Difference between revisions of "Theory of Stochastic Signals/Set Theory Basics"

From LNTwww
 
(75 intermediate revisions by 9 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Wahrscheinlichkeitsrechnung
+
|Untermenü=Probability Calculation
|Vorherige Seite=Einige grundlegende Definitionen
+
|Vorherige Seite=Some Basic Definitions
|Nächste Seite=Statistische Abhängigkeit und Unabhängigkeit
+
|Nächste Seite=Statistical Dependence and Independence
 
}}
 
}}
==Venndiagramm, Grundmenge und leere Menge==
+
==Venn diagram, universal and empty set==
In späteren Kapitel wird manchmal auf die ''Mengenlehre'' Bezug genommen. Deshalb sollen hier die wichtigsten Grundlagen und Definitionen dieser Disziplin kurz zusammengefasst werden. Die Thematik wird auch im folgenden Lernvideo am Beispiel europäischer Staaten behandelt:  
+
<br>
 +
In later chapters,&nbsp; we will sometimes refer to&nbsp; [https://en.wikipedia.org/wiki/Set_theory &raquo;set theory&laquo;]&nbsp;.&nbsp; Therefore,&nbsp; the most important basics and definitions of this discipline will be briefly summarized here.&nbsp; The topic is also covered in the&nbsp; $($German language$)$&nbsp; learning video&nbsp; [[Mengentheoretische_Begriffe_und_Gesetzmäßigkeiten_(Lernvideo)|&raquo;Mengentheoretische Begriffe und Gesetzmäßigkeiten&laquo;]] &nbsp; &rArr; &nbsp; &raquo;Set Theory &ndash; Terms and Regularities&laquo;.
 +
[[File:EN_Sto_T_1_2_S1.png | right|frame|Set representation in the Venn diagram]]
  
Ein wichtiges Hilfsmittel der Mengenlehre ist das Venndiagramm gemäß dem folgenden Bild.
+
An important tool of set theory is the&nbsp; &raquo;'''Venn diagram'''&laquo;&nbsp; according to the graph:
 +
*Applied to probability theory,&nbsp; the events&nbsp; $A_i$&nbsp; are represented here as areas.&nbsp; For a simpler description we do not denote the events here with&nbsp; $A_1$,&nbsp; $A_2$&nbsp; and&nbsp;  $A_3$,&nbsp; but with&nbsp; $A$,&nbsp; $B$&nbsp; and&nbsp; $C$ in contrast to the last chapter.&nbsp;
  
 +
*The total area corresponds to the&nbsp; &raquo;universal set&laquo;&nbsp; $($or short:&nbsp; &raquo;universe&laquo;$)$&nbsp; $G$.&nbsp; The universe&nbsp; $G$&nbsp; contains all possible outcomes and stands for the&nbsp; &raquo;'''certain event'''&laquo;,&nbsp; which by definition occurs with probability &raquo;one&laquo;:  &nbsp; ${\rm Pr}(G) = 1$.&nbsp;  For example,&nbsp; in the random experiment&nbsp; &raquo;Throwing a die&laquo;,&nbsp; the probability for the event&nbsp; &raquo;The number of eyes is less than or equal to 6&laquo;&nbsp; is identical to one.
  
[[File:P_ID1442__Sto_T_1_2_S1.png | Mengendarstellung im Venndiagramm]]
+
*In contrast,&nbsp; the&nbsp; &raquo;'''empty set'''&laquo;&nbsp; $ϕ$&nbsp; does not contain a single element.&nbsp; In terms of events,&nbsp; the empty set specifies the&nbsp; &raquo;'''impossible event'''&laquo;&nbsp; with probability&nbsp; ${\rm Pr}(ϕ) = 0$&nbsp; an.&nbsp; For example,&nbsp; in the experiment&nbsp; &raquo;Throwing a die&laquo;,&nbsp; the probability for the event&nbsp; &raquo;The number of eyes is greater than 6&laquo;&nbsp; is identically zero.  
  
  
Angewandt auf die Wahrscheinlichkeitsrechnung sind hier die Ereignisse $A_i$ als Flächenbereiche dargestellt. Zur einfacheren Beschreibung bezeichnen wir hier die Ereignisse im Gegensatz zu Kapitel 1.1 nicht mit $A_1, A_2, A_3$ usw., sondern mit $A, B$ und $C$. Die Gesamtfläche entspricht der Grundmenge $G$.  
+
It should be noted that not every event&nbsp; $A$&nbsp; with&nbsp; ${\rm Pr}(A) = 0$&nbsp; can really never occur:
 +
*Thus,&nbsp; the probability of the event&nbsp; &raquo;the noise value&nbsp; $n$&nbsp; is identical to zero&raquo;&nbsp; is vanishingly small and it applies&nbsp; ${\rm Pr}(n \equiv 0) = 0$,&nbsp;  if&nbsp; $n$&nbsp; is described by a continuous&ndash;valued&nbsp; $($Gaussian$)$&nbsp; random variable.
  
Die Grundmenge $G$ beinhaltet alle möglichen Ergebnisse und steht für das sichere Ereignis, das definitionsgemäß mit der Wahrscheinlichkeit „Eins” eintritt: Pr( $G$) = 1. Zum Beispiel ist beim Zufallsexperiment ''Werfen eines Würfels''  die Wahrscheinlichkeit für das Ereignis „die Augenzahl ist kleiner oder gleich 6” identisch 1.  
+
*Nevertheless,&nbsp; it is of course possible&nbsp; $($although extremely unlikely$)$&nbsp; that at some points the exact noise value&nbsp; $n = 0$&nbsp; will also occur.
  
Dagegen beinhaltet die leere Menge $ϕ$ kein einziges Element. Bezogen auf Ereignisse gibt die leere Menge das unmögliche Ereignis mit der Wahrscheinlichkeit Pr( $ϕ$) = 0 an. Beispielsweise ist beim Experiment ''Werfen eines Würfels''  die Wahrscheinlichkeit für das Ereignis „die Augenzahl ist größer als 6” identisch 0.  
+
==Union set==
 +
<br>
 +
Some set-theoretical relations are explained now on the basis of the Venn diagram.
  
Weiter ist anzumerken, dass nicht jedes Ereignis $A$ mit Pr( $A$) = 0 wirklich nie eintreten kann. So ist die Wahrscheinlichkeit des Ereignisses „der Rauschwert $n$ ist identisch 0” zwar verschwindend klein und es gilt Pr( $n$ = 0) = 0, wenn $n$ durch eine kontinuierliche Zufallsgröße beschrieben wird. Trotzdem ist es natürlich möglich, dass irgendwann auch der exakte Rauschwert $n$ = 0 auftritt.
+
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''union set'''&laquo;&nbsp; $C$&nbsp; of two sets&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; contains all the elements that are contained either in set&nbsp; $A$&nbsp; or in set&nbsp; $B$&nbsp; or in both.&nbsp;
 +
[[File: EN_Sto_T_1_2_S2.png  |right|frame| Union set in the Venn diagram]]
 +
*This relationship is expressed as the following formula:
 +
:$$\ C = A \cup B.$$
  
==Vereinigungsmenge==
+
*Using the diagram, it is easy to see the following laws of set theory:
Anhand des Venndiagramms werden nun einige mengentheoretische Verknüpfungen erläutert.
+
:$$A \cup \it \phi = A \rm \hspace{3.6cm}(union \hspace{0.15cm}with \hspace{0.15cm}the \hspace{0.15cm}empty \hspace{0.15cm}set),$$
 +
:$$A\cup G = G \rm \hspace{3.6cm}(union \hspace{0.15cm}with \hspace{0.15cm}the \hspace{0.15cm}universe),$$
 +
:$$A\cup A = A  \hspace{3.6cm}(\rm tautology),$$
 +
:$$A\cup B = B\cup A \hspace{2.75cm}(\rm commutative \hspace{0.15cm}property),$$
 +
:$$(A\cup B)\cup C = A\cup (B\cup C) \hspace{0.45cm}(\rm associative \hspace{0.15cm}property).$$
  
{{Definition}}
+
*If nothing else is known about the event sets&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; then only a lower bound and an upper bound can be given for the probability of the union set:
Die Vereinigungsmenge $C$ zweier Mengen $A$ und $B$ beinhaltet alle die Elemente, die entweder in der Menge $A$ oder der Menge $B$ oder in beiden enthalten sind (englisch: ''Set Union''  ). Formelmäßig wird dieser Zusammenhang wie folgt ausgedrückt:
+
:$${\rm Max}\big({\rm Pr} (A), \ {\rm Pr} (B)\big) \le {\rm Pr} (A \cup B) \le  {\rm Pr} (A)+{\rm Pr} (B).$$
$$\ C = A \cup B \hspace{0.1cm}(= A + B).$$
 
{{end}}
 
  
 +
*The probability of the union set is equal to the lower bound if&nbsp; $A$&nbsp; is a&nbsp; [[Theory_of_Stochastic_Signals/Set_Theory_Basics#Proper_subset_.E2.80.93_Improper_subset|$\text{subset}$]]&nbsp; of&nbsp; $B$&nbsp; or vice versa.
  
