 1) + \alpha = 1 \hspace{0.05cm},$$
 
:$$\alpha^7 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^6 = \alpha \cdot (\alpha^2 + 1) = \alpha^3 + \alpha = (\alpha + 1) + \alpha = 1 \hspace{0.05cm},$$
 
:$$\alpha^8 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^7 = \alpha \cdot 1 = \alpha\hspace{0.05cm},$$
 
:$$\alpha^8 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^7 = \alpha \cdot 1 = \alpha\hspace{0.05cm},$$
 
:$$\alpha^{13} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^7 \cdot \alpha^6 = 1 \cdot \alpha^6 = \alpha^2 +  1\hspace{0.05cm}.$$
 
:$$\alpha^{13} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^7 \cdot \alpha^6 = 1 \cdot \alpha^6 = \alpha^2 +  1\hspace{0.05cm}.$$
  
The table can therefore be continued modulo $7$. This means: <u>All proposed solutions</u> are correct.
+
*The table can therefore be continued modulo&nbsp; $7$.  
 +
 
 +
*This means:&nbsp; <u>All proposed solutions</u>&nbsp; are correct.
 +
 
 +
 
  
 +
'''(2)'''&nbsp; Correct is the&nbsp; <u>proposed solution 2</u>&nbsp; because of
 +
*$\alpha^8 = \alpha$&nbsp; according to subtask&nbsp; '''(1)''',
  
 +
*$\alpha^6 = \alpha^2 + 1$&nbsp; $($according to the table$)$,&nbsp; and
 +
*$-\alpha^2 = \alpha^2$&nbsp; $($operations in the binary Galois field$)$.
  
'''(2)'''&nbsp; Correct is the <u>proposed solution 2</u> because of.
 
*$\alpha^8 = \alpha$ according to subtask (1),
 
*$\alpha^6 = \alpha^2 + 1$ (according to table), and
 
*$-\alpha^2 = \alpha^2$ (operations in the binary Galois field).
 
  
 
So applies:
 
So applies:
Line 114: Line 116:
  
  
'''(3)'''&nbsp; With $\alpha^{16} = \alpha^{16-14} = \alpha^2$ sowie $\alpha^{12} \cdot \alpha^3 = \alpha^{15} = \alpha^{15-14} = \alpha$ we obtain the <u>proposed solution 5</u>:
+
'''(3)'''&nbsp; With &nbsp; $\alpha^{16} = \alpha^{16-14} = \alpha^2$ &nbsp; and &nbsp; $\alpha^{12} \cdot \alpha^3 = \alpha^{15} = \alpha^{15-14} = \alpha$ &nbsp; we obtain the&nbsp; <u>proposed solution 5</u>:
 
:$$B = \alpha^2 + \alpha= \alpha^4
 
:$$B = \alpha^2 + \alpha= \alpha^4
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Line 120: Line 122:
  
  
'''(4)'''&nbsp; It holds $\alpha^3 = \alpha + 1$ und damit $C = \alpha^3 + \alpha = \alpha + 1 + \alpha = 1$ &nbsp; &#8658; &nbsp; <u>Proposed solution 1</u>.
+
'''(4)'''&nbsp; It holds &nbsp; $\alpha^3 = \alpha + 1$ &nbsp; &rArr; &nbsp;  $C = \alpha^3 + \alpha = \alpha + 1 + \alpha = 1$ &nbsp; &#8658; &nbsp; <u>Proposed solution 1</u>.
  
  
  
'''(5)'''&nbsp; With $\alpha^4 = \alpha^2 + \alpha$ we obtain $D = \alpha^4 + \alpha = \alpha^2$ &nbsp; &#8658; &nbsp; <u>Proposed solution 3</u>.
+
'''(5)'''&nbsp; With &nbsp; $\alpha^4 = \alpha^2 + \alpha$ &nbsp; we obtain &nbsp; $D = \alpha^4 + \alpha = \alpha^2$ &nbsp; &#8658; &nbsp; <u>Proposed solution 3</u>.
  
