Difference between revisions of "Aufgaben:Exercise 3.1Z: Convolution Codes of Rate 1/2"

From LNTwww
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
{{quiz-Header|Buchseite=Channel_Coding/Basics_of_Convolutional_Coding}}
 
{{quiz-Header|Buchseite=Channel_Coding/Basics_of_Convolutional_Coding}}
  
[[File:P_ID2589__KC_Z_3_1.png|right|frame|Convolutional codes of rate  $1/2$ '''Korrektur''']]
+
[[File:EN_KC_Z_3_1_jetztaber.png|right|frame|Convolutional codes of rate  $1/2$]]
 
The graphic shows two convolutional encoders of rate  $R = 1/2$:   
 
The graphic shows two convolutional encoders of rate  $R = 1/2$:   
 
*At the input there is the information sequence  $\underline {u} = (u_1, u_2, \ \text{...} \ , u_i, \ \text{...})$.   
 
*At the input there is the information sequence  $\underline {u} = (u_1, u_2, \ \text{...} \ , u_i, \ \text{...})$.   
Line 62: Line 62:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  For both encoders, $k = 1$ and $n = 2$.  
+
'''(1)'''  For both encoders,  $k = 1$  and  $n = 2$.
*The memory $m$ and the influence length $\nu$ are different &nbsp; &#8658; &nbsp; <u>Answers 3 and 4</u>.
+
 +
*The memory&nbsp; $m$&nbsp; and the influence length&nbsp; $\nu$&nbsp; are different &nbsp; &#8658; &nbsp; <u>Answers 3 and 4</u>.
  
  
[[File:EN_KC_A_3_1.png|right|frame|Equivalent coder representations]]
+
'''(2)'''&nbsp; The shift register of encoder &nbsp;$\rm A$&nbsp; does contain two memory cells.&nbsp; However,&nbsp; since&nbsp; $x_i^{(1)} = u_i$&nbsp; and&nbsp; $x_i^{(2)} = u_i + u_{i-1}$&nbsp; is influenced only by the immediately preceding bit&nbsp; $u_{i-1}$&nbsp; besides the current information bit&nbsp; $u_i$,
'''(2)'''&nbsp; The shift register of encoder &nbsp;$\rm A$&nbsp; does contain two memory cells.  
+
[[File:EN_KC_A_3_1.png|right|frame|Equivalent encoder representations]]
 +
*the memory is&nbsp; $m = 1$,&nbsp; and
 +
 +
*the influence length is&nbsp; $\nu = m + 1 = 2$.
  
However, since $x_i^{(1)} = u_i$ and $x_i^{(2)} = u_i + u_{i-1}$ is influenced only by the immediately preceding bit $u_{i-1}$ besides the current information bit $u_i$, is
 
*the memory $m = 1$, and
 
*the influence length $\nu = m + 1 = 2$.
 
  
 +
The graphic shows the two encoders in another representation,&nbsp; whereby the&nbsp; "memory cells"&nbsp; are highlighted in yellow.
 +
*For the encoder &nbsp;$\rm A$&nbsp; one recognizes only one memory &#8658; $m = 1$.
 +
 +
*In contrast,&nbsp; for the encoder &nbsp;$\rm B$&nbsp; actually&nbsp; $m = 2$&nbsp; and&nbsp; $\nu = 3$.
  
The graphic shows the two coders in another representation, whereby the "memory cells" are highlighted in yellow.
+
*Thus,&nbsp; the&nbsp; <u>proposed solution 2</u>&nbsp; is correct.
*For the encoder &nbsp;$\rm A$&nbsp; one recognizes only one such memory &#8658; $m = 1$.
 
*In contrast, for the encoder &nbsp;$\rm B$&nbsp; actually $m = 2$ and $\nu = 3$.
 
*The <u>proposed solution 2</u> is therefore correct.
 
  
  
Line 84: Line 86:
 
:$$x_i^{(1)} = u_{i} + u_{i-1}+ u_{i-2} \hspace{0.05cm}.$$
 
:$$x_i^{(1)} = u_{i} + u_{i-1}+ u_{i-2} \hspace{0.05cm}.$$
  
Considering the preassignment ($u_0 = u_{-1} = 0$), we obtain with the above data:
+
*Considering the preassignment&nbsp;($(u_0 = u_{-1} = 0)$,&nbsp; we obtain with the above data:
 
:$$x_1^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{1} + u_{0}+ u_{-1} = 1+0+0 = 1 \hspace{0.05cm},\hspace{1cm}x_2^{(1)} = u_{2} + u_{1}+ u_{0} = 0+1+0 = 1\hspace{0.05cm},$$
 
