Difference between revisions of "Aufgaben:Exercise 1.3: Frame Structure of ISDN"

From LNTwww
 
(2 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1581__Bei_A_1_3_neu.png|right|frame|Frame structure of the  $\rm S_{0}$ interface]]
+
[[File:EN_Bei_A_1_3.png|right|frame|Frame structure of the  $\rm S_{0}$ interface]]
The graphic shows the frame structure of the  $\rm S_{0}$ interface. Each frame of the duration  $T_{\rm R}$  contains $48$ bits, among them:
+
The graphic shows the frame structure of the  $\rm S_{0}$ interface.  Each frame of duration  $T_{\rm R}$  contains  $48$  bits, among them:
*$16$ bits for the ''Bearer Channel''    $\rm B1$ (light blue),
+
*$16$  bits for the bearer channel   $\rm B1$  $($light blue$)$,
*$16$ bits for the ''Bearer Channel''   $\rm B2$ (dark blue),
+
 
*$4$ bits for the ''Data Channel''   $\rm D$ (green).
+
*$16$  bits for the bearer channel  $\rm B2$  $($dark blue$)$,
 +
 
 +
*$4$  bits for the data channel  $\rm D$  $($green$)$.
  
  
 
The required control bits are shown in yellow.
 
The required control bits are shown in yellow.
  
For this exercise, it is specified that each of the two base channels  $\rm B1$  and  $\rm B2$  should provide a net data rate of  $R_{\rm B} = 64 \ \rm kbit/s$. 
+
For this exercise,  it is specified that each of the two base channels  $\rm B1$  and  $\rm B2$  should provide a net data rate of  $R_{\rm B} = 64 \ \rm kbit/s$. 
  
It should also be noted that the bit duration  $T_{\rm B}$  of the uncoded binary signal simultaneously indicates the symbol duration of the (modified) AMI code, which assigns each binary  "$1$"  to the voltage level  $0 \ \rm V$  and alternately represents each binary  "$0$"  with  $+0.75 \ \rm V$  and  $–0.75 \ \rm V$. 
+
It should also be noted that the bit duration  $T_{\rm B}$  of the uncoded binary signal simultaneously indicates the symbol duration of the  $($modified$)$  AMI code, 
 +
*which assigns each binary  "$1$"  to the voltage level  $0 \ \rm V$  and  
  
The numerical values in the graphic (marked in red) indicate an example sequence which is to be converted into voltage levels in subtask  '''(5)'''  according to the modified AMI code.
+
*alternately represents each binary  "$0$"  with  $+0.75 \ \rm V$  resp.  $–0.75 \ \rm V$.   
*Bit number $48$ contains the so-called  '''L bit'''.
 
*This is to be set in subtask  '''(6)'''  in such a way that the signal  $s(t)$  becomes free of equal signals.
 
  
  
 +
The numerical values in the graphic  $($marked in red$)$  indicate an example sequence which is to be converted into voltage levels in subtask  '''(5)'''  according to the modified AMI code.
 +
*Bit number  $48$  contains the so-called  "$\rm L$  bit.
 +
*This is to be set in subtask  '''(6)'''  in such a way that the signal  $s(t)$  becomes DC–free.
  
  
  
  
 +
<u>Notes:</u>
  
''Notes:''
+
*This exercise is part of the chapter&nbsp; [[Examples_of_Communication_Systems/ISDN_Basic_Access|"ISDN Basic Access"]].
 +
 +
*The AMI code is described in detail in the chapter&nbsp; [[Digital_Signal_Transmission/Symbolwise_Coding_with_Pseudo-Ternary_Codes#Properties_of_the_AMI_code|"Properties of the AMI code"]]&nbsp; of the book&nbsp; "Digital Signal Transmission".
  
*This exercise is part of the chapter&nbsp; [[Examples_of_Communication_Systems/ISDN_Basic_Access|"ISDN Basic Access"]].
+
*It should also be noted that the first&nbsp; $47$&nbsp; bits contain exactly&nbsp; $22$&nbsp; "zeros".
*The AMI code is described in detail in the chapter&nbsp; [[Digital_Signal_Transmission/Symbolwise_Coding_with_Pseudo-Ternary_Codes#Properties_of_the_AMI_code|"Properties of the AMI code"]]&nbsp; of the book "Digital Signal Transmission".
 