  
  
'''(6)'''&nbsp; Correct is the <u>proposed solution 4</u>:
+
'''(6)'''&nbsp; Correct is the&nbsp; <u>proposed solution 4</u>:
 
:$$E = A \cdot B \cdot C/D = \alpha \cdot  \alpha^4 \cdot 1/\alpha^2 = \alpha^3
 
:$$E = A \cdot B \cdot C/D = \alpha \cdot  \alpha^4 \cdot 1/\alpha^2 = \alpha^3
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
  
'''(7)'''&nbsp; According to the table, $\alpha^2 + \alpha = \alpha^4$ holds. Therefore must be valid:
+
'''(7)'''&nbsp; According to the table, &nbsp; $\alpha^2 + \alpha = \alpha^4$&nbsp; holds. &nbsp; Therefore must be valid:
 
:$$\alpha^4 \cdot {\rm Inv_M}( \alpha^4) = 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}
 
:$$\alpha^4 \cdot {\rm Inv_M}( \alpha^4) = 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}
 
{\rm Inv_M}( \alpha^2 + \alpha) = {\rm Inv_M}( \alpha^4) = \alpha^{-4} = \alpha^3
 
{\rm Inv_M}( \alpha^2 + \alpha) = {\rm Inv_M}( \alpha^4) = \alpha^{-4} = \alpha^3
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Because of $\alpha^3 = \alpha + 1$ the <u>proposed solutions 2 and 3</u> are correct.
+
*Because of&nbsp; $\alpha^3 = \alpha + 1$&nbsp; the <u>proposed solutions 2 and 3</u>&nbsp; are correct.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
[[Category:Channel Coding: Exercises|^2.2 Extension Field^]]
 
[[Category:Channel Coding: Exercises|^2.2 Extension Field^]]

Latest revision as of 12:48, 4 October 2022

$\rm GF(2^3)$  elements;  polynomial  $p(x) = x^3 + x + 1$

We consider the extension field with eight elements   ⇒   $\rm GF(2^3)$  according to the adjacent table.  Since the underlying polynomial

$$p(x) = x^3 + x +1 $$

is both,  irreducible and primitive,  the Galois field can be stated in the following form:

$${\rm GF}(2^3) = \{\hspace{0.1cm}0\hspace{0.05cm},\hspace{0.1cm} 1,\hspace{0.05cm}\hspace{0.1cm} \alpha\hspace{0.05cm},\hspace{0.1cm} \alpha^{2}\hspace{0.05cm},\hspace{0.1cm} \alpha^{3}\hspace{0.05cm},\hspace{0.1cm} \alpha^{4}\hspace{0.05cm},\hspace{0.1cm} \alpha^{5}\hspace{0.05cm},\hspace{0.1cm} \alpha^{6}\hspace{0.1cm}\}\hspace{0.05cm}. $$

The element   $\alpha$   results thereby as solution of the equation   $p(\alpha) = 0$   in the Galois field  $\rm GF(2)$.

  • This gives the following constraint:
$$\alpha^3 + \alpha +1 = 0\hspace{0.3cm} \Rightarrow\hspace{0.3cm} \alpha^3 = \alpha +1\hspace{0.05cm}.$$
  • The following calculations apply to the other elements:
$$\alpha^4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^3 = \alpha \cdot (\alpha + 1) = \alpha^2 + \alpha \hspace{0.05cm},$$
$$\alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^4 = \alpha \cdot (\alpha^2 +\alpha) = \alpha^3 + \alpha^2 = \alpha^2 + \alpha + 1\hspace{0.05cm},$$
$$\alpha^6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^5 = \alpha \cdot (\alpha^2 +\alpha + 1)= \alpha^3 + \alpha^2 + \alpha= \alpha + 1 + \alpha^2 + \alpha = \alpha^2+ 1\hspace{0.05cm}.$$

In this exercise you are to do some algebraic transformations in the  Galois field $\rm GF(2^3)$. 

  • Among other things you are asked for the multiplicative inverse of the element  $\alpha^4$. 
  • Then it must hold:
$$\alpha^4 \cdot {\rm Inv_M}( \alpha^4) = 1 \hspace{0.05cm}.$$


Hints:

  • This exercise is intended as a supplement to the slightly more difficult  "Exercise 2.5".



Questions

1

Which of the statements are true for the higher powers of  $\alpha^{i} \ (i ≥ 7)$ ?

$\alpha^7 = 1$,
$\alpha^8 = \alpha$,
$\alpha^{13} = \alpha^2 + 1$,
$\alpha^i = \alpha^{i \ \rm mod \, 7}$.