:$$x_1^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{1} + u_{0}+ u_{-1} = 1+0+0 = 1 \hspace{0.05cm},\hspace{1cm}x_2^{(1)} = u_{2} + u_{1}+ u_{0} = 0+1+0 = 1\hspace{0.05cm},$$
 
:$$x_3^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{3} + u_{2}+ u_{1} \hspace{0.25cm}= 1+0+1 = 0 \hspace{0.05cm},\hspace{1cm}x_4^{(1)} = u_{4} + u_{3}+ u_{2} = 1+1+0 = 0\hspace{0.05cm},$$
 
:$$x_3^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{3} + u_{2}+ u_{1} \hspace{0.25cm}= 1+0+1 = 0 \hspace{0.05cm},\hspace{1cm}x_4^{(1)} = u_{4} + u_{3}+ u_{2} = 1+1+0 = 0\hspace{0.05cm},$$
Line 90: Line 92:
 
:$$x_7^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x_8^{(1)} = \text{...} \hspace{0.05cm}= 0 \hspace{0.05cm}.$$
 
:$$x_7^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x_8^{(1)} = \text{...} \hspace{0.05cm}= 0 \hspace{0.05cm}.$$
  
*The <u>proposed solution 1</u> is therefore correct.  
+
*The&nbsp; <u>proposed solution 1</u>&nbsp; is correct.&nbsp; The second solution suggestion &nbsp; &#8658; &nbsp; $\underline {x}^{(1)} = \underline {u}$&nbsp; would only be valid for a systematic code&nbsp; $($which is not present here$)$.
*The second solution suggestion &nbsp; &#8658; &nbsp; $\underline {x}^{(1)} = $\underline {u}$ would only be valid for a systematic code (which is not present here).
 
  
  
 
+
'''(4)'''&nbsp; Analogous to subtask&nbsp; '''(3)'''&nbsp; &rArr; &nbsp; $x_i^{(2)} = u_i + u_{i&ndash;2}$:
'''(4)'''&nbsp; Analogous to subtask (3), $x_i^{(2)} = u_i + u_{i&ndash;2}$ is obtained:
 
 
:$$x_1^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  1+0 = 1 \hspace{0.05cm},\hspace{0.2cm}x_2^{(2)} = 0+0 = 0\hspace{0.05cm},
 
:$$x_1^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  1+0 = 1 \hspace{0.05cm},\hspace{0.2cm}x_2^{(2)} = 0+0 = 0\hspace{0.05cm},
 
\hspace{0.2cm}x_3^{(3)} = 1+1 = 0\hspace{0.05cm},\hspace{0.2cm}x_4^{(2)} =  1+0 = 1 \hspace{0.05cm},$$
 
\hspace{0.2cm}x_3^{(3)} = 1+1 = 0\hspace{0.05cm},\hspace{0.2cm}x_4^{(2)} =  1+0 = 1 \hspace{0.05cm},$$
Line 102: Line 102:
 
x_7^{(2)} = x_8^{(2)} = \text{...} \hspace{0.05cm}= 0 \hspace{0.05cm}.$$
 
x_7^{(2)} = x_8^{(2)} = \text{...} \hspace{0.05cm}= 0 \hspace{0.05cm}.$$
  
*The correct solution is therefore <u>proposed solution 2</u>.
+
*The correct solution is the&nbsp; <u>proposed solution 2</u>.
  
  
  
'''(5)'''&nbsp; For the (entire) code sequence, one can formally write:
+
'''(5)'''&nbsp; For the&nbsp; $($entire$)$&nbsp; code sequence,&nbsp; one can formally write:
 
:$$\underline{\it x} =  \big( \hspace{0.05cm}\underline{\it x}_1\hspace{0.05cm}, \hspace{0.05cm} \underline{\it x}_2\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.05cm}  \underline{\it x}_i \hspace{0.05cm}, \text{...} \hspace{0.05cm} \big )\hspace{0.05cm}, \hspace{0.3cm}  \underline{\it x}_i = \big( x_i^{(1)}\hspace{0.05cm}, x_i^{(2)} \big)
 
:$$\underline{\it x} =  \big( \hspace{0.05cm}\underline{\it x}_1\hspace{0.05cm}, \hspace{0.05cm} \underline{\it x}_2\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.05cm}  \underline{\it x}_i \hspace{0.05cm}, \text{...} \hspace{0.05cm} \big )\hspace{0.05cm}, \hspace{0.3cm}  \underline{\it x}_i = \big( x_i^{(1)}\hspace{0.05cm}, x_i^{(2)} \big)
 
\hspace{0.4cm}\Rightarrow \hspace{0.4cm} \underline{\it x} =  \big( \hspace{0.05cm}x_1^{(1)}\hspace{0.01cm},\hspace{0.05cm} x_2^{(1)}\hspace{0.01cm},\hspace{0.05cm} x_1^{(2)}\hspace{0.01cm},\hspace{0.05cm} x_2^{(2)}\hspace{0.01cm}, \hspace{0.05cm} \text{...} \hspace{0.05cm} \big )\hspace{0.05cm}. $$
 