*It should also be noted that the first $47$ bits contain exactly $22$ "zeros".
 
  
  
Line 40: Line 45:
 
<quiz display=simple>
 
<quiz display=simple>
  
{What is the frame duration&nbsp; $T_{\rm R}$?
+
{What is the frame duration&nbsp; $($German:&nbsp; "Rahmendauer" &nbsp; &rArr; &nbsp; subscript "R"$)$&nbsp;  $T_{\rm R}$?
 
|type="{}"}
 
|type="{}"}
 
$T_{\rm R} \ = \ $ { 250 3% } $\ \rm &micro; s$
 
$T_{\rm R} \ = \ $ { 250 3% } $\ \rm &micro; s$
  
{What is the bit duration&nbsp; $T_{\rm B}$? ''Note:'' &nbsp; This is equal to the symbol duration after AMI coding.
+
{What is the bit duration&nbsp; $T_{\rm B}$?&nbsp; Note:&nbsp; This is equal to the symbol duration after AMI coding.
 
|type="{}"}
 
|type="{}"}
 
$T_{\rm B} \ = \ $ { 5.208 3% } $\ \rm &micro; s $
 
$T_{\rm B} \ = \ $ { 5.208 3% } $\ \rm &micro; s $
  
{What is the total gross data rate&nbsp; $R_{\rm ges}$?
+
{What is the total gross data rate&nbsp; $R_{\rm gross}$?
 
|type="{}"}
 
|type="{}"}
$R_{\rm ges} \ = \ $ { 192 3% } $\ \rm kbit/s$
+
$R_{\rm gross} \ = \ $ { 192 3% } $\ \rm kbit/s$
  
{How many control bits&nbsp; $(N_{\rm St})$&nbsp; are transmitted per frame?
+
{How many control bits&nbsp; $(N_{\rm CB})$&nbsp; are transmitted per frame?
 
|type="{}"}
 
|type="{}"}
$N_{\rm St} \ = \ $ { 12 3% }  
+
$N_{\rm CB} \ = \ $ { 12 3% }  
  
{With which voltage values&nbsp; $(0 \ {\rm V}, \ +0.75 \ {\rm V}, \ –0.75 \ {\rm V})$&nbsp; are bits 10, 11 and 12 (gray shaded block) represented?
+
{With which voltage values&nbsp; $(0 \ {\rm V}, +0.75 \ {\rm V}, \ –0.75 \ {\rm V})$&nbsp; are the bits 10, 11 and 12&nbsp; (gray shaded block)&nbsp; represented?
 
|type="{}"}
 
|type="{}"}
 
$U_{10} \ = \ $ { -0.8025--0.6975 } $\ \rm V $
 
$U_{10} \ = \ $ { -0.8025--0.6975 } $\ \rm V $
Line 62: Line 67:
 
$U_{12} \ = \ $ { 0.75 3% } $\ \rm V $
 
$U_{12} \ = \ $ { 0.75 3% } $\ \rm V $
  
{What is the voltage value&nbsp; $(0 \ {\rm V}, \ +0.75 \ {\rm V}, \ –0.75 \ {\rm V})$&nbsp; of the '''L bit''' at the end?
+
{What is the voltage value&nbsp; $(0 \ {\rm V}, +0.75 \ {\rm V}, \ –0.75 \ {\rm V})$&nbsp; of the&nbsp; $\rm L$&nbsp; bit at the end?
 
|type="{}"}
 
|type="{}"}
 
$U_{48} \ = \ $ { 0. } $\ \rm V $
 
$U_{48} \ = \ $ { 0. } $\ \rm V $
Line 70: Line 75:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; In each frame,&nbsp; $16$&nbsp; bits of the base channels&nbsp; $\rm B1$&nbsp; and&nbsp; $\rm B2$&nbsp; are transmitted.
*In each frame, 16 bits of the base channels B1 and B2 are transmitted.
+
*With the frame duration&nbsp; $T_{\rm R}$,&nbsp; the bit rate&nbsp; $(R_{\rm B} = 64 \ \rm kbit/s)$&nbsp; of each frame is thus:
*With the frame duration $T_{\rm R}$, the bit rate $(R_{\rm B} = 64 \ \rm kbit/s)$ of each frame is thus:
 
