Difference between revisions of "Signal Representation/Discrete Fourier Transform (DFT)"
(22 intermediate revisions by 2 users not shown) | |||
Line 8: | Line 8: | ||
==Arguments for the discrete implementation of the Fourier transform== | ==Arguments for the discrete implementation of the Fourier transform== | ||
<br> | <br> | ||
− | The | + | The »'''Fourier transform'''« according to the previous description in chapter [[Signal_Representation/The_Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|»Aperiodic Signals – Pulses«]] has an infinitely high selectivity due to the unlimited extension of the integration interval and is therefore an ideal theoretical tool of spectral analysis. |
− | If the spectral components X(f) of a time function x(t) are to be determined numerically, the general transformation equations | + | If the spectral components X(f) of a time function x(t) are to be determined numerically, the general transformation equations |
:$$\begin{align*}X(f) & = \int_{-\infty | :$$\begin{align*}X(f) & = \int_{-\infty | ||
Line 21: | Line 21: | ||
are unsuitable for two reasons: | are unsuitable for two reasons: | ||
− | + | #The equations apply exclusively to continuous-time signals. With digital computers or signal processors, however, one can only process discrete-time signals. | |
− | + | #For a numerical evaluation of the two Fourier integrals it is necessary to limit the respective integration interval to a finite value. | |
Line 28: | Line 28: | ||
This leads to the following consequence: | This leads to the following consequence: | ||
− | A | + | A »'''continuous-valued signal'''« must undergo two processes before the numerical determination of its spectral properties, viz. |
− | + | #that of »'''sampling'''« for discretization, and<br> | |
− | + | #that of »'''windowing'''« to limit the integration interval.}} | |
− | In the following, starting from an aperiodic time function x(t) and the corresponding Fourier spectrum X(f) a time and frequency-discrete description suitable for computer processing is developed step by step. | + | In the following, starting from an aperiodic time function x(t) and the corresponding Fourier spectrum X(f) a time and frequency-discrete description suitable for computer processing is developed step by step. |
− | ==Time | + | ==Time discretization – Periodification in the frequency domain== |
<br> | <br> | ||
− | The following graphs show uniformly the time domain on the left and the frequency domain on the right. Without limiting generality, x(t) and X(f) are each real and Gaussian. | + | The following graphs show uniformly the time domain on the left and the frequency domain on the right. |
+ | *Without limiting generality, x(t) and X(f) are each real and Gaussian. | ||
− | + | *According to the chapter [[Signal_Representation/Time_Discrete_Signal_Representation|»Discrete-Time Signal Representation«]] one can describe the sampling of the time signal x(t) by multiplying it by a Dirac delta train ⇒ <br>»Dirac comb in the time domain« | |
− | + | [[File:P_ID1132__Sig_T_5_1_S2_neu.png|right|frame| Time discretization ⇒ Periodification in the frequency domain. <u>Notation:</u><br> A{x(t)}: Signal x(t) after »sampling« (German: "Abtastung"$) ⇒ \rm A\{\text{...}\}<br> {\rm P}\{X(f)\}: Spectrum X(f) after »periodification« ⇒ \rm P\{\text{...}\}$]] | |
− | According to the chapter [[Signal_Representation/Time_Discrete_Signal_Representation| | ||
:$$p_{\delta}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot | :$$p_{\delta}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot | ||
Line 49: | Line 49: | ||
)\hspace{0.05cm}.$$ | )\hspace{0.05cm}.$$ | ||
− | The result is the time signal sampled at a distance TA | + | The result is the time signal sampled at a distance TA: |
