Difference between revisions of "Aufgaben:Exercise 2.10: Reed-Solomon Error Detection"

From LNTwww
 
(2 intermediate revisions by one other user not shown)
Line 11: Line 11:
 
:$$\underline {y} \notin C_{\rm RS} = \{ \underline {c}_{\hspace{0.05cm}0}, \hspace{0.05cm}\text{...} \hspace{0.1cm}, \underline {c}_i,  \hspace{0.05cm}\text{...} \hspace{0.1cm},  \underline {c}_{\hspace{0.05cm}n -1} \}
 
:$$\underline {y} \notin C_{\rm RS} = \{ \underline {c}_{\hspace{0.05cm}0}, \hspace{0.05cm}\text{...} \hspace{0.1cm}, \underline {c}_i,  \hspace{0.05cm}\text{...} \hspace{0.1cm},  \underline {c}_{\hspace{0.05cm}n -1} \}
 
  \hspace{0.05cm}. $$
 
  \hspace{0.05cm}. $$
* However,  if the corrupted received word  $(\underline{y} ≠ \underline{c})$  is a valid code word,    the decoding process will leave the corrupted block undetected.  
+
* However,  if the falsified received word  $(\underline{y} ≠ \underline{c})$  is a valid code word  $(\underline{y\in C_{\rm RS}})$,  the decoding process will leave the falsified block undetected.  
  
  
Line 25: Line 25:
  
 
Furthermore,  let it hold:
 
Furthermore,  let it hold:
* Each symbol is corrupted into another symbol with probability  $\varepsilon_{\rm S} = 0.1$  and correctly transferred with probability  $1 - \varepsilon_{\rm S} = 0.9$.
+
* Each symbol is falsified into another symbol with probability  $\varepsilon_{\rm S} = 0.1$  and correctly transferred with probability  $1 - \varepsilon_{\rm S} = 0.9$.
 
* For the distance spectrum of a Reed–Solomon code of length  $n$  holds with  $d = d_{\rm min}$:
 
* For the distance spectrum of a Reed–Solomon code of length  $n$  holds with  $d = d_{\rm min}$:
 
:$$W_i =  {n \choose i} \cdot \sum_{j = 0}^{i-d}\hspace{0.15cm}(-1)^j \cdot {i \choose j} \cdot \big  [\hspace{0.03cm}q^{i\hspace{0.03cm}-\hspace{0.03cm}j\hspace{0.03cm}-\hspace{0.03cm}d\hspace{0.03cm}+\hspace{0.03cm}1}-1 \hspace{0.03cm} \big ]\hspace{0.05cm}.$$
 
:$$W_i =  {n \choose i} \cdot \sum_{j = 0}^{i-d}\hspace{0.15cm}(-1)^j \cdot {i \choose j} \cdot \big  [\hspace{0.03cm}q^{i\hspace{0.03cm}-\hspace{0.03cm}j\hspace{0.03cm}-\hspace{0.03cm}d\hspace{0.03cm}+\hspace{0.03cm}1}-1 \hspace{0.03cm} \big ]\hspace{0.05cm}.$$
Line 66: Line 66:
 
$W_3 \ = \ ${ 245 }
 
$W_3 \ = \ ${ 245 }
  
{What is the probability that an incorrect block remains undetected? Let the corruption probability of each symbol be  $\varepsilon = 0.1$.
+
{What is the probability that an incorrect block remains undetected? Let the falsification probability of each symbol be  $\varepsilon = 0.1$.
 
|type="{}"}
 
|type="{}"}
 
$\rm RSC \, (7, \, 3, \, 5) \text{:} \hspace{0.4cm} Pr(block error) \ = \ ${ 0.263 3% } $\ \cdot 10^{-5}$
 
$\rm RSC \, (7, \, 3, \, 5) \text{:} \hspace{0.4cm} Pr(block error) \ = \ ${ 0.263 3% } $\ \cdot 10^{-5}$
Line 84: Line 84:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  The equation describing the weights $W_i$ is (the minimum distance $d_{\rm min}$ is abbreviated here as $d$):
+
'''(1)'''  The equation describing the weights  $W_i$  is  $($the minimum distance  $d_{\rm min}$  is abbreviated here as  $d)$:
 