In der Literatur ist auch die Bezeichnung ''Summenmenge'' gebräuchlich und es wird manchmal das Pluszeichen benutzt. In unserem Tutorial verwenden wir jedoch ausschließlich das $∪$-Zeichen.
+
*The upper bound holds for&nbsp; [[Theory_of_Stochastic_Signals/Set_Theory_Basics#Disjoint_sets|&raquo;disjoint sets&laquo;]].}}
  
  
[[File: P_ID1443__Sto_T_1_2_S2_neu.png | Vereinigungsmenge im Venndiagramm]]
+
{{GraueBox|TEXT= 
 +
$\text{Example 1:}$&nbsp; We consider again the experiment&nbsp; &raquo;throwing a die&laquo;.&nbsp; The possible outcomes&nbsp; $($number of points$)$&nbsp; are thus&nbsp; $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.
  
 +
Consider the two events
 +
* $A :=$&nbsp; &raquo;The outcome is greater than or equal to&nbsp; $5$ &laquo;&nbsp; $ = \{5, 6\}$ &nbsp; &rArr; &nbsp; ${\rm Pr} (A)= 2/6= 1/3$,
 +
 +
* $B :=$&nbsp; &raquo;The outcome is even &laquo;&nbsp; $= \{2, 4, 6\}$ &nbsp; &rArr; &nbsp; ${\rm Pr} (B)= 3/6= 1/2$,
  
Anhand des Bildes sind die folgenden Gesetzmäßigkeiten der Mengenlehre leicht einzusehen:
 
$$A \cup \it \phi = A \rm \hspace{3.6cm}(Vereinigung \hspace{0.15cm}mit \hspace{0.15cm}der \hspace{0.15cm}leeren \hspace{0.15cm}Menge),$$
 
$$A\cup G = G \rm \hspace{3.6cm}(Vereinigung \hspace{0.15cm}mit \hspace{0.15cm}der \hspace{0.15cm}Grundmenge),$$
 
$$A\cup A = A  \hspace{3.6cm}(\rm Tautologiegesetz),$$
 
$$A\cup B = B\cup A \hspace{2.75cm}(\rm Kommutativgesetz),$$
 
$$(A\cup B)\cup C = A\cup (B\cup C) \hspace{0.55cm}(\rm Assoziativgesetz).$$
 
  
Ist über die Ereignismengen $A$ und $B$ nichts weiter bekannt, so können für die Wahrscheinlichkeit der Vereinigungsmenge nur eine untere und eine obere Schranke angegeben werden:
+
then the union set contains four elements: &nbsp;  $(A \cup B) = \{2, 4, 5, 6 \}$ &nbsp; &rArr; &nbsp; ${\rm Pr} (A \cup B) = 4/6 = 2/3$.
$$\rm Max(Pr (\it A), \rm Pr (\it B)) \le \rm Pr (\it A \cup \it B) \le \rm Pr (\it A) + \rm Pr (\it B).$$
+
*For the lower bound: &nbsp; ${\rm Pr} (A \cup B) \ge {\rm Max}\big({\rm Pr} (A),\ {\rm Pr} (B)\big ) = 3/6.$
 +
*For the upper bound: &nbsp; $ {\rm Pr} (A \cup B) \le   {\rm Pr} (A)+{\rm Pr} (B) = 5/6.$}}
  
Die Wahrscheinlichkeit der Vereinigungsmenge ist gleich der unteren Schranke, wenn $A$ eine Teilmenge von $B$ ist oder umgekehrt. Die obere Schranke gilt für disjunkte Mengen.
+
==Intersection set==
 +
<br>
 +
Another important set-theoretic relation is the intersection.
  
{{Beispiel}}
+
{{BlaueBox|TEXT= 
Betrachtet man die beiden Ereignisse
+
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''intersection set'''&laquo;&nbsp; $C$&nbsp; of two sets&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; contains all those elements which are contained in both the set&nbsp; $A$&nbsp; and the set&nbsp; $B$.
* $A =$ „die Augenzahl ist größer oder gleich 5” = {5, 6},
+
[[File:EN_Sto_T_1_2_S3.png |right|frame| Intersection set in the Venn diagram]]
* $B =$ „die Augenzahl ist geradzahlig” = {2, 4, 6},
 
  
 +
*This relationship is expressed as the following formula:
 +
:$$C = A \cap B.$$
  
so beinhaltet die Vereinigungsmenge die vier Elemente {2, 4, 5, 6}. Die Wahrscheinlichkeiten sind Pr( $A$) = 2/6, Pr( $B$) = 3/6 und Pr( $A B$) = 4/6. Die untere und die obere Schranke gemäß den hier angegebenen Ungleichungen ergeben sich zu 3/6 und 5/6.
+
*In the diagram,&nbsp; the intersection is shown in purple.&nbsp; Analog to the union set,&nbsp; the following regularities apply here:
{{end}}
+
:$$A \cap \it \phi = \it \phi \rm \hspace{3.75cm}(intersection \hspace{0.15cm}with \hspace{0.15cm}the \hspace{0.15cm}empty \hspace{0.15cm}set),$$
 +
:$$A \cap G = A \rm \hspace{3.6cm}(intersection \hspace{0.15cm}with \hspace{0.15cm}the \hspace{0.15cm}universe),$$
 +
:$$A\cap A = A  \rm \hspace{3.6cm}(tautology),$$
 +
:$$A\cap B = B\cap A \rm \hspace{2.75cm}(commutative \hspace{0.15cm}property),$$
 +
:$$(A\cap B)\cap C = A\cap (B\cap C) \rm \hspace{0.45cm}(associative \hspace{0.15cm}property).$$
  
==Schnittmenge==
+
*If nothing else is known about&nbsp; $A$&nbsp; and&nbsp; $B$,&nbsp; then no statement can be made for the probability of the intersection.
Eine weitere wichtige mengentheoretische Verknüpfung stellt die Schnittmenge dar.
 
  
{{Definition}}
+
*However,&nbsp;  if&nbsp; ${\rm Pr} (A) \le 1/2$&nbsp; and at the same time&nbsp; ${\rm Pr} (B) \le 1/2$ hold,&nbsp; then a lower and an upper bound can be given:
Die Schnittmenge $C$ zweier Mengen $A$ und $B$ beinhaltet alle diejenigen Elemente, die sowohl in der Menge $A$ als auch in der Menge $B$ enthalten sind (englisch: ''Intersecting Set''  ). Formelmäßig wird dieser Zusammenhang wie folgt ausgedrückt:
+
:$$0 \le {\rm Pr} (A ∩ B) \le {\rm Min}\ \big({\rm Pr} (A),\  {\rm Pr} (B)\big ).$$
$$C = A \cap B \hspace{0.2cm}(= A \cdot B).$$
 
{{end}}
 
  
 +
*${\rm Pr}(A ∩ B)$&nbsp; is sometimes called the&nbsp; &raquo;joint probability&laquo;&nbsp; and is denoted by&nbsp; ${\rm Pr}(A, \ B)$.
  
In der Literatur ist hierfür auch die Bezeichnung ''Produktmenge'' gebräuchlich und man verwendet das Multiplikationssymbol. Im nachfolgenden Bild ist die Schnittmenge violett dargestellt.
+
*${\rm Pr}(A ∩ B)$&nbsp; is equal to the upper bound if&nbsp; $A$&nbsp; is a&nbsp; [[Theory_of_Stochastic_Signals/Set_Theory_Basics#Proper_subset_.E2.80.93_Improper_subset|$\text{subset}$]]&nbsp;  of&nbsp; $B$&nbsp; or vice versa.
 +
 +
*The lower bound is obtained for the joint probability of&nbsp;  [[Theory_of_Stochastic_Signals/Set_Theory_Basics#Disjoint_sets|&raquo;disjoint sets&laquo;]].}}
  
  
[[File:P_ID17__Sto_T_1_2_S3.png | Schnittmenge im Venndiagramm]]
+
{{GraueBox|TEXT= 
 +
$\text{Example 2:}$&nbsp; We consider again the experiment&nbsp; &raquo;throwing a die&laquo;.&nbsp; The possible outcomes&nbsp; (number of points)&nbsp; are thus&nbsp;  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.
  