 
:$$R_{\rm B} = \frac{16\,\,{\rm bit}}{T_{\rm R}} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} T_{\rm R} = \frac{16\,\,{\rm bit}}{64 \cdot 10^3\,\,{\rm bit/s}} \hspace{0.15cm}\underline{= 250 \,{\rm &micro; s}} \hspace{0.05cm}.$$
 
:$$R_{\rm B} = \frac{16\,\,{\rm bit}}{T_{\rm R}} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} T_{\rm R} = \frac{16\,\,{\rm bit}}{64 \cdot 10^3\,\,{\rm bit/s}} \hspace{0.15cm}\underline{= 250 \,{\rm &micro; s}} \hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp;  
+
'''(2)'''&nbsp; Thus,&nbsp; the following time duration is available for each of the&nbsp; $48$&nbsp; bits:
*Thus, the following time duration is available for each of the 48 bits.
 
 
:$$T_{\rm B} = \frac{T_{\rm R}}{48} = \frac{250 \,{\rm &micro; s}}{48} \hspace{0.15cm}\underline{ = 5.208 \,{\rm &micro; s}}$$
 
:$$T_{\rm B} = \frac{T_{\rm R}}{48} = \frac{250 \,{\rm &micro; s}}{48} \hspace{0.15cm}\underline{ = 5.208 \,{\rm &micro; s}}$$
*Since in (modified) AMI encoding each binary symbol is replaced by a ternary symbol of the same duration, the symbol duration after AMI encoding is also equal to $T_{\rm B}$.
+
*Since in&nbsp; (modified)&nbsp; AMI encoding each binary symbol is replaced by a ternary symbol of the same duration,&nbsp; the symbol duration after AMI encoding is also&nbsp; $T_{\rm B}$.
  
  
  
 
'''(3)'''&nbsp; The gross data rate is equal to the reciprocal of the bit duration:
 
'''(3)'''&nbsp; The gross data rate is equal to the reciprocal of the bit duration:
:$$R_{\rm ges} = \frac{1}{T_{\rm B}} \hspace{0.15cm}\underline{= 192 \,{\rm kbit/s}} \hspace{0.05cm}.$$
+
:$$R_{\rm gross} = \frac{1}{T_{\rm B}} \hspace{0.15cm}\underline{= 192 \,{\rm kbit/s}} \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; The number of control bits is:
+
'''(4)'''&nbsp; The number of control bits&nbsp; $\rm (CB)$&nbsp; is:
:$$N_{\rm St} = 48 - 2 \cdot 16 -4 \hspace{0.15cm}\underline{= 12} \hspace{0.05cm}.$$
+
:$$N_{\rm CB} = 48 - 2 \cdot 16 -4 \hspace{0.15cm}\underline{= 12} \hspace{0.05cm}.$$
 
*These are marked in yellow in the graph.
 
*These are marked in yellow in the graph.
*Thus, the total gross data rate calculated in the last subquestion is composed as follows:
 
:$$R_{\rm ges} = 2 \cdot {R_{\rm B}} + {R_{\rm D}} + {R_{\rm St}} = 2 \cdot 64 \,{\rm kbit/s} + 16 \,{\rm kbit/s} + 48 \,{\rm kbit/s} = 192 \,{\rm kbit/s} \hspace{0.05cm}.$$
 
  
 +
*Thus,&nbsp; the total gross data rate calculated in the last subquestion is composed as follows:
 +
:$$R_{\rm gross} = 2 \cdot {R_{\rm B}} + {R_{\rm D}} + {R_{\rm CB}} = 2 \cdot 64 \,{\rm kbit/s} + 16 \,{\rm kbit/s} + 48 \,{\rm kbit/s} = 192 \,{\rm kbit/s} \hspace{0.05cm}.$$
  
'''(5)'''&nbsp; Note that the first "0" is coded with positive polarity and all following alternating with $±0.75 \ {\rm V}$:  
+
 
 +
'''(5)'''&nbsp; Note that the first&nbsp; "0"&nbsp; is encoded with positive polarity and all following alternating with&nbsp; $±0.75 \ {\rm V}$:  
 
*$U_{1} = U_{5} = U_{9} = U_{12} =\text{ ...} = +0.75 \ {\rm V},$
 
*$U_{1} = U_{5} = U_{9} = U_{12} =\text{ ...} = +0.75 \ {\rm V},$
 +
 
*$ U_{2} = U_{7} = U_{10} = U_{13} = \text{ ...}  = -0.75 \ {\rm V}$.
 