:$${\rm A}\{x(t)\} = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot | :$${\rm A}\{x(t)\} = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot | ||
Line 58: | Line 58: | ||
*The multiplication of the Dirac comb pδ(t) with x(t) corresponds in the frequency domain to the convolution of Pδ(f) with X(f). | *The multiplication of the Dirac comb pδ(t) with x(t) corresponds in the frequency domain to the convolution of Pδ(f) with X(f). | ||
− | *The result is the periodified spectrum P{X(f)}, where $f_{\rm | + | *The result is the periodified spectrum P{X(f)}, where $f_{\rm |
P} indicates the frequency period of the function \text{P}\{ X(f)\}$ : | P} indicates the frequency period of the function \text{P}\{ X(f)\}$ : | ||
Line 66: | Line 66: | ||
This relation was already derived in the chapter [[Signal_Representation/Time_Discrete_Signal_Representation|"Discrete-Time Signal Representation"]] but with slightly different nomenclature: | This relation was already derived in the chapter [[Signal_Representation/Time_Discrete_Signal_Representation|"Discrete-Time Signal Representation"]] but with slightly different nomenclature: | ||
*We now denote the sampled signal by A{x(t)} instead of xA(t). | *We now denote the sampled signal by A{x(t)} instead of xA(t). | ||
− | * The | + | |
+ | * The »frequency period« is now denoted by fP=1/TA instead of fA=1/TA. | ||
These nomenclature changes are justified in the following sections. | These nomenclature changes are justified in the following sections. | ||
− | The graph above shows the functional relationship described here. It should be noted: | + | The graph above shows the functional relationship described here. It should be noted: |
− | + | #The frequency period fP has been deliberately chosen to be small here so that the overlap of the spectra to be summed can be clearly seen. | |
− | + | #In practice fP should be at least twice as large as the largest frequency contained in the signal x(t) due to the sampling theorem. | |
− | + | #If this is not fulfilled, then »'''aliasing'''« must be expected - see chapter [[Signal_Representation/Possible_Errors_When_Using_DFT|»Possible Errors when using DFT«]]. | |
− | ==Frequency | + | ==Frequency discretization – Periodification in the time domain == |
<br> | <br> | ||
− | The | + | The discretization of X(f) can also be described by a multiplication with a Dirac comb in the frequency domain. The result is the sampled spectrum with distance fA: |
:$${\rm A}\{X(f)\} = X(f) \cdot \sum_{\mu = - \infty }^{+\infty} | :$${\rm A}\{X(f)\} = X(f) \cdot \sum_{\mu = - \infty }^{+\infty} | ||
f_{\rm A} \cdot \delta (f- \mu \cdot f_{\rm A } ) = \sum_{\mu = - \infty }^{+\infty} | f_{\rm A} \cdot \delta (f- \mu \cdot f_{\rm A } ) = \sum_{\mu = - \infty }^{+\infty} | ||
f_{\rm A} \cdot X(\mu \cdot f_{\rm A } ) \cdot\delta (f- \mu \cdot f_{\rm A } )\hspace{0.05cm}.$$ | f_{\rm A} \cdot X(\mu \cdot f_{\rm A } ) \cdot\delta (f- \mu \cdot f_{\rm A } )\hspace{0.05cm}.$$ | ||
− | If one transforms the Dirac comb (with impulse weights fA) | + | *If one transforms the Dirac comb (with impulse weights fA) into the time domain, one obtains with TP=1/fA: |
:$$\sum_{\mu = - \infty }^{+\infty} | :$$\sum_{\mu = - \infty }^{+\infty} | ||
Line 91: | Line 92: | ||
\delta (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$ | \delta (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$ | ||
− | The multiplication with X(f) corresponds in the time domain to the convolution with x(t). One obtains the signal P{x(t)} periodified | + | *The multiplication with X(f) corresponds in the time domain to the convolution with x(t). One obtains the signal P{x(t)} periodified with distance TP: |
:$${\rm A}\{X(f)\} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} | :$${\rm A}\{X(f)\} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} | ||
Line 98: | Line 99: | ||