 +
Consider the two events
 +
* $A :=$&nbsp; &raquo;The outcome is greater than or equal to&nbsp; $5$&laquo;&nbsp;  $ = \{5, 6\}$ &nbsp; &rArr; &nbsp; ${\rm Pr} (A)= 2/6= 1/3$,&nbsp; 
  
Analog zur Vereinigungsmenge sind hier folgende Gesetzmäßigkeiten zu nennen:
+
* $B :=$&nbsp; &raquo;The outcome is even&laquo;&nbsp;  $ = \{2, 4, 6\}$ &nbsp; &rArr; &nbsp; ${\rm Pr} (B)= 3/6= 1/2$.  
$$A \cap \it \phi = \it \phi \rm \hspace{3.75cm}(Schnitt \hspace{0.15cm}mit \hspace{0.15cm}der \hspace{0.15cm}leeren \hspace{0.15cm}Menge),$$
 
$$A \cap G = A \rm \hspace{3.6cm}(Schnitt \hspace{0.15cm}mit \hspace{0.15cm}der \hspace{0.15cm}Grundmenge),$$
 
$$A\cap A = A  \rm \hspace{3.6cm}(Tautologiegesetz),$$
 
$$A\cap B = B\cap A \rm \hspace{2.75cm}(Kommutativgesetz),$$
 
$$(A\cap B)\cap C = A\cap (B\cap C) \rm \hspace{0.55cm}(Assoziativgesetz).$$
 
  
Ist über die Mengen $A$ und $B$ nichts weiter bekannt, so kann auch für die Wahrscheinlichkeit der Schnittmenge nur eine untere und eine obere Schranke angegeben werden:
 
$$\rm 0 \le Pr(\it A \cap \it B) \le \rm Min (Pr(\it A), \rm Pr(\it B)).$$
 
  
Pr( $A ∩ B$) wird auch Verbundwahrscheinlichkeit genannt und manchmal mit Pr( $A, B$) bezeichnet. Sie ist gleich der oberen Schranke, wenn $A$ eine Teilmenge  von $B$ ist oder umgekehrt. Die untere Schranke ergibt sich für die Verbundwahrscheinlichkeit von  disjunkten Mengen.
+
The intersection contains only one element: &nbsp;  $(A ∩ B) = \{ 6 \}$ &nbsp; &rArr; &nbsp; ${\rm Pr} (A ∩ B) = 1/6$.
 +
*The upper bound is obtained as&nbsp; ${\rm Pr} (A ∩ B) \le {\rm Min}\ \big ({\rm Pr} (A), \, {\rm Pr} (B)\big ) = 2/6.$
  
{{Beispiel}}
+
*The lower bound of the intersection is zero because of&nbsp; ${\rm Pr} (A) \le 1/2$ &nbsp;and&nbsp; ${\rm Pr} (B) \le 1/2$&nbsp;.}}
Die Ereignissen seien wieder $A$ = „die Augenzahl ist größer oder gleich 5” = {5, 6} sowie $B$ = „die Augenzahl ist geradzahlig” = {2, 4, 6}. Die Schnittmenge beinhaltet nur ein einziges Element: $A ∩ B$ = {6}. Mit Pr( $A$) = 2/6 und Pr( $B$) = 3/6 ergibt sich Pr( $A ∩ B$) = 1/6.  
 
  
Die untere und obere Schranke entsprechend den angegebenen Ungleichungen sind 0 und 2/6.
+
==Complementary set==
{{end}}
+
<br>
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''complementary set'''&laquo; of&nbsp; $A$&nbsp; is often denoted by a straight line above the letter&nbsp; $(\overline{A})$&nbsp;.&nbsp; It contains all the elements that are not contained in the set&nbsp; $A$&nbsp; and it holds for their probability:
 +
[[File:EN_Sto_T_1_2_S4Neu.png| right|frame|Complementary set in the Venn diagram]]
  
==Komplementärmenge==
+
:$${\rm Pr}(\overline{A}) = 1- {\rm Pr}(A).$$
{{Definition}}
 
Die Komplementärmenge (englisch: ''Complementary Set'') von $A$ wird oft durch eine überstreichende Linie gekennzeichnet. Sie beinhaltet alle die Elemente, die in der Menge $A$ nicht enthalten sind, und es gilt für deren Wahrscheinlichkeit:
 
$$\rm Pr(\overline{\it A}) = 1- Pr(\it A).$$
 
{{end}}
 
  
 +
In the Venn diagram,&nbsp; the set complementary to&nbsp; $A$&nbsp; is shaded.&nbsp;
  
Im nachfolgenden Venndiagramm ist die zu $A$ komplementäre Menge schraffiert dargestellt.
+
From this diagram,&nbsp; some set-theoretic relationships can be seen:
 +
*The complementary of the complementary of&nbsp; $A$&nbsp; is the set&nbsp; $A$&nbsp; itself:
 +
:$$\overline{\overline{A} } = A.$$
 +
*The union of a set&nbsp; $A$&nbsp; with its complementary set gives the universal set:
 +
:$${\rm Pr}(A \cup \overline{A}) = {\rm Pr}(G) = \rm 1.$$
 +
*The intersection of&nbsp; $A$&nbsp; with its complementary set gives the empty set:
 +
:$${\rm Pr}(A \cap \overline{A}) = {\rm Pr}({\it \phi}) \rm = 0.$$}}
  
  
[[File:P_ID460__Sto_T_1_2_S4.png | Komplementärmenge im Venndiagramm]]
+
{{GraueBox|TEXT= 
 +
$\text{Example 3:}$&nbsp; We consider again the experiment&nbsp; &raquo;throwing a die&raquo;.&nbsp; The possible outcomes&nbsp; (number of points)&nbsp; are thus&nbsp;  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.
  
 +
*Starting from the set
 +
:$$A :=\text{&nbsp;&raquo;The outcome is smaller than&nbsp; $5$&laquo;&nbsp;}  = \{1, 2, 3, 4\}\ \  \text{&nbsp; &rArr; &nbsp;} \ \ {\rm Pr} (A)= 2/3,$$
  
Aus diesem Schaubild sind einige mengentheoretische Beziehungen zu erkennen:
+
*the corresponding complementary set is
*Die Komplementärmenge der komplementären Menge von $A$ ist die Menge $A$ selbst:
+
:$$\overline{A} :=\text{&nbsp; &raquo;The outcome is greater than or equal to&nbsp; $5$&laquo;}&nbsp;  = \{5, 6\} \ \ \text{&nbsp; &rArr; &nbsp;}\ \ {\rm Pr} (\overline{A})= 1 - {\rm Pr} (A) = 1 - 2/3 = 1/3.$$}}
$$\overline{\overline{A}} = A.$$
 
*Die Vereinigungsmenge einer Menge $A$ mit der Komplentärmenge ergibt die Grundmenge:
 
$$\rm Pr(\it A \cup \overline{\it A}) = \rm Pr(\it G) = \rm 1.$$
 
*Die Schnittmenge von $A$ mit der zugehörigen Komplementärmenge ergibt die leere Menge:
 
$$\rm Pr(\it A \cap \overline{\it A}) = \rm Pr(\it \phi) \rm = 0.$$
 
  
{{Definition}}
+
==Proper subset &ndash; Improper subset==
Ausgehend von der Menge $A$ = „die Augenzahl ist kleiner als 5” lautet die zugehörige Komplentärmenge in Worten: „die Augenzahl ist größer oder gleich 5”. Die Wahrscheinlichkeit dieser Komplentärmenge berechnet sich zu 1 − Pr( $A$) = 1 − 2/3 = 1/3.
+
<br>
{{end}}
+
{{BlaueBox|TEXT=
 +
[[File:EN_Sto_T_1_2_S5.png | right|frame| Proper subset in the Venn diagram]] 
 +
$\text{Definitions:}$&nbsp;
  
==Echte Teilmenge – unechte Teilmenge==
+
'''(1)'''&nbsp; One calls&nbsp; $A$&nbsp; a&nbsp; &raquo;'''proper subset'''&laquo;&nbsp; of&nbsp; $B$&nbsp; and writes for this relationship&nbsp; $A ⊂ B$,
Diese mengentheoretische Relation wird durch das folgende Venndiagramm veranschaulicht.
+
*if all elements of&nbsp; $A$&nbsp; are also contained in&nbsp; $B$,
  
 +
*but not all elements of&nbsp; $B$&nbsp; are contained in&nbsp; $A$.
  
[[File:P_ID19__Sto_T_1_2_S5.png | Teilmenge im Venndiagramm]]
 
  
 +
In this case,&nbsp; for the probabilities hold:
 +
:$${\rm Pr}(A)  <  {\rm Pr}(B).$$
  
{{Definition}}
+
This set-theoretic relationship is illustrated by the sketched Venn diagram on the right.
Man bezeichnet $A$ als eine echte Teilmenge von $B$ und schreibt hierfür $A ⊂ B$, wenn alle Elemente von $A$ auch in $B$ enthalten sind, aber nicht gleichzeitig alle Elemente von $B$ auch in $A$ (englisch: ''Strict Subset''). In diesem Fall gilt für die Wahrscheinlichkeiten:
 
$$\rm Pr(\it A)  <  \rm Pr(\it B).$$
 
{{end}}
 
  
  
Dagegen bezeichnet man $A$ als eine unechte Teilmenge von $B$ und verwendet die folgende Notation, wenn $A$ entweder eine echte Teilmenge von $B$ ist oder $A$ und $B$ gleiche Mengen sind:
+
'''(2)'''&nbsp; On the other hand,&nbsp; $A$&nbsp; is called an&nbsp; &raquo;'''improper subset'''&laquo;&nbsp; of&nbsp; $B$&nbsp; and uses the notation
$$A \subseteq B = (A \subset B) \cup (A = B).$$
+
:$$A \subseteq B = (A \subset B) \cup (A = B),$$
 +
if&nbsp; $A$&nbsp; is either a proper subset of&nbsp; $B$&nbsp; or if&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; are equal sets.
  