*$ U_{2} = U_{7} = U_{10} = U_{13} = \text{ ...}  = -0.75 \ {\rm V}$.
  
  
 
It follows further:
 
It follows further:
*Bit $b_{10} = 0$ is represented by $U_{10} \underline{= -0.75 \ \rm V}$,  
+
*Bit&nbsp; $b_{10} = 0$&nbsp; is represented by&nbsp; $U_{10} \underline{= -0.75 \ \rm V}$,
*Bit $b_{11} = 1$ by $U_{11} \underline{= 0 \ \rm V}$ and
+
*Bit $b_{12} = 0$ by $U_{12} \underline{= +0.75 \ \rm V}$.  
+
*bit&nbsp; $b_{11} = 1$&nbsp; by&nbsp; $U_{11} \underline{= 0 \ \rm V}$,
 +
 +
*bit&nbsp; $b_{12} = 0$&nbsp; by&nbsp; $U_{12} \underline{= +0.75 \ \rm V}$.  
  
  
 
'''(6)'''&nbsp;  
 
'''(6)'''&nbsp;  
*The '''L''' bit has the task of keeping the AMI encoded signal (over all 48 ternary symbols) equal signal free.
+
*The&nbsp; $\rm L$&nbsp; bit has the task of keeping the AMI encoded signal&nbsp; $($over all&nbsp; $48$&nbsp; ternary symbols$)$&nbsp; DC-free.
*Since the binary symbol "0" has occurred 22 times (i.e. 11 times each the voltage values $+0.75 \ \rm V$ and $-0.75 \ \rm V$) and correspondingly 27 times the binary symbol "1" (voltage value $0 \ \rm V$), $U_{48}\hspace{0.15cm}\underline{=0 \ \rm V}$ must be set.
+
 
 +
*Since the binary symbol&nbsp; "0"&nbsp; has occurred&nbsp; $22$&nbsp; times&nbsp; $($i.e.&nbsp; $11$&nbsp; times each the voltage values&nbsp; $+0.75 \ \rm V$&nbsp; and&nbsp; $-0.75 \ \rm V)$&nbsp; and correspondingly&nbsp; $27$&nbsp; times the binary symbol&nbsp; "1"&nbsp; $($voltage value&nbsp; $0 \ \rm V)$,&nbsp; $U_{48}\hspace{0.15cm}\underline{=0 \ \rm V}$&nbsp; must be set.
  
  

Latest revision as of 16:51, 24 October 2022

Frame structure of the  $\rm S_{0}$ interface

The graphic shows the frame structure of the  $\rm S_{0}$ interface.  Each frame of duration  $T_{\rm R}$  contains  $48$  bits, among them:

  • $16$  bits for the bearer channel  $\rm B1$  $($light blue$)$,
  • $16$  bits for the bearer channel  $\rm B2$  $($dark blue$)$,
  • $4$  bits for the data channel  $\rm D$  $($green$)$.


The required control bits are shown in yellow.

For this exercise,  it is specified that each of the two base channels  $\rm B1$  and  $\rm B2$  should provide a net data rate of  $R_{\rm B} = 64 \ \rm kbit/s$. 

It should also be noted that the bit duration  $T_{\rm B}$  of the uncoded binary signal simultaneously indicates the symbol duration of the  $($modified$)$  AMI code, 

  • which assigns each binary  "$1$"  to the voltage level  $0 \ \rm V$  and
  • alternately represents each binary  "$0$"  with  $+0.75 \ \rm V$  resp.  $–0.75 \ \rm V$. 


The numerical values in the graphic  $($marked in red$)$  indicate an example sequence which is to be converted into voltage levels in subtask  (5)  according to the modified AMI code.

  • Bit number  $48$  contains the so-called  "$\rm L$  bit.
  • This is to be set in subtask  (6)  in such a way that the signal  $s(t)$  becomes DC–free.



Notes:

  • It should also be noted that the first  $47$  bits contain exactly  $22$  "zeros".



Questions

1

What is the frame duration  $($German:  "Rahmendauer"   ⇒   subscript "R"$)$  $T_{\rm R}$?

$T_{\rm R} \ = \ $

$\ \rm µ s$

2

What is the bit duration  $T_{\rm B}$?  Note:  This is equal to the symbol duration after AMI coding.