\hspace{0.4cm}\Rightarrow \hspace{0.4cm} \underline{\it x} =  \big( \hspace{0.05cm}x_1^{(1)}\hspace{0.01cm},\hspace{0.05cm} x_2^{(1)}\hspace{0.01cm},\hspace{0.05cm} x_1^{(2)}\hspace{0.01cm},\hspace{0.05cm} x_2^{(2)}\hspace{0.01cm}, \hspace{0.05cm} \text{...} \hspace{0.05cm} \big )\hspace{0.05cm}. $$
  
A comparison with the solutions of exercises (3) and (4) shows the correctness of <u>proposed solution 1</u>.
+
*A comparison with the solutions of subtasks&nbsp; '''(3)'''&nbsp; and&nbsp; '''(4)'''&nbsp; shows the correctness of the&nbsp; <u>proposed solution 1</u>.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
[[Category:Channel Coding: Exercises|^3.1 Basics of Convolutional Coding^]]
 
[[Category:Channel Coding: Exercises|^3.1 Basics of Convolutional Coding^]]

Latest revision as of 18:26, 16 November 2022

Convolutional codes of rate  $1/2$

The graphic shows two convolutional encoders of rate  $R = 1/2$: 

  • At the input there is the information sequence  $\underline {u} = (u_1, u_2, \ \text{...} \ , u_i, \ \text{...})$. 
  • From this,  modulo-2 operations generate the two sequences
$$\underline{\it x}^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \big( \hspace{0.05cm}x_1^{(1)}\hspace{0.05cm},\hspace{0.05cm} x_2^{(1)}\hspace{0.05cm},\hspace{0.05cm} \text{...} \hspace{0.05cm},\hspace{0.05cm} x_i^{(1)} \hspace{0.05cm},\text{...} \hspace{0.05cm} \big )\hspace{0.05cm},$$
$$\underline{\it x}^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \big( \hspace{0.05cm}x_1^{(2)}\hspace{0.05cm},\hspace{0.05cm} x_2^{(2)}\hspace{0.05cm},\hspace{0.05cm}\text{...} \hspace{0.05cm},\hspace{0.05cm} x_i^{(2)} \hspace{0.05cm}, \text{...} \hspace{0.05cm} \big )$$
where  $x_i^{(j)}$  with  $j = 1$  resp.  $j = 2$  may depend except from  $u_i$  also from the previous information bits  $u_{i-1}, \ \text{...} \ , u_{i-m}$.
  • One refers  $m$  as the  "memory"  and  $\nu = m + 1$  as the  "influence length"  of the code  $($or of the encoder$)$.
  • The considered encoders  $\rm A$  and  $\rm B$  differ with respect to these quantities.



Hints:

  • Not shown in the diagram is the multiplexing of the two subsequences  $\underline {x}^{(1)}$  and  $\underline {x}^{(2)}$  to the resulting code sequence 
$$\underline {x} = (x_1^{(1)}, x_1^{(2)}, x_2^{(1)}, x_2^{(2)}, \ \text{...}).$$
  • In subtasks  (3)  to  (5)  you are to determine the start of the sequences  $\underline {x}^{(1)}, \underline{x}^{(2)}$  and  $\underline{x}$  assuming the information sequence 
$$\underline{u} = (1, 0, 1, 1, 0, 0, \ \text{. ..}).$$


Questions

1

In which code parameters do encoder  $\rm A$  and encoder  $\rm B$ differ?

$k$:     Number of information bits processed per coding step,
$n$:     Number of code bits output per coding step,
$m$:   memory order of the code,
$\nu$:     influence length of the code.

2

Which encoder exhibits the memory  $m = 2$?

Encoder  $\rm A$,
encoder  $\rm B$.

3

What is the partial code sequence  $\underline {x}^{(1)}$  of encoder  $\rm B$  for  $\underline {u} = (1, 0, 1, 1, 0, 0, \ \text{...})$?

$\underline {x}^{(1)} = (1, 1, 0, 0, 0, 1, 0, 0, \ ...)$,
$\underline {x}^{(1)} = (1, 0, 1, 1, 0, 0, 0, 0, \ ...)$.

4

What is the partial code sequence  $\underline {x}^{(2)}$  of encoder  $\rm B$  for  $\underline {u} = (1, 0, 1, 1, 0, 0, \ \text{...})$

$\underline{x}^{(2)} = (1, 1, 0, 0, 0, 1, 0, 0, \ \text{...})$,
$\underline{x}^{(2)} = (1, 0, 0, 1, 1, 1, 0, 0, \ \text{...})$.