Für die Wahrscheinlichkeiten gilt dann die Größenrelation Pr( $A$) Pr( $B$). Das Gleichheitszeichen gilt nur für den Sonderfall identischer Mengen. Da
+
*Then applies to the probabilities:&nbsp;  ${\rm Pr} (A) \le  {\rm Pr} (B)$.
*die Schnittmenge $A ∩ B$ stets eine Teilmenge von $A$ ist,
 
* $A$ aber auch gleichzeitig eine Teilmenge der Vereinigungsmenge $A ∪ B$ ist,
 
  
 +
*The equality sign is only valid for the special case&nbsp;  $A = B$.}}
  
gelten auch die beiden als Absorptionsgesetze bekannten Gleichungen:
 
$$(A \cap B)  \cup A  =  A ,$$
 
$$(A  \cup B) \cap A  =  A.$$
 
  
 +
In addition,&nbsp; the two equations known as the&nbsp; &raquo;'''absorption laws'''&laquo;&nbsp; also apply:
 +
:$$(A \cap B)  \cup A  =  A ,$$
 +
:$$(A  \cup B) \cap A  =  A,$$
  
{{Beispiel}}
+
*since the intersection&nbsp; $A ∩ B$&nbsp; is always a subset of&nbsp; $A$,&nbsp;
Die Menge $A$ = „die Augenzahl ist ungerade” = {1, 3, 5} ist eine (echte) Teilmenge der Menge $B$ = „die Augenzahl ist eine Primzahl” = {1, 2, 3, 5}, wenn $G$ die Zahlen 1 bis 6 enthält. Die Wahrscheinlichkeit Pr( $A$) = 3/6 ist deshalb kleiner als Pr(B) = 4/6.
+
*but at the same time&nbsp; $A$&nbsp; is also a subset of the union&nbsp; $A ∪ B$.
{{end}}
 
  
==Theoreme von de Morgan==
 
Bei vielen Aufgaben aus der Mengenlehre sind die beiden Theoreme von de Morgan  äußerst nützlich. Diese lauten:
 
$$\overline{A \cup B} = \overline{A} \cap \overline{B},$$
 
$$\overline{A \cap B} = \overline{A} \cup \overline{B}.$$
 
  
 +
{{GraueBox|TEXT= 
 +
$\text{Example 4:}$&nbsp; We consider again the experiment&nbsp; &raquo;throwing a die&laquo;.&nbsp; The possible outcomes&nbsp; (number of points)&nbsp; are thus&nbsp;  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.
  
[[File:P_ID23__Sto_T_1_2_S6.png | Zu den Theoremen von de Morgan | rechts]]
+
Consider the two events
Diese Gesetzmäßigkeiten sind im folgenden Schaubild veranschaulicht:
+
* $A :=$&nbsp; &raquo;The outcome is odd&laquo; $&nbsp; = \{1, 3, 5\}$ &nbsp; &rArr; &nbsp; ${\rm Pr} (A)= 3/6$,&nbsp;
*Die Menge $A$ ist rot dargestellt und die Menge $B$ blau.
 
*Die Komplentärmenge von $A$ ist in horizontaler Richtung schraffiert.
 
*Die Komplentärmenge von $B$ ist in vertikaler Richtung schraffiert.
 
*Das Komplement der Vereinigungsmenge ist sowohl horizontal als auch vertikal schraffiert.
 
*Es ist damit gleich der Schnittmenge der beiden Komplentärmengen von $A$ und $B$.
 
  
 +
* $B :=$&nbsp; &raquo;The outcome is a prime number&raquo; $&nbsp; = \{1, 2, 3, 5\}$ &nbsp; &rArr; &nbsp; ${\rm Pr} (B)= 4/6$.
  
Die Schnittmenge $A ∩ B$ (im Bild violett dargestellt) ist weder horizontal noch vertikal schraffiert.
 
*Das Komplement der Schnittmenge ist dementsprechend entweder horizontal, vertikal oder in beiden Richtungen schraffiert.
 
*Nach dem zweiten Theorem von de Morgan ist das Komplement der Schnittmenge gleich der Vereinigungsmenge der beiden Komplentärmengen von $A$ und $B$.
 
  
 +
It can be seen that&nbsp;  $A$&nbsp; is a&nbsp; $($proper$)$ subset&nbsp; of&nbsp; $B$.&nbsp; Accordingly,&nbsp; ${\rm Pr} (A) <  {\rm Pr} (B)$&nbsp; is also true. }}
  
{{Beispiel}}
+
==Theorems of de Morgan==
Wir betrachten nun die beiden Mengen
+
<br>
* $A$ = „die Augenzahl ist ungeradzahlig” = {1, 3, 5},
+
In many set-theoretical tasks,&nbsp; the two theorems of&nbsp; [https://en.wikipedia.org/wiki/Augustus_De_Morgan $\text{de Morgan}$]&nbsp;  are extremely useful.&nbsp;
* $B$ = „die Augenzahl ist größer als 2” = {3, 4, 5, 6}.  
+
 +
{{BlaueBox|TEXT=
 +
$\text{Theorem of de Morgan:}$
 +
[[File:EN_Sto_T_1_2_S6.png|frame| Zu den Theoremen von de Morgan | About de Morgan's theorems]]
  
 +
:$$\overline{A \cup B} = \overline{A} \cap \overline{B},$$
 +
:$$\overline{A \cap B} = \overline{A} \cup \overline{B}.$$
  
Daraus folgen die beiden komplementären Mengen „die Augenzahl ist geradzahlig” = {2, 4, 6} bzw. „die Augenzahl ist kleiner als 3” = {1, 2}. Weiter erhält man mit den obigen Theoremen folgende Mengen:
+
These regularities are illustrated in the Venn diagram:
$$\overline{A \cup B} = \overline{A} \cap \overline{B} = \{2\}\hspace{0.5 cm}\rm und \hspace{0.5cm} \overline{\it A \cap \it B} =\overline{\it A} \cup \overline{\it B} = \{1,2,4,6\}.$$
+
#Set&nbsp; $A$&nbsp; is shown in red and set&nbsp; $B$&nbsp; is shown in blue.
{{end}}
+
#The complement&nbsp; $\overline {A}$&nbsp; of&nbsp; $A$&nbsp; is hatched in the horizontal direction.
 +
#The complement&nbsp;  $\overline {B}$&nbsp; of&nbsp; $B$&nbsp; is hatched in the vertical direction.  
 +
#The complement&nbsp; $\overline{A \cup B}$&nbsp; of the union&nbsp; ${A \cup B}$&nbsp; is hatched both horizontally and vertically.
 +
#It is thus equal to the intersection&nbsp; $\overline{A} \cap \overline{B}$&nbsp; of the two complement sets of&nbsp; $A$&nbsp; and&nbsp; $B$:
 +
::$$\overline{A \cup B} = \overline{A} \cap \overline{B}.$$}}
  
==Disjunkte Mengen==
 
{{Definition}}
 
Zwei Mengen $A$ und $B$ nennt man disjunkt (englisch: ''disjoint'') oder miteinander unvereinbar, wenn es kein einziges Element gibt, das sowohl in $A$ als auch in $B$ enthalten ist.
 