x (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$ | x (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$ | ||
− | + | ||
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
+ | [[File:P_ID1134__Sig_T_5_1_S3_neu.png|right|frame|Frequency discretization – Periodization in the time domain]] | ||
Example 1: | Example 1: | ||
This correlation is illustrated in the graph: | This correlation is illustrated in the graph: | ||
− | *Due to the coarse frequency rastering, this example results in a relatively small value for the time period TP . | + | *Due to the coarse frequency rastering, this example results in a relatively small value for the time period TP . |
− | * Therefore due to overlaps, the (blue) periodified time signal P{x(t)} differs significantly from x(t). | + | * Therefore due to overlaps, the $($blue$)$ periodified time signal P{x(t)} differs significantly from x(t). |
Line 112: | Line 114: | ||
==Finite signal representation== | ==Finite signal representation== | ||
<br> | <br> | ||
− | [[File:P_ID1135__Sig_T_5_1_S4_neu.png|right|frame|Finite signals of the Discrete Fourier Transform (DFT)]] | + | [[File:P_ID1135__Sig_T_5_1_S4_neu.png|right|frame|Finite signals of the Discrete Fourier Transform $\rm (DFT)$]] |
− | One arrives at the so-called | + | One arrives at the so-called »finite signal representation«, if both |
− | *the time function x(t) | + | *the time function x(t), |
− | * | + | |
+ | *the spectral function X(f) | ||
− | are specified exclusively by their sample values. | + | are specified exclusively by their sample values. This graph is to be interpreted as follows: |
+ | *In the left graph, the function A{P{x(t)}} is drawn in blue. This results from sampling the periodified time function P{x(t)} with equidistant Dirac deltas with distance TA=1/fP. | ||
− | + | *In the right graph, the function P{A{X(f)}} is drawn in green. This results from the periodification (with fP) of the sampled spectral function {A{X(f)}}. | |
− | *In the | + | |
− | + | *There is a Fourier correspondence between the blue finite signal $($in the left sketch$)$ and the green finite signal $($in the right sketch$)$, as follows: | |
− | *There is a Fourier correspondence between the blue finite signal (in the left sketch) and the green finite signal (in the right sketch), as follows: | ||
:A{P{x(t)}}∘−−−∙P{A{X(f)}}. | :A{P{x(t)}}∘−−−∙P{A{X(f)}}. | ||
− | *The Dirac lines of the periodic continuation P{A{X(f)}} of the sampled spectral function, however, only fall into the same frequency grid as those of A{X(f)} if the frequency period fP is an integer multiple (N) of the frequency sampling interval fA | + | *The Dirac delta lines of the periodic continuation P{A{X(f)}} of the sampled spectral function, however, only fall into the same frequency grid as those of A{X(f)} if the frequency period fP is an integer multiple (N) of the frequency sampling interval fA. |
− | *Therefore, when using the finite signal representation, the following condition must always be fulfilled, where in practice the natural number N is usually a power of two (the above graph is based on the value N=8 | + | |
+ | *Therefore, when using the finite signal representation, the following condition must always be fulfilled, where in practice the natural number N is usually a power of two $($the above graph is based on the value $N = 8)$: | ||
:$$f_{\rm P} = N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm} {1}/{T_{\rm A}}= N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm} | :$$f_{\rm P} = N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm} {1}/{T_{\rm A}}= N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm} | ||
Line 139: | Line 143: | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | $\text{ | + | $\text{Conclusions:}$ |
− | + | #The time function P{A{x(t)}} has the period TP=N⋅TA. | |
− | + | #The period in the frequency domain is fP=N⋅fA. | |