:$$W_i =  {n \choose i} \cdot \sum_{j = 0}^{i-d}\hspace{0.15cm}(-1)^j \cdot {i \choose j} \cdot \big  [\hspace{0.03cm}q^{i\hspace{0.03cm}-\hspace{0.03cm}j\hspace{0.03cm}-\hspace{0.03cm}d\hspace{0.03cm}+\hspace{0.03cm}1}-1 \hspace{0.03cm} \big ]\hspace{0.05cm}.$$
 
:$$W_i =  {n \choose i} \cdot \sum_{j = 0}^{i-d}\hspace{0.15cm}(-1)^j \cdot {i \choose j} \cdot \big  [\hspace{0.03cm}q^{i\hspace{0.03cm}-\hspace{0.03cm}j\hspace{0.03cm}-\hspace{0.03cm}d\hspace{0.03cm}+\hspace{0.03cm}1}-1 \hspace{0.03cm} \big ]\hspace{0.05cm}.$$
  
Because of the minimum distance $d_{\min} = 5$, $W_3 \ \underline{= 0}$ and $W_4 \ \underline{= 0}$. The other weights result in
+
*Because of the minimum distance  $d_{\min} = 5$,  $W_3 \ \underline{= 0}$  and  $W_4 \ \underline{= 0}$.  The other weights result in
 
:$$W_5 =  {7 \choose 5} \cdot (8^1 - 1) = \frac {7 \cdot 6 \cdot 5 \cdot4 \cdot 3}{1 \cdot 2 \cdot 3 \cdot4 \cdot 5} \cdot 7 = 21 \cdot 7  
 
:$$W_5 =  {7 \choose 5} \cdot (8^1 - 1) = \frac {7 \cdot 6 \cdot 5 \cdot4 \cdot 3}{1 \cdot 2 \cdot 3 \cdot4 \cdot 5} \cdot 7 = 21 \cdot 7  
 
\hspace{0.15cm}\underline {= 147}\hspace{0.05cm},$$
 
\hspace{0.15cm}\underline {= 147}\hspace{0.05cm},$$
Line 97: Line 97:
  
  
'''(2)'''  Analogous to subtask (1), we obtain:
+
'''(2)'''  Analogous to subtask  '''(1)''',  we obtain:
 
:$$W_3 =  {7 \choose 3} \cdot (8^1 - 1) = \frac {7 \cdot 6 \cdot 5 }{1 \cdot 2 \cdot 3 } \cdot 7 = 35 \cdot 7  
 
:$$W_3 =  {7 \choose 3} \cdot (8^1 - 1) = \frac {7 \cdot 6 \cdot 5 }{1 \cdot 2 \cdot 3 } \cdot 7 = 35 \cdot 7  
 
\hspace{0.15cm}\underline {= 245}\hspace{0.05cm}.$$
 
\hspace{0.15cm}\underline {= 245}\hspace{0.05cm}.$$
  
  
'''(3)'''  The corruption probability of a symbol is given by $\varepsilon_{\rm S} = 0.1$.  
+
'''(3)'''  The falsification probability of a symbol is given by  $\varepsilon_{\rm S} = 0.1$.  
  
:Then, for the probability that in a codeword with $n = 7$ code symbols.
+
:Then,  for the probability that in a code word with  $n = 7$  symbols
* exactly 3 symbols are corrupted:
+
* exactly three symbols are falsified:
 
:$$p_3 =  0.1^3  \cdot 0.9^4 = 0.6561  \cdot 10^{-3}
 
:$$p_3 =  0.1^3  \cdot 0.9^4 = 0.6561  \cdot 10^{-3}
 
\hspace{0.05cm},$$
 
\hspace{0.05cm},$$
* exactly 4 symbols are corrupted:
+
* exactly four symbols are falsified:
 
:$$p_4 =  0.1^4  \cdot 0.9^3 = 0.729  \cdot 10^{-4}
 
:$$p_4 =  0.1^4  \cdot 0.9^3 = 0.729  \cdot 10^{-4}
 
\hspace{0.05cm},$$
 
\hspace{0.05cm},$$
* exactly 5 symbols are corrupted:
+
* exactly five symbols are falsified:
 