5

How does the entire code sequence  $\underline {x}$  start from encoder  $\rm B$  after multiplexing?

$\underline {x} = (1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, \ \text{...})$,
$\underline {x} = (1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, \ \text{...})$.


Solution

(1)  For both encoders,  $k = 1$  and  $n = 2$.

  • The memory  $m$  and the influence length  $\nu$  are different   ⇒   Answers 3 and 4.


(2)  The shift register of encoder  $\rm A$  does contain two memory cells.  However,  since  $x_i^{(1)} = u_i$  and  $x_i^{(2)} = u_i + u_{i-1}$  is influenced only by the immediately preceding bit  $u_{i-1}$  besides the current information bit  $u_i$,

Equivalent encoder representations
  • the memory is  $m = 1$,  and
  • the influence length is  $\nu = m + 1 = 2$.


The graphic shows the two encoders in another representation,  whereby the  "memory cells"  are highlighted in yellow.

  • For the encoder  $\rm A$  one recognizes only one memory ⇒ $m = 1$.
  • In contrast,  for the encoder  $\rm B$  actually  $m = 2$  and  $\nu = 3$.
  • Thus,  the  proposed solution 2  is correct.


(3)  For the upper output of encoder  $\rm B$  applies in general:

$$x_i^{(1)} = u_{i} + u_{i-1}+ u_{i-2} \hspace{0.05cm}.$$
  • Considering the preassignment ($(u_0 = u_{-1} = 0)$,  we obtain with the above data:
$$x_1^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{1} + u_{0}+ u_{-1} = 1+0+0 = 1 \hspace{0.05cm},\hspace{1cm}x_2^{(1)} = u_{2} + u_{1}+ u_{0} = 0+1+0 = 1\hspace{0.05cm},$$
$$x_3^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{3} + u_{2}+ u_{1} \hspace{0.25cm}= 1+0+1 = 0 \hspace{0.05cm},\hspace{1cm}x_4^{(1)} = u_{4} + u_{3}+ u_{2} = 1+1+0 = 0\hspace{0.05cm},$$
$$x_5^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{5} + u_{4}+ u_{3} \hspace{0.25cm}= 0+1+1 = 0 \hspace{0.05cm},\hspace{1cm}x_6^{(1)} = u_{6} + u_{5}+ u_{4} = 0+0+1 = 1\hspace{0.05cm},$$
$$x_7^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x_8^{(1)} = \text{...} \hspace{0.05cm}= 0 \hspace{0.05cm}.$$
  • The  proposed solution 1  is correct.  The second solution suggestion   ⇒   $\underline {x}^{(1)} = \underline {u}$  would only be valid for a systematic code  $($which is not present here$)$.


(4)  Analogous to subtask  (3)  ⇒   $x_i^{(2)} = u_i + u_{i–2}$:

$$x_1^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1+0 = 1 \hspace{0.05cm},\hspace{0.2cm}x_2^{(2)} = 0+0 = 0\hspace{0.05cm}, \hspace{0.2cm}x_3^{(3)} = 1+1 = 0\hspace{0.05cm},\hspace{0.2cm}x_4^{(2)} = 1+0 = 1 \hspace{0.05cm},$$
$$x_5^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0+1 = 1\hspace{0.05cm}, \hspace{0.2cm}x_6^{(2)} = 0+1 = 1\hspace{0.05cm},\hspace{0.2cm} x_7^{(2)} = x_8^{(2)} = \text{...} \hspace{0.05cm}= 0 \hspace{0.05cm}.$$
  • The correct solution is the  proposed solution 2.


(5)  For the  $($entire$)$  code sequence,  one can formally write:

$$\underline{\it x} = \big( \hspace{0.05cm}\underline{\it x}_1\hspace{0.05cm}, \hspace{0.05cm} \underline{\it x}_2\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.05cm} \underline{\it x}_i \hspace{0.05cm}, \text{...} \hspace{0.05cm} \big )\hspace{0.05cm}, \hspace{0.3cm} \underline{\it x}_i = \big( x_i^{(1)}\hspace{0.05cm}, x_i^{(2)} \big) \hspace{0.4cm}\Rightarrow \hspace{0.4cm} \underline{\it x} = \big( \hspace{0.05cm}x_1^{(1)}\hspace{0.01cm},\hspace{0.05cm} x_2^{(1)}\hspace{0.01cm},\hspace{0.05cm} x_1^{(2)}\hspace{0.01cm},\hspace{0.05cm} x_2^{(2)}\hspace{0.01cm}, \hspace{0.05cm} \text{...} \hspace{0.05cm} \big )\hspace{0.05cm}. $$
  • A comparison with the solutions of subtasks  (3)  and  (4)  shows the correctness of the  proposed solution 1.