− | + | #For the description of the discretized time and frequency response in each case N '''complex numerical values''' in the form of impulse weights are sufficient.}} | |
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
Example 2: | Example 2: | ||
− | A time-limited (pulse-like) signal x(t) is present in sampled form, where the distance between two samples is T_{\rm A} = 1\, {\rm µ s}: | + | A time-limited $($pulse-like$)$ signal x(t) is present in sampled form, where the distance between two samples is T_{\rm A} = 1\, {\rm µ s}: |
− | *After a discrete Fourier transform with N=512 the spectrum X(f) | + | *After a discrete Fourier transform with N=512 the spectrum X(f) is available in form of frequency-samples at spacing fA=(N⋅TA)−1≈1.953kHz. |
− | *Increasing the DFT parameter to N=2048 results in a (four times) finer frequency grid with fA≈488Hz.}} | + | |
+ | *Increasing the DFT parameter to N=2048 results in a $($four times$)$ finer frequency grid with fA≈488Hz.}} | ||
==From the continuous to the discrete Fourier transform== | ==From the continuous to the discrete Fourier transform== | ||
<br> | <br> | ||
− | From the conventional [[Signal_Representation/ | + | From the conventional [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|»first Fourier integral«]] |
:$$X(f) =\int_{-\infty | :$$X(f) =\int_{-\infty | ||
}^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} f \hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm} {\rm d}t$$ | }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} f \hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm} {\rm d}t$$ | ||
− | arises from | + | arises from discretization (dt→TA, t→ν⋅TA, f→μ⋅fA, TA⋅fA=1/N) the sampled and periodified spectral function |
:$${\rm P}\{X(\mu \cdot f_{\rm A})\} = T_{\rm A} \cdot \sum_{\nu = 0 }^{N-1} | :$${\rm P}\{X(\mu \cdot f_{\rm A})\} = T_{\rm A} \cdot \sum_{\nu = 0 }^{N-1} | ||
Line 165: | Line 170: | ||
\cdot \hspace{0.05cm}\mu /N} \hspace{0.05cm}.$$ | \cdot \hspace{0.05cm}\mu /N} \hspace{0.05cm}.$$ | ||
− | It is taken into account that due to the | + | It is taken into account that due to the discretization, the periodified functions are to be used in each case. |
For reasons of simplified notation, we now make the following substitutions: | For reasons of simplified notation, we now make the following substitutions: | ||
− | *The N | + | *The N »time-domain coefficients« are with the variable ν=0, ... , N−1: |
− | :$$d(\nu) = | + | :$$d(\nu) = |
{\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A}}\hspace{0.05cm}.$$ | {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A}}\hspace{0.05cm}.$$ | ||
− | *Let N | + | *Let N »frequency domain coefficients« be associated with the variable μ=0, ... , $N-1$: |
:$$D(\mu) = f_{\rm A} \cdot | :$$D(\mu) = f_{\rm A} \cdot | ||
{\rm P}\left\{X(f)\right\}{\big|}_{f \hspace{0.05cm}= \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm A}}\hspace{0.05cm}.$$ | {\rm P}\left\{X(f)\right\}{\big|}_{f \hspace{0.05cm}= \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm A}}\hspace{0.05cm}.$$ | ||
− | *Abbreviation is written for the from N dependent | + | *Abbreviation is written for the from N dependent »complex rotation factor« : |
:$$w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} | :$$w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} | ||
= \cos \left( {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left( {2 \pi}/{N}\right) | = \cos \left( {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left( {2 \pi}/{N}\right) | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | |||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
Definition: | Definition: | ||
− | The term | + | The term »Discrete Fourier Transform« $\rm (DFT) means the calculation of the N spectral coefficients D(\mu) from the N signal coefficients d(\nu)$: |