:$$p_5 =  0.1^5  \cdot 0.9^2 = 0.81  \cdot 10^{-5}
 
:$$p_5 =  0.1^5  \cdot 0.9^2 = 0.81  \cdot 10^{-5}
 
\hspace{0.05cm},$$
 
\hspace{0.05cm},$$
* exactly 6 symbols are corrupted:
+
* exactly six symbols are falsified:
 
:$$p_6 =  0.1^6  \cdot 0.9 = 0.9  \cdot 10^{-6}\hspace{0.05cm},$$
 
:$$p_6 =  0.1^6  \cdot 0.9 = 0.9  \cdot 10^{-6}\hspace{0.05cm},$$
* all $n = 7$ symbols are corrupted:
+
* all $n = 7$ symbols are falsified:
 
:$$p_7 =  0.1^7  = 10^{-7}\hspace{0.05cm}.$$
 
:$$p_7 =  0.1^7  = 10^{-7}\hspace{0.05cm}.$$
  
At $\rm RSC \, (7, \, 3, \, 5)_8$ the zero word can be corrupted by symbol errors into one of $q^k - 1 = 8^3 - 1 = 511$ other codewords.  
+
⇒   At the  $\rm RSC \, (7, \, 3, \, 5)_8$  the zero word can be falsified by symbol errors into one of  $q^k - 1 = 8^3 - 1 = 511$  other code words.  Thus,  using the weight enumerating functions of subtask  '''(1)''',  we obtain:
 
+
:$${\rm Pr}({\rm block\hspace{0.15cm}error}) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \frac {W_5 \cdot p_5 + W_6 \cdot p_6 + W_7 \cdot p_7}{511} =\frac {147 \cdot 0.81  \cdot 10^{-5} + 147 \cdot 0.9  \cdot 10^{-6} + 217 \cdot 10^{-7}}{511}  
Thus, using the weight enumerating functions of subtask (1), we obtain:
 
:$${\rm Pr}({\rm Blockfehler}) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \frac {W_5 \cdot p_5 + W_6 \cdot p_6 + W_7 \cdot p_7}{511} =\frac {147 \cdot 0.81  \cdot 10^{-5} + 147 \cdot 0.9  \cdot 10^{-6} + 217 \cdot 10^{-7}}{511}  
 
 
\hspace{0.15cm}\underline {\approx  0.263  \cdot 10^{-5}} \hspace{0.05cm}.$$
 
\hspace{0.15cm}\underline {\approx  0.263  \cdot 10^{-5}} \hspace{0.05cm}.$$
  
At $\rm RSC \, (7, \, 5, \, 3)_8$ must be averaged over $8^5 - 1 = 32767$ corruption probabilities because of $k = 5$.
+
⇒   At the  $\rm RSC \, (7, \, 5, \, 3)_8$  we have to average over  $8^5 - 1 = 32767$  falsification probabilities because of  $k = 5$.  With  $W_3 = 245$  from subtask  '''(2)'''  and the weights 
 
+
:$$W_4 = 1224, \ W_5 = 5586, \ W_6 = 12838, \ W_7 = 12873$$
With $W_3 = 245$ from subtask (2) and the weights $W_4 = 1224, \ W_5 = 5586, \ W_6 = 12838, \ W_7 = 12873$ according to the specification sheet, we obtain for this:
+
according to the specification sheet,  we obtain for this:
:$${\rm Pr}({\rm Block\hspace{0.15cm}error}) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \frac {W_3 \cdot p_3 + W_4 \cdot p_4 + W_5 \cdot p_5 + W_6 \cdot p_6 + W_7 \cdot p_7}{32767} =\frac {245 \cdot 0.656  \cdot 10^{-3} + \hspace{0.15cm}... \hspace{0.15cm}+ 12873 \cdot 10^{-7}}{32767}  
+
:$${\rm Pr}({\rm block\hspace{0.15cm}error}) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \frac {W_3 \cdot p_3 + W_4 \cdot p_4 + W_5 \cdot p_5 + W_6 \cdot p_6 + W_7 \cdot p_7}{32767} =\frac {245 \cdot 0.656  \cdot 10^{-3} + \hspace{0.15cm}... \hspace{0.15cm}+ 12873 \cdot 10^{-7}}{32767}  
 