{{end}}
 
  
 +
The second form of the de Morgan theorem can also be illustrated graphically with the same Venn diagram:
  
Das Schaubild zeigt zwei disjunkte Mengen $A$ und $B$ im Venndiagramm.
+
#The intersection&nbsp; $A ∩ B$&nbsp; $($shown in purple in the figure$)$&nbsp; is neither horizontally nor vertically hatched.
 +
#Accordingly, the complement&nbsp; $\overline{A ∩ B}$&nbsp; of the intersection is hatched either horizontally, vertically, or in both directions.
 +
#By de Morgan's second theorem,&nbsp; the complement of the intersection equals the union of the two complementary sets of&nbsp; $A$&nbsp; and&nbsp; $B$:
 +
::$$\overline{A \cap B} = \overline{A} \cup \overline{B}.$$
  
[[File:P_ID433__Sto_T_1_2_S7.png | Disjunkte Mengen im Venndiagramm | rechts]]
+
{{GraueBox|TEXT= 
In diesem Sonderfall gelten die folgenden Aussagen:  
+
$\text{Example 5:}$&nbsp; We consider again the experiment&nbsp; &raquo;throwing a die&laquo;.&nbsp; The possible outcomes&nbsp; (number of points)&nbsp; are thus&nbsp; $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.
*Die Schnittmenge zweier disjunkter Mengen $A$ und $B$ ergibt stets die leere Menge:
 
$$\rm Pr(\it A \cap \it B) = \rm Pr(\it \phi) = \rm 0.$$
 
*Die Wahrscheinlichkeit der Vereinigungsmenge zweier disjunkter Mengen $A$ und $B$ ist immer gleich der Summe der beiden Einzelwahrscheinlichkeiten:
 
$$\rm Pr(\it A \cup \it B) = \rm Pr(\it A) + \rm Pr(\it B).$$
 
  
 +
We consider the two sets
 +
* $A : =$&nbsp; &raquo;The outcome is odd&laquo;&nbsp; $= \{1, 3, 5\}$,
 +
* $B : =$&nbsp; &raquo;The outcome is greater than&nbsp; $2$&laquo;&nbsp; $= \{3, 4, 5, 6\}$.
  
{{Beispiel}}
 
Die Mengen
 
* $A$ = „die Augenzahl ist kleiner als 3” = {1, 2}  ⇒  Pr( $A$) = 2/6, und
 
* $B$ = „die Augenzahl ist größer als 3” = {4, 5, 6}  ⇒  Pr( $B$) = 3/6
 
  
sind zueinander disjunkt, da $A$ und $B$ kein einziges gemeinsames Element beinhalten. Deshalb ist die Wahrscheinlichkeit der Vereinigungsmenge {1, 2, 4, 5, 6} gleich Pr( $A$) + Pr( $B$) = 5/6.
+
From this follow the two complementary sets
{{end}}
+
* $\overline {A} : =$&nbsp; &raquo;The outcome is even&laquo;&nbsp; $= \{2, 4, 6\}$,
 +
* $\overline {B} : =$&nbsp; &raquo;The outcome is smaller than&nbsp; $3$&laquo;&nbsp; $= \{1, 2\}$.
  
  
 +
Further,&nbsp; using the above theorems,&nbsp; we obtain the following sets:
 +
:$$\overline{A \cup B} = \overline{A} \cap \overline{B} = \{2\},$$
 +
:$$\overline{\it A \cap \it B} =\overline{\it A} \cup \overline{\it B} = \{1,2,4,6\}.$$}}
  
 +
==Disjoint sets==
 +
<br>
 +
{{BlaueBox|TEXT=
 +
[[File:EN_Sto_T_1_2_S7.png |frame| Disjunkte Mengen im Venndiagramm | Disjoint sets in the Venn diagram]]
 +
 
 +
$\text{Definition:}$&nbsp; Two sets&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; are called&nbsp; &raquo;'''disjoint'''&laquo; or&nbsp; &raquo;'''incompatible'''&laquo;,
 +
 +
*if there is no single element,
 +
 +
*that is contained in both&nbsp; $A$&nbsp; and&nbsp; $B$.
  
 +
 +
The diagram shows two disjoint sets&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; in the Venn diagram.
 +
 +
In this special case,&nbsp; the following statements hold:
 +
 +
*The intersection of two disjoint sets&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; always yields the empty set:
 +
:$${\rm Pr}(A \cap B) =  {\rm Pr}(\phi) = \rm 0.$$
 +
*The probability of the union set of two disjoint sets&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; is always equal to the sum of the two individual probabilities:
 +
:$${\rm Pr}( A \cup B) =  {\rm Pr}( A) + {\rm Pr}(B).$$}}
 +
<br clear=all>
 +
{{GraueBox|TEXT= 
 +
$\text{Example 6:}$&nbsp; We consider again the experiment&nbsp; &raquo;throwing a die&laquo;.&nbsp; The possible outcomes&nbsp; (number of points)&nbsp; are thus&nbsp;  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.
 +
 +
In our standard experiment,&nbsp; the two sets are now
 +
* $A :=$&nbsp;  &raquo;The outcome is smaller than&nbsp; $3$ &laquo; $ = \{1, 2\}$  &nbsp; ⇒  &nbsp; ${\rm Pr}( A) = 2/6$,
 +
 
 +
* $B :=$&nbsp;  &raquo;The outcome is greater than&nbsp; $3$ &laquo; $ = \{4, 5,6\}$  &nbsp; ⇒  &nbsp;  ${\rm Pr}( B) = 3/6$
 +
 +
 +
disjoint to each other,&nbsp; since&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; do not contain a single common element.
 +
#The intersection yields the empty set:&nbsp; ${A \cap B} = \phi$.
 +
#The probability of the union set&nbsp; ${A \cup B}  = \{1, 2, 4, 5, 6\}$&nbsp; is equal to&nbsp; ${\rm Pr}( A) + {\rm Pr}(B) = 5/6.$}}
 +
 +
==Addition rule==
 +
<br>
 +
Only for disjoint sets&nbsp; $A$&nbsp; and&nbsp; $B$,&nbsp; the relation&nbsp; ${\rm Pr}( A \cup B) =  {\rm Pr}( A) + {\rm Pr}(B)$&nbsp; holds for the probability of the union set.&nbsp; But how is this probability calculated for general events that are not necessarily disjoint?
 +
 +
[[File:EN_Sto_T_1_2_S8.png | right|frame| &raquo;Addition rule&laquo;&nbsp; of probability calculus]]
 +
Consider the right-hand Venn diagram with the intersection&nbsp; $A ∩ B$&nbsp; shown in purple:
 +
#The red set contains all the elements that belong to&nbsp; $A$,&nbsp; but not to&nbsp; $B$.
 +
#The elements of&nbsp; $B$, that are not simultaneously contained in&nbsp; $A$&nbsp; are shown in blue.
 +
#All red,&nbsp; blue,&nbsp; and purple surfaces together make up the union set&nbsp; $A ∪ B$.
 +
 +
 +
From this set-theoretical representation,&nbsp; one can see the following relationships:
 +
:$${\rm Pr}(A) \hspace{0.8cm}= {\rm Pr}(A \cap B)  + {\rm Pr}(A \cap \overline{B}),$$
 +
:$${\rm Pr}(B) \hspace{0.8cm}= {\rm Pr}(A \cap B) \rm +{\rm Pr}(\overline{A} \cap {B}),$$
 +
:$${\rm Pr}(A \cup B) ={\rm Pr}(A \cap B) +{\rm Pr} ({A} \cap \overline{B})  + {\rm Pr}(\overline{A} \cap {B}).$$
 +
 +
Adding the first two equations and subtracting from them the third,&nbsp; we get:
 +
:$${\rm Pr}(A)  +{\rm Pr}(B) -{\rm Pr}(A \cup B) = {\rm Pr}(A \cap B).$$
 +
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; By rearranging this equation,&nbsp; one arrives at the so-called&nbsp; &raquo;'''addition rule'''&laquo;&nbsp; for any two,&nbsp; not necessarily disjoint events:
 +
:$${\rm Pr}(A \cup B) = {\rm Pr}(A) + {\rm Pr}(B) - {\rm Pr}(A \cap B).$$}}
 +
 +
 +
{{GraueBox|TEXT= 
 +
$\text{Example 7:}$&nbsp; We consider again the experiment&nbsp; &raquo;throwing a die&laquo;.&nbsp; The possible outcomes&nbsp; (number of points)&nbsp; are thus&nbsp;  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.
 +
 +
We consider the two sets
 +
* $A :=$&nbsp; &raquo;The outcome is odd &laquo; $= \{1, 3, 5\}$  &nbsp; ⇒ &nbsp;  ${\rm Pr}(A) = 3/6$,
 +
 