− | + | [[File:P_ID2730__Sig_T_5_1_S5_neu.png|right|frame|On defining the »Discrete Fourier Transform« (DFT) with N=8]] | |
:$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1} | :$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1} | ||
d(\nu)\cdot {w}^{\hspace{0.05cm}\nu \hspace{0.07cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}. $$ | d(\nu)\cdot {w}^{\hspace{0.05cm}\nu \hspace{0.07cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}. $$ | ||
+ | : | ||
+ | In the diagram you can see: | ||
+ | *The N=8 signal coefficients d(ν) by the blue filling, | ||
− | |||
− | |||
*the N=8 spectral coefficients D(μ) at the green filling.}} | *the N=8 spectral coefficients D(μ) at the green filling.}} | ||
Line 194: | Line 199: | ||
==Inverse discrete Fourier transform== | ==Inverse discrete Fourier transform== | ||
<br> | <br> | ||
− | The | + | The »inverse discrete Fourier transform« describes the [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_second_Fourier_integral|»second Fourier integral«]]: |
:$$\begin{align*}x(t) & = \int_{-\infty | :$$\begin{align*}x(t) & = \int_{-\infty | ||
Line 205: | Line 210: | ||
A}}\hspace{0.01cm}.$$ | A}}\hspace{0.01cm}.$$ | ||
− | + | {{BlaueBox|TEXT= Definition: The term »Inverse Discrete Fourier Transform» $\rm (IDFT)$ means the calculation of the signal coefficients d(ν) from the spectral coefficients D(μ): | |
− | {{BlaueBox|TEXT= | + | [[File:P_ID2731__Sig_T_5_1_S6_neu.png|right|frame|On defining the »Inverse Discrete Fourier Transform« (IDFT) with N=8]] |
− | Definition: | ||
− | |||
− | The term | ||
− | |||
:$$d(\nu) = \sum_{\mu = 0 }^{N-1} | :$$d(\nu) = \sum_{\mu = 0 }^{N-1} | ||
D(\mu) \cdot {w}^{-\nu \hspace{0.07cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$ | D(\mu) \cdot {w}^{-\nu \hspace{0.07cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$ | ||
− | With | + | *With indices ν=0,...,N−1, and μ=0,...,N−1 holds: |
:$$d(\nu) = | :$$d(\nu) = | ||
{\rm P}\left\{x(t)\right\}{\big \vert}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm | {\rm P}\left\{x(t)\right\}{\big \vert}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm | ||
Line 224: | Line 225: | ||
:$$w = {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} | :$$w = {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} | ||
− | \hspace{0.01cm}.$$ | + | \hspace{0.01cm}.$$ |
− | + | *A comparison between [[Signal_Representation/Discrete_Fourier_Transform_(DFT)#From_the_continuous_to_the_discrete_Fourier_transform|»DFT«]] and »IDFT« shows that exactly the same algorithm can be used. | |
− | A comparison between | + | |
− | + | *The only differences between IDFT and DFT are: | |
− | + | #The exponent of the rotation factor is to be applied with different sign. | |
+ | #In the IDFT, the division by N is omitted.}} | ||
Line 238: | Line 240: | ||
[[File:P_ID1136__Sig_T_5_1_S7_neu.png|right|frame|Time and frequency coefficients of the DFT]] | [[File:P_ID1136__Sig_T_5_1_S7_neu.png|right|frame|Time and frequency coefficients of the DFT]] | ||
− | When using DFT or IDFT, please note: | + | When using DFT or IDFT, please note: |
#According to the above definitions, the DFT coefficients d(ν) and D(\mu) always have the unit of the time function. | #According to the above definitions, the DFT coefficients d(ν) and D(\mu) always have the unit of the time function. | ||
− | #Dividing D(\mu) by f_{\rm A}, one obtains the spectral value X(\mu \cdot f_{\rm A}). | + | #Dividing D(\mu) by f_{\rm A}, one obtains the spectral value X(\mu \cdot f_{\rm A}). |
#The spectral coefficients D(\mu) must always be complex in order to be able to consider odd time functions. | #The spectral coefficients D(\mu) must always be complex in order to be able to consider odd time functions. | ||