\hspace{0.15cm}\underline {\approx  0.942  \cdot 10^{-5}} \hspace{0.05cm}. $$
 
\hspace{0.15cm}\underline {\approx  0.942  \cdot 10^{-5}} \hspace{0.05cm}. $$
  
  
 +
'''(4)'''  Let only  $d_{\rm min}$  $($further abbreviated as  $d)$  be known and thus also  $p_d = \varepsilon_{\rm S}^d \cdot (1 - \varepsilon_{\rm S})^{n-d}$. 
 +
*This is also the upper bound we are looking for:
 +
:* ${\rm RSC} \, (7, \, 3, \, 5)_8 \text{:} \hspace{0.33cm} {\rm Pr(upper \ bound)} = p_5 = \underline{0.81 \cdot 10^{-5}}$,
  
'''(4)'''  Let only $d_{\rm min}$ (further abbreviated as $d$) be known and thus also $p_d = \varepsilon_{\rm S}^d \cdot (1 - \varepsilon_{\rm S})^{n-d}$. This is also the upper bound we are looking for:
+
:* ${\rm RSC} \, (7, \, 5, \, 3)_8 \text{:} \hspace{0.33cm} {\rm Pr(upper \ bound)} = p_3 = \underline{65.6 \cdot 10^{-5}}$.
* ${\rm RSC} \, (7, \, 3, \, 5)_8 \text{:} \hspace{0.33cm} {\rm Pr(Upper \ bound)} = p_5 = \underline{0.81 \cdot 10^{-5}}$,
 
* ${\rm RSC} \, (7, \, 5, \, 3)_8 \text{:} \hspace{0.33cm} {\rm Pr(Upper \ bound)} = p_3 = \underline{65.6 \cdot 10^{-5}}$.
 
 
 
  
Since the weight $W_d$ was assumed to be unknown, it is set to the maximum possible value ($W_5 = 511$ or $W_3 = 32767$) so that the prefactors in the equations for subtask (3) disappear. This is the only way to ensure an upper bound.
+
*Since the weight  $W_d$  was assumed to be unknown,  it is set to the maximum possible value  $(W_5 = 511$  or  $W_3 = 32767)$  so that the prefactors in the equations for subtask  '''(3)'''  disappear.  This is the only way to ensure an upper bound.
  
In both cases, the upper bound is significantly higher than the results of subtask (3):
+
*In both cases,  the upper bound is significantly higher than the results of subtask  '''(3)''':
* $\rm RSC \, (7, \, 3, \, 5)_8 \text{:} \hspace{0.33cm} 0.810 \cdot 10^{-5}$ statt $0.263 \cdot 10^{-5}$ (Faktor approx. $3$),
+
:* $\rm RSC \, (7, \, 3, \, 5)_8 \text{:} \hspace{0.33cm} 0.810 \cdot 10^{-5}$  instead of  $0.263 \cdot 10^{-5}$  $($faktor approx.  $3)$,
* $\rm RSC \, (7, \, 5, \, 3)_8 \text{:} \hspace{0.33cm} 65.6 \cdot 10^{-5}$ statt $0.942 \cdot 10^{-5}$ (Faktor approx. $70$).
 
  
 +
:* $\rm RSC \, (7, \, 5, \, 3)_8 \text{:} \hspace{0.33cm} 65.6 \cdot 10^{-5}$  instead of  $0.942 \cdot 10^{-5}$  $($faktor approx.  $70)$.
  