 +
* $B :=$&nbsp; &raquo;The outcome is greater than&nbsp; $2$ &laquo; $ = \{3, 4, 5, 6\}$  &nbsp; ⇒ &nbsp;  ${\rm Pr}(B) = 4/6$.
 +
 +
 +
This gives the following probabilities
 +
*of the union  &nbsp; ⇒ &nbsp;  ${\rm Pr}(A ∪ B) = 5/6$,&nbsp; and
 +
 +
*of the intersection  &nbsp; ⇒ &nbsp;  ${\rm Pr}(A  ∩ B) = 2/6$.
 +
 +
 +
The numerical values show the validity of the addition rule: &nbsp;
 +
:$$5/6 = 3/6 + 4/6 − 2/6.$$}}
 +
 +
==Complete system==
 +
<br>
 +
In the last section to this chapter,&nbsp; we consider again  more than two possible events, namely, in general,&nbsp; $I$.&nbsp; These events will be denoted by&nbsp; $A_i$ &nbsp; &rArr; &nbsp; the running index $i$ can be in the range&nbsp; $1 ≤ i ≤ I$.
 +
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; A constellation with events&nbsp; $A_1, \hspace{0.1cm}\text{...}\hspace{0.1cm} , A_i,  \hspace{0.1cm}\text{...}\hspace{0.1cm}  , A_I$&nbsp; is called a&nbsp; &raquo;'''complete system'''&laquo;,&nbsp; if and only if the following two conditions are satisfied:
 +
 +
'''(1)''' &nbsp; All events are pairwise disjoint:
 +
:$$A_i \cap A_j = \it \phi \hspace{0.25cm}\rm for\hspace{0.15cm}all\hspace{0.25cm}\it i \ne j.$$
 +
'''(2)''' &nbsp; The union of all event sets gives the universal set:
 +
:$$\bigcup_{i=1}^{I} A_i = G.$$}}
 +
 +
 +
Given these two assumptions, the sum of all probabilities is then:
 +
:$$\sum_{i =1}^{  I} {\rm Pr}(A_i) = 1.$$
 +
 +
{{GraueBox|TEXT= 
 +
$\text{Example 8:}$&nbsp;
 +
*The sets&nbsp; $A_1 := \{1, 5\}$&nbsp; and&nbsp; $A_2 := \{2, 3\}$&nbsp; together with the set&nbsp; $A_3 := \{4, 6\}$&nbsp; result in a complete system in the random experiment&nbsp; &raquo;throwing a die&laquo;,
 +
 +
* but not in the experiment&nbsp; &raquo;throwing a roulette ball&laquo;.}}
 +
 +
 +
{{GraueBox|TEXT= 
 +
$\text{Example 9:}$&nbsp; Another example of a complete system is the discrete random variable&nbsp; $X = \{ x_1, x_2, \hspace{0.1cm}\text{...}\hspace{0.1cm} , x_I\}$&nbsp; with the likelihood corresponding to the following&nbsp; [[Information_Theory/Some_Preliminary_Remarks_on_Two-Dimensional_Random_Variables#Probability_mass_function_and_probability_density_function|&raquo;probability mass function&laquo;]]&nbsp; $\rm (PMF)$:
 +
:$$P_X(X) = \big [ \hspace{0.1cm} P_X(x_1),\ P_X(x_2), \hspace{0.05cm}\text{...}\hspace{0.15cm},\ P_X(x_I) \hspace{0.05cm} \big ] = \big [ \hspace{0.1cm} p_1, p_2, \hspace{0.05cm}\text{...} \hspace{0.15cm}, p_I \hspace{0.05cm} \big ] \hspace{0.05cm}$$
 +
:$$\Rightarrow \hspace{0.3cm} p_1 = P_X(x_1) = {\rm Pr}(X=x_1) \hspace{0.05cm},
 +
\hspace{0.2cm}p_2 =  {\rm Pr}(X=x_2) \hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.15cm},\hspace{0.2cm} p_I = {\rm Pr}(X=x_I) \hspace{0.05cm}.$$
 +
 +
*The possible outcomes&nbsp; $x_i$&nbsp; of the random variable&nbsp; $X$&nbsp; are pairwise disjoint to each other.
 +
 +
*The sum of all likelihoods&nbsp;  $p_1 + p_2 + \hspace{0.1cm}\text{...}\hspace{0.1cm} + \hspace{0.05cm} p_I$&nbsp;  always yields the result&nbsp; $1$.}}
 +
 +
 +
{{GraueBox|TEXT= 
 +
$\text{Example 10:}$&nbsp; Let&nbsp; $X= \{0, 1, 2 \}$&nbsp; and&nbsp; $P_X (X) = \big[0.2, \ 0.5, \ 0.3\big]$. Then holds:
 +
:$${\rm Pr}(X=0) = 0.2 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X=1) = 0.5 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X=2) = 0.3 \hspace{0.05cm}.$$
 +
 +
With random variable&nbsp; $X = \{1, \pi, {\rm e} \}$&nbsp; and the same&nbsp; $P_X(X) = \big[0.2, \ 0.5, \ 0.3\big]$&nbsp; the assignments are:
 +
:$${\rm Pr}(X=1) = 0.2 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X=\pi) = 0.5 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X={\rm e}) = 0.3 \hspace{0.05cm}.$$
 +
 +
$\text{Hints:}$
 +
*The&nbsp; [[Information_Theory/Some_Preliminary_Remarks_on_Two-Dimensional_Random_Variables#Probability_mass_function_and_probability_density_function|&raquo;probability mass function&laquo;]]&nbsp; $P_X(X)$&nbsp; only makes statements about probabilities,&nbsp; not about the set of values&nbsp;  $\{x_1, x_2, \hspace{0.1cm}\text{...}\hspace{0.1cm} , x_I\}$&nbsp; of the random variable&nbsp; $X$.
 +
 +
*This additional information is provided by the&nbsp; [[Theory_of_Stochastic_Signals/Probability_Density_Function_(PDF)#Definition_of_the_probability_density_function|&raquo;probability density function&laquo;]]&nbsp; $\rm (PDF)$.}}
 +
 +
==Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise_1.2:_Switching_Logic_(D/B_Converter)|Exercise 1.2: Switching Logic (D/B Converter)]]
 +
 +
[[Aufgaben:Exercise_1.2Z:_Sets_of_Digits|Exercise 1.2Z: Sets of Digits]]
 +
 +
[[Aufgaben:Exercise_1.3:_Fictional_University_Somewhere|Exercise 1.3: Fictional University Somewhere]]
 +
 +
[[Aufgaben:Exercise_1.3Z:_Winning_with_Roulette%3F|Exercise 1.3Z: Winning with Roulette?]]
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 15:41, 5 February 2024

Venn diagram, universal and empty set


In later chapters,  we will sometimes refer to  »set theory« .  Therefore,  the most important basics and definitions of this discipline will be briefly summarized here.  The topic is also covered in the  $($German language$)$  learning video  »Mengentheoretische Begriffe und Gesetzmäßigkeiten«   ⇒   »Set Theory – Terms and Regularities«.

Set representation in the Venn diagram

An important tool of set theory is the  »Venn diagram«  according to the graph:

  • Applied to probability theory,  the events  $A_i$  are represented here as areas.  For a simpler description we do not denote the events here with  $A_1$,  $A_2$  and  $A_3$,  but with  $A$,  $B$  and  $C$ in contrast to the last chapter. 
  • The total area corresponds to the  »universal set«  $($or short:  »universe«$)$  $G$.  The universe  $G$  contains all possible outcomes and stands for the  »certain event«,  which by definition occurs with probability »one«:   ${\rm Pr}(G) = 1$.  For example,  in the random experiment  »Throwing a die«,  the probability for the event  »The number of eyes is less than or equal to 6«  is identical to one.
  • In contrast,  the  »empty set«  $ϕ$  does not contain a single element.  In terms of events,  the empty set specifies the  »impossible event«  with probability  ${\rm Pr}(ϕ) = 0$  an.  For example,  in the experiment  »Throwing a die«,  the probability for the event  »The number of eyes is greater than 6«  is identically zero.


It should be noted that not every event  $A$  with  ${\rm Pr}(A) = 0$  can really never occur:

  • Thus,  the probability of the event  »the noise value  $n$  is identical to zero»  is vanishingly small and it applies  ${\rm Pr}(n \equiv 0) = 0$,  if  $n$  is described by a continuous–valued  $($Gaussian$)$  random variable.
  • Nevertheless,  it is of course possible  $($although extremely unlikely$)$  that at some points the exact noise value  $n = 0$  will also occur.

Union set


Some set-theoretical relations are explained now on the basis of the Venn diagram.

$\text{Definition:}$  The  »union set«  $C$  of two sets  $A$  and  $B$  contains all the elements that are contained either in set  $A$  or in set  $B$  or in both. 

Union set in the Venn diagram
  • This relationship is expressed as the following formula:
$$\ C = A \cup B.$$
  • Using the diagram, it is easy to see the following laws of set theory:
$$A \cup \it \phi = A \rm \hspace{3.6cm}(union \hspace{0.15cm}with \hspace{0.15cm}the \hspace{0.15cm}empty \hspace{0.15cm}set),$$
$$A\cup G = G \rm \hspace{3.6cm}(union \hspace{0.15cm}with \hspace{0.15cm}the \hspace{0.15cm}universe),$$
$$A\cup A = A \hspace{3.6cm}(\rm tautology),$$
$$A\cup B = B\cup A \hspace{2.75cm}(\rm commutative \hspace{0.15cm}property),$$
$$(A\cup B)\cup C = A\cup (B\cup C) \hspace{0.45cm}(\rm associative \hspace{0.15cm}property).$$
  • If nothing else is known about the event sets  $A$  and  $B$  then only a lower bound and an upper bound can be given for the probability of the union set:
$${\rm Max}\big({\rm Pr} (A), \ {\rm Pr} (B)\big) \le {\rm Pr} (A \cup B) \le {\rm Pr} (A)+{\rm Pr} (B).$$
  • The probability of the union set is equal to the lower bound if  $A$  is a  $\text{subset}$  of  $B$  or vice versa.