− | #One also uses complex time coefficients d(\nu) ⇒ DFT and IDFT are also applicable to | + | #One also uses complex time coefficients d(\nu) ⇒ DFT and IDFT are also applicable to band-pass signals. |
− | #The basic interval for \nu and \mu is usually defined as the range from 0 to N - 1 (filled circles in the graph). | + | #The basic interval for \nu and \mu is usually defined as the range from 0 to N - 1 $($filled circles in the graph$)$. |
<br clear=all> | <br clear=all> | ||
− | With the complex-valued number sequences $\langle \hspace{0. | + | With the complex-valued number sequences |
− | :$$\langle \hspace{0. | + | :$$\langle \hspace{0.03cm}d(\nu)\hspace{0.03cm}\rangle = \langle \hspace{0.03cm}d(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , d(N-1) \hspace{0.03cm}\rangle,$$ |
− | + | :$$\langle \hspace{0.03cm}D(\mu)\hspace{0.03cm}\rangle = \langle \hspace{0.03cm}D(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , D(N-1) \hspace{0.03cm}\rangle,$$ | |
− | + | ||
− | + | DFT and IDFT are symbolized similarly to the conventional Fourier transform: | |
+ | :$$\langle \hspace{0.03cm} D(\mu)\hspace{0.03cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.03cm} d(\nu) \hspace{0.03cm}\rangle \hspace{0.05cm}.$$ | ||
+ | #If the function x(t) is already limited to the range 0 \le t \lt N \cdot T_{\rm A} then the IDFT output directly give the samples of the time function: d(\nu) = x(\nu \cdot T_{\rm A}). | ||
+ | #If x(t) is shifted with respect to the basic interval, one has to choose the association shown in \text{Example 3} between x(t) and the coefficients d(\nu). | ||
Line 256: | Line 261: | ||
The upper graph shows the asymmetric triangular pulse x(t) whose absolute width is smaller than T_{\rm P} = N \cdot T_{\rm A}. | The upper graph shows the asymmetric triangular pulse x(t) whose absolute width is smaller than T_{\rm P} = N \cdot T_{\rm A}. | ||
− | [[File: | + | [[File:EN_Sig_T_5_1_S7b_neu.png|right|frame|On assigning of the DFT coefficients with N=8]] |
+ | |||
The sketch below shows the assigned DFT coefficients (valid for N = 8). | The sketch below shows the assigned DFT coefficients (valid for N = 8). | ||
− | *For \nu = 0,\hspace{0.05cm}\text{...} \hspace{0.05cm} , N/2 = 4 d(\nu) = x(\nu \cdot T_{\rm A}) | + | *For \nu = 0,\hspace{0.05cm}\text{...} \hspace{0.05cm} , N/2 = 4 holds d(\nu) = x(\nu \cdot T_{\rm A}) : |
:$$d(0) = x (0)\hspace{0.05cm}, \hspace{0.15cm} | :$$d(0) = x (0)\hspace{0.05cm}, \hspace{0.15cm} | ||
Line 269: | Line 275: | ||
*The coefficients d(5), d(6) and d(7) are to be set as follows: | *The coefficients d(5), d(6) and d(7) are to be set as follows: | ||
− | :d(\nu) = x \big ((\nu\hspace{-0.05cm} - \hspace{-0.05cm} N ) \cdot T_{\rm A}\big ) | + | :$$d(5) = x (-3T_{\rm A})\hspace{0.05cm}, \hspace{0.35cm} |
+ | d(6) = x (-2T_{\rm A})\hspace{0.05cm}, \hspace{0.35cm} | ||
+ | d(7) = x (-T_{\rm A})\hspace{0.05cm}$$ | ||
+ | :$$ \Rightarrow \hspace{0.2cm}d(\nu) = x \big ((\nu\hspace{-0.05cm} - \hspace{-0.05cm} N ) \cdot T_{\rm A}\big ). $$ | ||
− | + | }} | |
− | |||
− | |||
==Exercises for the chapter== | ==Exercises for the chapter== |
Latest revision as of 17:57, 28 June 2023
Contents
- 1 Arguments for the discrete implementation of the Fourier transform
- 2 Time discretization – Periodification in the frequency domain
- 3 Frequency discretization – Periodification in the time domain
- 4 Finite signal representation
- 5 From the continuous to the discrete Fourier transform
- 6 Inverse discrete Fourier transform
- 7 Interpretation of DFT and IDFT
- 8 Exercises for the chapter
Arguments for the discrete implementation of the Fourier transform
The »Fourier transform« according to the previous description in chapter »Aperiodic Signals – Pulses« has an infinitely high selectivity due to the unlimited extension of the integration interval and is therefore an ideal theoretical tool of spectral analysis.