2

Which transformation is allowed for  $A = \alpha^8 + \alpha^6 - \alpha^2 + 1$ ?

$A = 1$,
$A = \alpha$,
$A = \alpha^2$,
$A = \alpha^3$,
$A = \alpha^4$.

3

Which transformation is allowed for  $B = \alpha^{16} - \alpha^{12} \cdot \alpha^3$ ?

$B = 1$,
$B = \alpha$,
$B = \alpha^2$,
$B = \alpha^3$,
$B = \alpha^4$.

4

What transformation is allowed for  $C = \alpha^3 + \alpha$ ?

$C = 1$,
$C = \alpha$,
$C = \alpha^2$,
$C = \alpha^3$,
$C = \alpha^4$.

5

What transformation is allowed for  $D = \alpha^4 + \alpha$ ?

$D = 1$,
$D = \alpha$,
$D = \alpha^2$,
$D = \alpha^3$,
$D = \alpha^4$.

6

Which transformation is allowed for  $E = A \cdot B \cdot C/D$ ?

$E = 1$,
$E = \alpha$,
$E = \alpha^2$,
$E = \alpha^3$,
$E = \alpha^4$.

7

What statements hold for the multiplicative inverse to  $\alpha^2 + \alpha$ ?

${\rm Inv_M}(\alpha^2 + \alpha) = 1$,
${\rm Inv_M}(\alpha^2 + \alpha) = \alpha + 1$,
${\rm Inv_M}(\alpha^2 + \alpha) = \alpha^3$,
${\rm Inv_M}(\alpha^2 + \alpha) = \alpha^4$.


Solution

(1)  For example,  using the table given in the front,  you can find:

$$\alpha^7 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^6 = \alpha \cdot (\alpha^2 + 1) = \alpha^3 + \alpha = (\alpha + 1) + \alpha = 1 \hspace{0.05cm},$$
$$\alpha^8 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^7 = \alpha \cdot 1 = \alpha\hspace{0.05cm},$$
$$\alpha^{13} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^7 \cdot \alpha^6 = 1 \cdot \alpha^6 = \alpha^2 + 1\hspace{0.05cm}.$$
  • The table can therefore be continued modulo  $7$.
  • This means:  All proposed solutions  are correct.


(2)  Correct is the  proposed solution 2  because of

  • $\alpha^8 = \alpha$  according to subtask  (1),
  • $\alpha^6 = \alpha^2 + 1$  $($according to the table$)$,  and
  • $-\alpha^2 = \alpha^2$  $($operations in the binary Galois field$)$.


So applies:

$$A = \alpha^8 + \alpha^6 - \alpha^2 + 1 = \alpha + (\alpha^2 + 1) + \alpha^2 + 1 = \alpha \hspace{0.05cm}.$$


(3)  With   $\alpha^{16} = \alpha^{16-14} = \alpha^2$   and   $\alpha^{12} \cdot \alpha^3 = \alpha^{15} = \alpha^{15-14} = \alpha$   we obtain the  proposed solution 5:

$$B = \alpha^2 + \alpha= \alpha^4 \hspace{0.05cm}.$$


(4)  It holds   $\alpha^3 = \alpha + 1$   ⇒   $C = \alpha^3 + \alpha = \alpha + 1 + \alpha = 1$   ⇒   Proposed solution 1.


(5)  With   $\alpha^4 = \alpha^2 + \alpha$   we obtain   $D = \alpha^4 + \alpha = \alpha^2$   ⇒   Proposed solution 3.


(6)  Correct is the  proposed solution 4:

$$E = A \cdot B \cdot C/D = \alpha \cdot \alpha^4 \cdot 1/\alpha^2 = \alpha^3 \hspace{0.05cm}.$$


(7)  According to the table,   $\alpha^2 + \alpha = \alpha^4$  holds.   Therefore must be valid:

$$\alpha^4 \cdot {\rm Inv_M}( \alpha^4) = 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} {\rm Inv_M}( \alpha^2 + \alpha) = {\rm Inv_M}( \alpha^4) = \alpha^{-4} = \alpha^3 \hspace{0.05cm}.$$
  • Because of  $\alpha^3 = \alpha + 1$  the proposed solutions 2 and 3  are correct.