$\text{Example 1:}$  We consider again the experiment  »throwing a die«.  The possible outcomes  $($number of points$)$  are thus  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.

Consider the two events

  • $A :=$  »The outcome is greater than or equal to  $5$ «  $ = \{5, 6\}$   ⇒   ${\rm Pr} (A)= 2/6= 1/3$,
  • $B :=$  »The outcome is even «  $= \{2, 4, 6\}$   ⇒   ${\rm Pr} (B)= 3/6= 1/2$,


then the union set contains four elements:   $(A \cup B) = \{2, 4, 5, 6 \}$   ⇒   ${\rm Pr} (A \cup B) = 4/6 = 2/3$.

  • For the lower bound:   ${\rm Pr} (A \cup B) \ge {\rm Max}\big({\rm Pr} (A),\ {\rm Pr} (B)\big ) = 3/6.$
  • For the upper bound:   $ {\rm Pr} (A \cup B) \le {\rm Pr} (A)+{\rm Pr} (B) = 5/6.$

Intersection set


Another important set-theoretic relation is the intersection.

$\text{Definition:}$  The  »intersection set«  $C$  of two sets  $A$  and  $B$  contains all those elements which are contained in both the set  $A$  and the set  $B$.

Intersection set in the Venn diagram
  • This relationship is expressed as the following formula:
$$C = A \cap B.$$
  • In the diagram,  the intersection is shown in purple.  Analog to the union set,  the following regularities apply here:
$$A \cap \it \phi = \it \phi \rm \hspace{3.75cm}(intersection \hspace{0.15cm}with \hspace{0.15cm}the \hspace{0.15cm}empty \hspace{0.15cm}set),$$
$$A \cap G = A \rm \hspace{3.6cm}(intersection \hspace{0.15cm}with \hspace{0.15cm}the \hspace{0.15cm}universe),$$
$$A\cap A = A \rm \hspace{3.6cm}(tautology),$$
$$A\cap B = B\cap A \rm \hspace{2.75cm}(commutative \hspace{0.15cm}property),$$
$$(A\cap B)\cap C = A\cap (B\cap C) \rm \hspace{0.45cm}(associative \hspace{0.15cm}property).$$
  • If nothing else is known about  $A$  and  $B$,  then no statement can be made for the probability of the intersection.
  • However,  if  ${\rm Pr} (A) \le 1/2$  and at the same time  ${\rm Pr} (B) \le 1/2$ hold,  then a lower and an upper bound can be given:
$$0 \le {\rm Pr} (A ∩ B) \le {\rm Min}\ \big({\rm Pr} (A),\ {\rm Pr} (B)\big ).$$
  • ${\rm Pr}(A ∩ B)$  is sometimes called the  »joint probability«  and is denoted by  ${\rm Pr}(A, \ B)$.
  • ${\rm Pr}(A ∩ B)$  is equal to the upper bound if  $A$  is a  $\text{subset}$  of  $B$  or vice versa.


$\text{Example 2:}$  We consider again the experiment  »throwing a die«.  The possible outcomes  (number of points)  are thus  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.

Consider the two events

  • $A :=$  »The outcome is greater than or equal to  $5$«  $ = \{5, 6\}$   ⇒   ${\rm Pr} (A)= 2/6= 1/3$, 
  • $B :=$  »The outcome is even«  $ = \{2, 4, 6\}$   ⇒   ${\rm Pr} (B)= 3/6= 1/2$.


The intersection contains only one element:   $(A ∩ B) = \{ 6 \}$   ⇒   ${\rm Pr} (A ∩ B) = 1/6$.

  • The upper bound is obtained as  ${\rm Pr} (A ∩ B) \le {\rm Min}\ \big ({\rm Pr} (A), \, {\rm Pr} (B)\big ) = 2/6.$
  • The lower bound of the intersection is zero because of  ${\rm Pr} (A) \le 1/2$  and  ${\rm Pr} (B) \le 1/2$ .

Complementary set


$\text{Definition:}$  The  »complementary set« of  $A$  is often denoted by a straight line above the letter  $(\overline{A})$ .  It contains all the elements that are not contained in the set  $A$  and it holds for their probability:

Complementary set in the Venn diagram
$${\rm Pr}(\overline{A}) = 1- {\rm Pr}(A).$$

In the Venn diagram,  the set complementary to  $A$  is shaded. 

From this diagram,  some set-theoretic relationships can be seen:

  • The complementary of the complementary of  $A$  is the set  $A$  itself:
$$\overline{\overline{A} } = A.$$
  • The union of a set  $A$  with its complementary set gives the universal set:
$${\rm Pr}(A \cup \overline{A}) = {\rm Pr}(G) = \rm 1.$$
  • The intersection of  $A$  with its complementary set gives the empty set:
$${\rm Pr}(A \cap \overline{A}) = {\rm Pr}({\it \phi}) \rm = 0.$$


$\text{Example 3:}$  We consider again the experiment  »throwing a die».  The possible outcomes  (number of points)  are thus  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.

  • Starting from the set
$$A :=\text{ »The outcome is smaller than  $5$« } = \{1, 2, 3, 4\}\ \ \text{  ⇒  } \ \ {\rm Pr} (A)= 2/3,$$
  • the corresponding complementary set is
$$\overline{A} :=\text{  »The outcome is greater than or equal to  $5$«}  = \{5, 6\} \ \ \text{  ⇒  }\ \ {\rm Pr} (\overline{A})= 1 - {\rm Pr} (A) = 1 - 2/3 = 1/3.$$

Proper subset – Improper subset


Proper subset in the Venn diagram

$\text{Definitions:}$ 

(1)  One calls  $A$  a  »proper subset«  of  $B$  and writes for this relationship  $A ⊂ B$,

  • if all elements of  $A$  are also contained in  $B$,
  • but not all elements of  $B$  are contained in  $A$.


In this case,  for the probabilities hold:

$${\rm Pr}(A) < {\rm Pr}(B).$$

This set-theoretic relationship is illustrated by the sketched Venn diagram on the right.


(2)  On the other hand,  $A$  is called an  »improper subset«  of  $B$  and uses the notation

$$A \subseteq B = (A \subset B) \cup (A = B),$$

if  $A$  is either a proper subset of  $B$  or if  $A$  and  $B$  are equal sets.

  • Then applies to the probabilities:  ${\rm Pr} (A) \le {\rm Pr} (B)$.
  • The equality sign is only valid for the special case  $A = B$.


In addition,  the two equations known as the  »absorption laws«  also apply:

$$(A \cap B) \cup A = A ,$$
$$(A \cup B) \cap A = A,$$
  • since the intersection  $A ∩ B$  is always a subset of  $A$, 
  • but at the same time  $A$  is also a subset of the union  $A ∪ B$.


$\text{Example 4:}$  We consider again the experiment  »throwing a die«.  The possible outcomes  (number of points)  are thus  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.

Consider the two events

  • $A :=$  »The outcome is odd« $  = \{1, 3, 5\}$   ⇒   ${\rm Pr} (A)= 3/6$, 
  • $B :=$  »The outcome is a prime number» $  = \{1, 2, 3, 5\}$   ⇒   ${\rm Pr} (B)= 4/6$.


It can be seen that  $A$  is a  $($proper$)$ subset  of  $B$.  Accordingly,  ${\rm Pr} (A) < {\rm Pr} (B)$  is also true.

Theorems of de Morgan


In many set-theoretical tasks,  the two theorems of  $\text{de Morgan}$  are extremely useful. 

$\text{Theorem of de Morgan:}$

About de Morgan's theorems
$$\overline{A \cup B} = \overline{A} \cap \overline{B},$$
$$\overline{A \cap B} = \overline{A} \cup \overline{B}.$$

These regularities are illustrated in the Venn diagram:

  1. Set  $A$  is shown in red and set  $B$  is shown in blue.
  2. The complement  $\overline {A}$  of  $A$  is hatched in the horizontal direction.
  3. The complement  $\overline {B}$  of  $B$  is hatched in the vertical direction.
  4. The complement  $\overline{A \cup B}$  of the union  ${A \cup B}$  is hatched both horizontally and vertically.
  5. It is thus equal to the intersection  $\overline{A} \cap \overline{B}$  of the two complement sets of  $A$  and  $B$:
$$\overline{A \cup B} = \overline{A} \cap \overline{B}.$$


The second form of the de Morgan theorem can also be illustrated graphically with the same Venn diagram:

  1. The intersection  $A ∩ B$  $($shown in purple in the figure$)$  is neither horizontally nor vertically hatched.
  2. Accordingly, the complement  $\overline{A ∩ B}$  of the intersection is hatched either horizontally, vertically, or in both directions.
  3. By de Morgan's second theorem,  the complement of the intersection equals the union of the two complementary sets of  $A$  and  $B$:
$$\overline{A \cap B} = \overline{A} \cup \overline{B}.$$

$\text{Example 5:}$  We consider again the experiment  »throwing a die«.  The possible outcomes  (number of points)  are thus  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.