If the spectral components X(f) of a time function x(t) are to be determined numerically, the general transformation equations
- \begin{align*}X(f) & = \int_{-\infty }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}t\hspace{0.5cm} \Rightarrow\hspace{0.5cm} \text{Transform}\hspace{0.7cm} \Rightarrow\hspace{0.5cm} \text{first Fourier integral} \hspace{0.05cm},\\ x(t) & = \int_{-\infty }^{+\infty}\hspace{-0.15cm}X(f) \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}f\hspace{0.35cm} \Rightarrow\hspace{0.5cm} \text{Inverse Transform}\hspace{0.4cm} \Rightarrow\hspace{0.5cm} \text{second Fourier integral} \hspace{0.05cm}\end{align*}
are unsuitable for two reasons:
- The equations apply exclusively to continuous-time signals. With digital computers or signal processors, however, one can only process discrete-time signals.
- For a numerical evaluation of the two Fourier integrals it is necessary to limit the respective integration interval to a finite value.
\text{This leads to the following consequence:}
A »continuous-valued signal« must undergo two processes before the numerical determination of its spectral properties, viz.
- that of »sampling« for discretization, and
- that of »windowing« to limit the integration interval.
In the following, starting from an aperiodic time function x(t) and the corresponding Fourier spectrum X(f) a time and frequency-discrete description suitable for computer processing is developed step by step.
Time discretization – Periodification in the frequency domain
The following graphs show uniformly the time domain on the left and the frequency domain on the right.
- Without limiting generality, x(t) and X(f) are each real and Gaussian.
- According to the chapter »Discrete-Time Signal Representation« one can describe the sampling of the time signal x(t) by multiplying it by a Dirac delta train ⇒
»Dirac comb in the time domain«
- p_{\delta}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot \delta (t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.
The result is the time signal sampled at a distance T_{\rm A}:
- {\rm A}\{x(t)\} = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot \delta (t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.
We transform this sampled signal \text{A}\{ x(t)\} into the frequency domain:
- The multiplication of the Dirac comb p_{\delta}(t) with x(t) corresponds in the frequency domain to the convolution of P_{\delta}(f) with X(f).
- The result is the periodified spectrum \text{P}\{ X(f)\}, where f_{\rm P} indicates the frequency period of the function \text{P}\{ X(f)\} :
- {\rm A}\{x(t)\} \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{X(f)\} = \sum_{\mu = - \infty }^{+\infty} X (f- \mu \cdot f_{\rm P} ).
This relation was already derived in the chapter "Discrete-Time Signal Representation" but with slightly different nomenclature:
- We now denote the sampled signal by \text{A}\{ x(t)\} instead of x_{\rm A}(t).
- The »frequency period« is now denoted by f_{\rm P} = 1/T_{\rm A} instead of f_{\rm A} = 1/T_{\rm A}.
These nomenclature changes are justified in the following sections.
The graph above shows the functional relationship described here. It should be noted:
- The frequency period f_{\rm P} has been deliberately chosen to be small here so that the overlap of the spectra to be summed can be clearly seen.
- In practice f_{\rm P} should be at least twice as large as the largest frequency contained in the signal x(t) due to the sampling theorem.
- If this is not fulfilled, then »aliasing« must be expected - see chapter »Possible Errors when using DFT«.
Frequency discretization – Periodification in the time domain
The discretization of X(f) can also be described by a multiplication with a Dirac comb in the frequency domain. The result is the sampled spectrum with distance f_{\rm A}:
- {\rm A}\{X(f)\} = X(f) \cdot \sum_{\mu = - \infty }^{+\infty} f_{\rm A} \cdot \delta (f- \mu \cdot f_{\rm A } ) = \sum_{\mu = - \infty }^{+\infty} f_{\rm A} \cdot X(\mu \cdot f_{\rm A } ) \cdot\delta (f- \mu \cdot f_{\rm A } )\hspace{0.05cm}.
- If one transforms the Dirac comb (with impulse weights f_{\rm A}) into the time domain, one obtains with T_{\rm P} = 1/f_{\rm A}:
- \sum_{\mu = - \infty }^{+\infty} f_{\rm A} \cdot \delta (f- \mu \cdot f_{\rm A } ) \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} \sum_{\nu = - \infty }^{+\infty} \delta (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.