  
  
'''(5)'''  Using the abbreviation $d = d_{\rm min}$, one obtains for the lower bound:
+
'''(5)'''  Using the abbreviation   $d = d_{\rm min}$,  one obtains for the lower bound:
:$${\rm Pr}({\rm Lower\hspace{0.15cm} bound})= \frac{W_d \cdot p_d}{q^k -1}
+
:$${\rm Pr}({\rm lower\hspace{0.15cm} bound})= \frac{W_d \cdot p_d}{q^k -1}
 
  \hspace{0.05cm}. $$
 
  \hspace{0.05cm}. $$
* For the $\rm RSC \, (7, \, 3, \, 5)_8$, because of $W_d = W_5$ and $p_d = p_5$, the lower bound is about $11\%$ below the actual value $(0.263 \cdot 10^{-5})$:
+
* For the  $\rm RSC \, (7, \, 3, \, 5)_8$,  because of  $W_d = W_5$ and  $p_d = p_5$,  the lower bound is about  $11\%$  below the actual value $(0.263 \cdot 10^{-5})$:
:$${\rm Pr}({\rm Lower\hspace{0.15cm} bound}) = \frac{147 \cdot 0.81  \cdot 10^{-5}}{511}
+
:$${\rm Pr}({\rm lower\hspace{0.15cm} bound}) = \frac{147 \cdot 0.81  \cdot 10^{-5}}{511}
 
  \hspace{0.15cm}\underline {\approx  0.233  \cdot 10^{-5}}$$
 
  \hspace{0.15cm}\underline {\approx  0.233  \cdot 10^{-5}}$$
* For the $\rm RSC \, (7, \, 5, \, 3)_8$ holds with $W_d = W_3$ and $p_d = p_3$, the lower bound here deviates from the actual value $(0.942 \cdot 10^{-5})$more strongly, because in this code the contributions of the higher weights $(W_4, \ W_5, \ W_6, \ W_7)$ are more relevant in relation to $W_3$:
+
* For the  $\rm RSC \, (7, \, 5, \, 3)_8$  holds with  $W_d = W_3$  and  $p_d = p_3$,  the lower bound here deviates from the actual value  $(0.942 \cdot 10^{-5})$  more strongly,  because in this code the contributions of the higher weights  $(W_4, \ W_5, \ W_6, \ W_7)$  are more relevant in relation to  $W_3$:
:$${\rm Pr}({\rm Lower\hspace{0.15cm} bound}) = \frac{245 \cdot 0.656  \cdot 10^{-3}}{32767}
+
:$${\rm Pr}({\rm lower\hspace{0.15cm} bound}) = \frac{245 \cdot 0.656  \cdot 10^{-3}}{32767}
 
  \hspace{0.15cm}\underline {\approx  0.494  \cdot 10^{-5}}\hspace{0.05cm}.$$
 
  \hspace{0.15cm}\underline {\approx  0.494  \cdot 10^{-5}}\hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 16:27, 23 January 2023

Distance spectra of two
different Reed-Solomon codes

For a linear block code,  up to   $e = d_{\rm min} - 1$   errors can be detected.  For all Reed–Solomon codes the minimum distance is

$$d_{\rm min} = n-k+1 \hspace{0.05cm}.$$

One must distinguish the following cases:

  • If no more than  $e = d_{\rm min} - 1= n - k$  symbol errors occur,  the block is always detected as faulty.
  • Error detection can still work even if more than  $n - k$  symbol errors occur.  This is when the received word is not a valid code word of the Reed–Solomon code:
$$\underline {y} \notin C_{\rm RS} = \{ \underline {c}_{\hspace{0.05cm}0}, \hspace{0.05cm}\text{...} \hspace{0.1cm}, \underline {c}_i, \hspace{0.05cm}\text{...} \hspace{0.1cm}, \underline {c}_{\hspace{0.05cm}n -1} \} \hspace{0.05cm}. $$
  • However,  if the falsified received word  $(\underline{y} ≠ \underline{c})$  is a valid code word  $(\underline{y\in C_{\rm RS}})$,  the decoding process will leave the falsified block undetected.


We define as  block error probability:

$${\rm Pr}({\rm block\hspace{0.15cm}error}) = {\rm Pr}(\underline {y} \ne \underline {c}) \hspace{0.05cm}.$$

In this exercise,  this probability is to be determined for the following codes:

  • Reed–Solomon code  $(7, \, 3, \, 5)_8 \ \Rightarrow \ d_{\rm min} = 5$,
  • Reed–Solomon code  $(7, \, 5, \, 3)_8 \ \Rightarrow \ d_{\rm min} = 3$.