We consider the two sets

  • $A : =$  »The outcome is odd«  $= \{1, 3, 5\}$,
  • $B : =$  »The outcome is greater than  $2$«  $= \{3, 4, 5, 6\}$.


From this follow the two complementary sets

  • $\overline {A} : =$  »The outcome is even«  $= \{2, 4, 6\}$,
  • $\overline {B} : =$  »The outcome is smaller than  $3$«  $= \{1, 2\}$.


Further,  using the above theorems,  we obtain the following sets:

$$\overline{A \cup B} = \overline{A} \cap \overline{B} = \{2\},$$
$$\overline{\it A \cap \it B} =\overline{\it A} \cup \overline{\it B} = \{1,2,4,6\}.$$

Disjoint sets


Disjoint sets in the Venn diagram

$\text{Definition:}$  Two sets  $A$  and  $B$  are called  »disjoint« or  »incompatible«,

  • if there is no single element,
  • that is contained in both  $A$  and  $B$.


The diagram shows two disjoint sets  $A$  and  $B$  in the Venn diagram.

In this special case,  the following statements hold:

  • The intersection of two disjoint sets  $A$  and  $B$  always yields the empty set:
$${\rm Pr}(A \cap B) = {\rm Pr}(\phi) = \rm 0.$$
  • The probability of the union set of two disjoint sets  $A$  and  $B$  is always equal to the sum of the two individual probabilities:
$${\rm Pr}( A \cup B) = {\rm Pr}( A) + {\rm Pr}(B).$$


$\text{Example 6:}$  We consider again the experiment  »throwing a die«.  The possible outcomes  (number of points)  are thus  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.

In our standard experiment,  the two sets are now

  • $A :=$  »The outcome is smaller than  $3$ « $ = \{1, 2\}$   ⇒   ${\rm Pr}( A) = 2/6$,
  • $B :=$  »The outcome is greater than  $3$ « $ = \{4, 5,6\}$   ⇒   ${\rm Pr}( B) = 3/6$


disjoint to each other,  since  $A$  and  $B$  do not contain a single common element.

  1. The intersection yields the empty set:  ${A \cap B} = \phi$.
  2. The probability of the union set  ${A \cup B} = \{1, 2, 4, 5, 6\}$  is equal to  ${\rm Pr}( A) + {\rm Pr}(B) = 5/6.$

Addition rule


Only for disjoint sets  $A$  and  $B$,  the relation  ${\rm Pr}( A \cup B) = {\rm Pr}( A) + {\rm Pr}(B)$  holds for the probability of the union set.  But how is this probability calculated for general events that are not necessarily disjoint?

»Addition rule«  of probability calculus

Consider the right-hand Venn diagram with the intersection  $A ∩ B$  shown in purple:

  1. The red set contains all the elements that belong to  $A$,  but not to  $B$.
  2. The elements of  $B$, that are not simultaneously contained in  $A$  are shown in blue.
  3. All red,  blue,  and purple surfaces together make up the union set  $A ∪ B$.


From this set-theoretical representation,  one can see the following relationships:

$${\rm Pr}(A) \hspace{0.8cm}= {\rm Pr}(A \cap B) + {\rm Pr}(A \cap \overline{B}),$$
$${\rm Pr}(B) \hspace{0.8cm}= {\rm Pr}(A \cap B) \rm +{\rm Pr}(\overline{A} \cap {B}),$$
$${\rm Pr}(A \cup B) ={\rm Pr}(A \cap B) +{\rm Pr} ({A} \cap \overline{B}) + {\rm Pr}(\overline{A} \cap {B}).$$

Adding the first two equations and subtracting from them the third,  we get:

$${\rm Pr}(A) +{\rm Pr}(B) -{\rm Pr}(A \cup B) = {\rm Pr}(A \cap B).$$

$\text{Definition:}$  By rearranging this equation,  one arrives at the so-called  »addition rule«  for any two,  not necessarily disjoint events:

$${\rm Pr}(A \cup B) = {\rm Pr}(A) + {\rm Pr}(B) - {\rm Pr}(A \cap B).$$


$\text{Example 7:}$  We consider again the experiment  »throwing a die«.  The possible outcomes  (number of points)  are thus  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.

We consider the two sets

  • $A :=$  »The outcome is odd « $= \{1, 3, 5\}$   ⇒   ${\rm Pr}(A) = 3/6$,
  • $B :=$  »The outcome is greater than  $2$ « $ = \{3, 4, 5, 6\}$   ⇒   ${\rm Pr}(B) = 4/6$.


This gives the following probabilities

  • of the union   ⇒   ${\rm Pr}(A ∪ B) = 5/6$,  and
  • of the intersection   ⇒   ${\rm Pr}(A ∩ B) = 2/6$.


The numerical values show the validity of the addition rule:  

$$5/6 = 3/6 + 4/6 − 2/6.$$

Complete system


In the last section to this chapter,  we consider again more than two possible events, namely, in general,  $I$.  These events will be denoted by  $A_i$   ⇒   the running index $i$ can be in the range  $1 ≤ i ≤ I$.

$\text{Definition:}$  A constellation with events  $A_1, \hspace{0.1cm}\text{...}\hspace{0.1cm} , A_i, \hspace{0.1cm}\text{...}\hspace{0.1cm} , A_I$  is called a  »complete system«,  if and only if the following two conditions are satisfied:

(1)   All events are pairwise disjoint:

$$A_i \cap A_j = \it \phi \hspace{0.25cm}\rm for\hspace{0.15cm}all\hspace{0.25cm}\it i \ne j.$$

(2)   The union of all event sets gives the universal set:

$$\bigcup_{i=1}^{I} A_i = G.$$


Given these two assumptions, the sum of all probabilities is then:

$$\sum_{i =1}^{ I} {\rm Pr}(A_i) = 1.$$

$\text{Example 8:}$ 

  • The sets  $A_1 := \{1, 5\}$  and  $A_2 := \{2, 3\}$  together with the set  $A_3 := \{4, 6\}$  result in a complete system in the random experiment  »throwing a die«,
  • but not in the experiment  »throwing a roulette ball«.


$\text{Example 9:}$  Another example of a complete system is the discrete random variable  $X = \{ x_1, x_2, \hspace{0.1cm}\text{...}\hspace{0.1cm} , x_I\}$  with the likelihood corresponding to the following  »probability mass function«  $\rm (PMF)$:

$$P_X(X) = \big [ \hspace{0.1cm} P_X(x_1),\ P_X(x_2), \hspace{0.05cm}\text{...}\hspace{0.15cm},\ P_X(x_I) \hspace{0.05cm} \big ] = \big [ \hspace{0.1cm} p_1, p_2, \hspace{0.05cm}\text{...} \hspace{0.15cm}, p_I \hspace{0.05cm} \big ] \hspace{0.05cm}$$
$$\Rightarrow \hspace{0.3cm} p_1 = P_X(x_1) = {\rm Pr}(X=x_1) \hspace{0.05cm}, \hspace{0.2cm}p_2 = {\rm Pr}(X=x_2) \hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.15cm},\hspace{0.2cm} p_I = {\rm Pr}(X=x_I) \hspace{0.05cm}.$$
  • The possible outcomes  $x_i$  of the random variable  $X$  are pairwise disjoint to each other.
  • The sum of all likelihoods  $p_1 + p_2 + \hspace{0.1cm}\text{...}\hspace{0.1cm} + \hspace{0.05cm} p_I$  always yields the result  $1$.


$\text{Example 10:}$  Let  $X= \{0, 1, 2 \}$  and  $P_X (X) = \big[0.2, \ 0.5, \ 0.3\big]$. Then holds:

$${\rm Pr}(X=0) = 0.2 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X=1) = 0.5 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X=2) = 0.3 \hspace{0.05cm}.$$

With random variable  $X = \{1, \pi, {\rm e} \}$  and the same  $P_X(X) = \big[0.2, \ 0.5, \ 0.3\big]$  the assignments are:

$${\rm Pr}(X=1) = 0.2 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X=\pi) = 0.5 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X={\rm e}) = 0.3 \hspace{0.05cm}.$$

$\text{Hints:}$

  • The  »probability mass function«  $P_X(X)$  only makes statements about probabilities,  not about the set of values  $\{x_1, x_2, \hspace{0.1cm}\text{...}\hspace{0.1cm} , x_I\}$  of the random variable  $X$.

Exercises for the chapter


Exercise 1.2: Switching Logic (D/B Converter)

Exercise 1.2Z: Sets of Digits

Exercise 1.3: Fictional University Somewhere

Exercise 1.3Z: Winning with Roulette?