$T_{\rm B} \ = \ $

$\ \rm µ s $

3

What is the total gross data rate  $R_{\rm gross}$?

$R_{\rm gross} \ = \ $

$\ \rm kbit/s$

4

How many control bits  $(N_{\rm CB})$  are transmitted per frame?

$N_{\rm CB} \ = \ $

5

With which voltage values  $(0 \ {\rm V}, +0.75 \ {\rm V}, \ –0.75 \ {\rm V})$  are the bits 10, 11 and 12  (gray shaded block)  represented?

$U_{10} \ = \ $

$\ \rm V $
$U_{11} \ = \ $

$\ \rm V $
$U_{12} \ = \ $

$\ \rm V $

6

What is the voltage value  $(0 \ {\rm V}, +0.75 \ {\rm V}, \ –0.75 \ {\rm V})$  of the  $\rm L$  bit at the end?

$U_{48} \ = \ $

$\ \rm V $


Solution

(1)  In each frame,  $16$  bits of the base channels  $\rm B1$  and  $\rm B2$  are transmitted.

  • With the frame duration  $T_{\rm R}$,  the bit rate  $(R_{\rm B} = 64 \ \rm kbit/s)$  of each frame is thus:
$$R_{\rm B} = \frac{16\,\,{\rm bit}}{T_{\rm R}} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} T_{\rm R} = \frac{16\,\,{\rm bit}}{64 \cdot 10^3\,\,{\rm bit/s}} \hspace{0.15cm}\underline{= 250 \,{\rm µ s}} \hspace{0.05cm}.$$


(2)  Thus,  the following time duration is available for each of the  $48$  bits:

$$T_{\rm B} = \frac{T_{\rm R}}{48} = \frac{250 \,{\rm µ s}}{48} \hspace{0.15cm}\underline{ = 5.208 \,{\rm µ s}}$$
  • Since in  (modified)  AMI encoding each binary symbol is replaced by a ternary symbol of the same duration,  the symbol duration after AMI encoding is also  $T_{\rm B}$.


(3)  The gross data rate is equal to the reciprocal of the bit duration:

$$R_{\rm gross} = \frac{1}{T_{\rm B}} \hspace{0.15cm}\underline{= 192 \,{\rm kbit/s}} \hspace{0.05cm}.$$


(4)  The number of control bits  $\rm (CB)$  is:

$$N_{\rm CB} = 48 - 2 \cdot 16 -4 \hspace{0.15cm}\underline{= 12} \hspace{0.05cm}.$$
  • These are marked in yellow in the graph.
  • Thus,  the total gross data rate calculated in the last subquestion is composed as follows:
$$R_{\rm gross} = 2 \cdot {R_{\rm B}} + {R_{\rm D}} + {R_{\rm CB}} = 2 \cdot 64 \,{\rm kbit/s} + 16 \,{\rm kbit/s} + 48 \,{\rm kbit/s} = 192 \,{\rm kbit/s} \hspace{0.05cm}.$$


(5)  Note that the first  "0"  is encoded with positive polarity and all following alternating with  $±0.75 \ {\rm V}$:

  • $U_{1} = U_{5} = U_{9} = U_{12} =\text{ ...} = +0.75 \ {\rm V},$
  • $ U_{2} = U_{7} = U_{10} = U_{13} = \text{ ...} = -0.75 \ {\rm V}$.


It follows further:

  • Bit  $b_{10} = 0$  is represented by  $U_{10} \underline{= -0.75 \ \rm V}$,
  • bit  $b_{11} = 1$  by  $U_{11} \underline{= 0 \ \rm V}$,
  • bit  $b_{12} = 0$  by  $U_{12} \underline{= +0.75 \ \rm V}$.


(6) 

  • The  $\rm L$  bit has the task of keeping the AMI encoded signal  $($over all  $48$  ternary symbols$)$  DC-free.
  • Since the binary symbol  "0"  has occurred  $22$  times  $($i.e.  $11$  times each the voltage values  $+0.75 \ \rm V$  and  $-0.75 \ \rm V)$  and correspondingly  $27$  times the binary symbol  "1"  $($voltage value  $0 \ \rm V)$,  $U_{48}\hspace{0.15cm}\underline{=0 \ \rm V}$  must be set.