Furthermore,  let it hold:

  • Each symbol is falsified into another symbol with probability  $\varepsilon_{\rm S} = 0.1$  and correctly transferred with probability  $1 - \varepsilon_{\rm S} = 0.9$.
  • For the distance spectrum of a Reed–Solomon code of length  $n$  holds with  $d = d_{\rm min}$:
$$W_i = {n \choose i} \cdot \sum_{j = 0}^{i-d}\hspace{0.15cm}(-1)^j \cdot {i \choose j} \cdot \big [\hspace{0.03cm}q^{i\hspace{0.03cm}-\hspace{0.03cm}j\hspace{0.03cm}-\hspace{0.03cm}d\hspace{0.03cm}+\hspace{0.03cm}1}-1 \hspace{0.03cm} \big ]\hspace{0.05cm}.$$

Besides,  two bounds for the block error probability will be considered and evaluated:

  • If alone the minimum distance is known,  one can derive an  "upper bound"  from it.  The weight enumerating factors  $W_i$  are to be chosen in such a way,  that certainly (that is:   with all constellations)  applies:
$${\rm Pr}({\rm upper\hspace{0.15cm} bound}) \ge {\rm Pr}({\rm block\hspace{0.15cm}error}) \hspace{0.05cm}. $$
  • A  "lower bound"  additionally requires knowledge of the weight function  $W_i$  for  $i = d_{\rm min}$.  Thus,  the following condition can be satisfied:
$${\rm Pr}({\rm lower\hspace{0.15cm} bound}) \le {\rm Pr}({\rm block\hspace{0.15cm}error}) \hspace{0.05cm}.$$



Hints:

  • The weights  $W_i$  marked in red in the above graph are to be calculated.



Questions

1

Calculate the distance spectrum for the  $\rm RSC \, (7, \, 3, \, 5)_8$.

$W_3 \ = \ $

$W_4 \ = \ $

$W_5 \ = \ $

$W_6 \ = \ $

$W_7 \ = \ $

2

What is the missing weight of the  $\rm RSC \, (7, \, 5, \, 3)_8$  in the graph?

$W_3 \ = \ $

3

What is the probability that an incorrect block remains undetected? Let the falsification probability of each symbol be  $\varepsilon = 0.1$.

$\rm RSC \, (7, \, 3, \, 5) \text{:} \hspace{0.4cm} Pr(block error) \ = \ $

$\ \cdot 10^{-5}$
$\rm RSC \, (7, \, 5, \, 3) \text{:} \hspace{0.4cm} Pr(block error) \ = \ $

$\ \cdot 10^{-5}$

4

Calculate and evaluate for both codes the  "upper bound"  proposed in the specification:  $p_{\rm upper} = \rm Pr(upper \ bound)$.

${\rm RSC} \, (7, \, 3, \, 5) \text{:} \hspace{0.4cm} p_{\rm upper} \ = \ $

$\ \cdot 10^{-5}$
${\rm RSC} \, (7, \, 5, \, 3) \text{:} \hspace{0.4cm} p_{\rm upper} \ = \ $

$\ \cdot 10^{-5}$

5

Calculate and evaluate for both codes the  "lower bound"  proposed in the specification:  $p_{\rm lower} = \rm Pr(lower \ bound)$.

${\rm RSC} \, (7, \, 3, \, 5) \text{:} \hspace{0.4cm} p_{\rm lower} \ = \ $

$\ \cdot 10^{-5}$
${\rm RSC} \, (7, \, 5, \, 3) \text{:} \hspace{0.4cm} p_{\rm lower} \ = \ $

$\ \cdot 10^{-5}$


Solution

(1)  The equation describing the weights  $W_i$  is  $($the minimum distance  $d_{\rm min}$  is abbreviated here as  $d)$:

$$W_i = {n \choose i} \cdot \sum_{j = 0}^{i-d}\hspace{0.15cm}(-1)^j \cdot {i \choose j} \cdot \big [\hspace{0.03cm}q^{i\hspace{0.03cm}-\hspace{0.03cm}j\hspace{0.03cm}-\hspace{0.03cm}d\hspace{0.03cm}+\hspace{0.03cm}1}-1 \hspace{0.03cm} \big ]\hspace{0.05cm}.$$
  • Because of the minimum distance  $d_{\min} = 5$,  $W_3 \ \underline{= 0}$  and  $W_4 \ \underline{= 0}$.  The other weights result in
$$W_5 = {7 \choose 5} \cdot (8^1 - 1) = \frac {7 \cdot 6 \cdot 5 \cdot4 \cdot 3}{1 \cdot 2 \cdot 3 \cdot4 \cdot 5} \cdot 7 = 21 \cdot 7 \hspace{0.15cm}\underline {= 147}\hspace{0.05cm},$$
$$W_6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {7 \choose 6} \cdot \sum_{j = 0}^{1}\hspace{0.15cm}(-1)^j \cdot {6 \choose j} \cdot \big (\hspace{0.03cm}8^{2\hspace{0.03cm}-\hspace{0.03cm}j} -1 \big )=7 \cdot \left [ (8^2 - 1) - 6 \cdot (8^1 - 1)\right ] = 7 \cdot (63-42) \hspace{0.15cm}\underline {= 147}\hspace{0.05cm},$$
$$W_7 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {7 \choose 7} \cdot \sum_{j = 0}^{2}\hspace{0.15cm}(-1)^j \cdot {7 \choose j} \cdot \big (\hspace{0.03cm}8^{3\hspace{0.03cm}-\hspace{0.03cm}j} -1 \big )= (8^3 - 1) - 7 \cdot (8^2 - 1) +21 \cdot (8^1 - 1) = 511 - 7 \cdot 63 + 21 \cdot 7 \hspace{0.15cm}\underline {= 217}\hspace{0.05cm},$$
$$\Rightarrow \hspace{0.3cm}W_0 + W_5 + W_6 + W_7 = 1 + 147 + 147 + 217 = 512 = 8^3 = q^k\hspace{0.05cm}.$$


(2)  Analogous to subtask  (1),  we obtain:

$$W_3 = {7 \choose 3} \cdot (8^1 - 1) = \frac {7 \cdot 6 \cdot 5 }{1 \cdot 2 \cdot 3 } \cdot 7 = 35 \cdot 7 \hspace{0.15cm}\underline {= 245}\hspace{0.05cm}.$$


(3)  The falsification probability of a symbol is given by  $\varepsilon_{\rm S} = 0.1$.

Then,  for the probability that in a code word with  $n = 7$  symbols
  • exactly three symbols are falsified:
$$p_3 = 0.1^3 \cdot 0.9^4 = 0.6561 \cdot 10^{-3} \hspace{0.05cm},$$
  • exactly four symbols are falsified:
$$p_4 = 0.1^4 \cdot 0.9^3 = 0.729 \cdot 10^{-4} \hspace{0.05cm},$$
  • exactly five symbols are falsified:
$$p_5 = 0.1^5 \cdot 0.9^2 = 0.81 \cdot 10^{-5} \hspace{0.05cm},$$
  • exactly six symbols are falsified:
$$p_6 = 0.1^6 \cdot 0.9 = 0.9 \cdot 10^{-6}\hspace{0.05cm},$$
  • all $n = 7$ symbols are falsified:
$$p_7 = 0.1^7 = 10^{-7}\hspace{0.05cm}.$$

⇒   At the  $\rm RSC \, (7, \, 3, \, 5)_8$  the zero word can be falsified by symbol errors into one of  $q^k - 1 = 8^3 - 1 = 511$  other code words.  Thus,  using the weight enumerating functions of subtask  (1),  we obtain:

$${\rm Pr}({\rm block\hspace{0.15cm}error}) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \frac {W_5 \cdot p_5 + W_6 \cdot p_6 + W_7 \cdot p_7}{511} =\frac {147 \cdot 0.81 \cdot 10^{-5} + 147 \cdot 0.9 \cdot 10^{-6} + 217 \cdot 10^{-7}}{511} \hspace{0.15cm}\underline {\approx 0.263 \cdot 10^{-5}} \hspace{0.05cm}.$$

⇒   At the  $\rm RSC \, (7, \, 5, \, 3)_8$  we have to average over  $8^5 - 1 = 32767$  falsification probabilities because of  $k = 5$.  With  $W_3 = 245$  from subtask  (2)  and the weights 

$$W_4 = 1224, \ W_5 = 5586, \ W_6 = 12838, \ W_7 = 12873$$

according to the specification sheet,  we obtain for this:

$${\rm Pr}({\rm block\hspace{0.15cm}error}) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \frac {W_3 \cdot p_3 + W_4 \cdot p_4 + W_5 \cdot p_5 + W_6 \cdot p_6 + W_7 \cdot p_7}{32767} =\frac {245 \cdot 0.656 \cdot 10^{-3} + \hspace{0.15cm}... \hspace{0.15cm}+ 12873 \cdot 10^{-7}}{32767} \hspace{0.15cm}\underline {\approx 0.942 \cdot 10^{-5}} \hspace{0.05cm}. $$


(4)  Let only  $d_{\rm min}$  $($further abbreviated as  $d)$  be known and thus also  $p_d = \varepsilon_{\rm S}^d \cdot (1 - \varepsilon_{\rm S})^{n-d}$. 

  • This is also the upper bound we are looking for:
  • ${\rm RSC} \, (7, \, 3, \, 5)_8 \text{:} \hspace{0.33cm} {\rm Pr(upper \ bound)} = p_5 = \underline{0.81 \cdot 10^{-5}}$,
  • ${\rm RSC} \, (7, \, 5, \, 3)_8 \text{:} \hspace{0.33cm} {\rm Pr(upper \ bound)} = p_3 = \underline{65.6 \cdot 10^{-5}}$.
  • Since the weight  $W_d$  was assumed to be unknown,  it is set to the maximum possible value  $(W_5 = 511$  or  $W_3 = 32767)$  so that the prefactors in the equations for subtask  (3)  disappear.  This is the only way to ensure an upper bound.
  • In both cases,  the upper bound is significantly higher than the results of subtask  (3):
  • $\rm RSC \, (7, \, 3, \, 5)_8 \text{:} \hspace{0.33cm} 0.810 \cdot 10^{-5}$  instead of  $0.263 \cdot 10^{-5}$  $($faktor approx.  $3)$,
  • $\rm RSC \, (7, \, 5, \, 3)_8 \text{:} \hspace{0.33cm} 65.6 \cdot 10^{-5}$  instead of  $0.942 \cdot 10^{-5}$  $($faktor approx.  $70)$.


(5)  Using the abbreviation  $d = d_{\rm min}$,  one obtains for the lower bound:

$${\rm Pr}({\rm lower\hspace{0.15cm} bound})= \frac{W_d \cdot p_d}{q^k -1} \hspace{0.05cm}. $$
  • For the  $\rm RSC \, (7, \, 3, \, 5)_8$,  because of  $W_d = W_5$ and  $p_d = p_5$,  the lower bound is about  $11\%$  below the actual value $(0.263 \cdot 10^{-5})$:
$${\rm Pr}({\rm lower\hspace{0.15cm} bound}) = \frac{147 \cdot 0.81 \cdot 10^{-5}}{511} \hspace{0.15cm}\underline {\approx 0.233 \cdot 10^{-5}}$$
  • For the  $\rm RSC \, (7, \, 5, \, 3)_8$  holds with  $W_d = W_3$  and  $p_d = p_3$,  the lower bound here deviates from the actual value  $(0.942 \cdot 10^{-5})$  more strongly,  because in this code the contributions of the higher weights  $(W_4, \ W_5, \ W_6, \ W_7)$  are more relevant in relation to  $W_3$:
$${\rm Pr}({\rm lower\hspace{0.15cm} bound}) = \frac{245 \cdot 0.656 \cdot 10^{-3}}{32767} \hspace{0.15cm}\underline {\approx 0.494 \cdot 10^{-5}}\hspace{0.05cm}.$$