- The multiplication with X(f) corresponds in the time domain to the convolution with x(t). One obtains the signal \text{P}\{ x(t)\} periodified with distance T_{\rm P}:
- {\rm A}\{X(f)\} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} {\rm P}\{x(t)\} = x(t) \star \sum_{\nu = - \infty }^{+\infty} \delta (t- \nu \cdot T_{\rm P } )= \sum_{\nu = - \infty }^{+\infty} x (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.
\text{Example 1:} This correlation is illustrated in the graph:
- Due to the coarse frequency rastering, this example results in a relatively small value for the time period T_{\rm P} .
- Therefore due to overlaps, the (blue) periodified time signal \text{P}\{ x(t)\} differs significantly from x(t).
- If one wants to achieve \text{P}\{ x(t)\} \approx x(t) then T_{\rm P} must be chosen much larger than in this example.
Finite signal representation
One arrives at the so-called »finite signal representation«, if both
- the time function x(t),
- the spectral function X(f)
are specified exclusively by their sample values. This graph is to be interpreted as follows:
- In the left graph, the function \text{A}\{ \text{P}\{ x(t)\}\} is drawn in blue. This results from sampling the periodified time function \text{P}\{ x(t)\} with equidistant Dirac deltas with distance T_{\rm A} = 1/f_{\rm P}.
- In the right graph, the function \text{P}\{ \text{A}\{ X(f)\}\} is drawn in green. This results from the periodification (with f_{\rm P}) of the sampled spectral function \{ \text{A}\{ X(f)\}\}.
- There is a Fourier correspondence between the blue finite signal (in the left sketch) and the green finite signal (in the right sketch), as follows:
- {\rm A}\{{\rm P}\{x(t)\}\} \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{{\rm A}\{X(f)\}\} \hspace{0.05cm}.
- The Dirac delta lines of the periodic continuation \text{P}\{ \text{A}\{ X(f)\}\} of the sampled spectral function, however, only fall into the same frequency grid as those of \text{A}\{ X(f)\} if the frequency period f_{\rm P} is an integer multiple (N) of the frequency sampling interval f_{\rm A}.
- Therefore, when using the finite signal representation, the following condition must always be fulfilled, where in practice the natural number N is usually a power of two (the above graph is based on the value N = 8):
- f_{\rm P} = N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm} {1}/{T_{\rm A}}= N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm} N \cdot f_{\rm A}\cdot T_{\rm A} = 1\hspace{0.05cm}.
- If the condition N \cdot f_{\rm A} \cdot T_{\rm A} = 1 is fulfilled then the order of periodization and sampling is interchangeable. Thus:
- {\rm A}\{{\rm P}\{x(t)\}\} = {\rm P}\{{\rm A}\{x(t)\}\}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{{\rm A}\{X(f)\}\} = {\rm A}\{{\rm P}\{X(f)\}\}\hspace{0.05cm}.
\text{Conclusions:}
- The time function \text{P}\{ \text{A}\{ x(t)\}\} has the period T_{\rm P} = N \cdot T_{\rm A}.
- The period in the frequency domain is f_{\rm P} = N \cdot f_{\rm A}.
- For the description of the discretized time and frequency response in each case N complex numerical values in the form of impulse weights are sufficient.
\text{Example 2:} A time-limited (pulse-like) signal x(t) is present in sampled form, where the distance between two samples is T_{\rm A} = 1\, {\rm µ s}:
- After a discrete Fourier transform with N = 512 the spectrum X(f) is available in form of frequency-samples at spacing f_{\rm A} = (N \cdot T_{\rm A})^{-1} \approx 1.953\,\text{kHz} .
- Increasing the DFT parameter to N= 2048 results in a (four times) finer frequency grid with f_{\rm A} \approx 488\,\text{Hz}.
From the continuous to the discrete Fourier transform
From the conventional »first Fourier integral«
- X(f) =\int_{-\infty }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} f \hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm} {\rm d}t
arises from discretization (\text{d}t \to T_{\rm A}, t \to \nu \cdot T_{\rm A}, f \to \mu \cdot f_{\rm A}, T_{\rm A} \cdot f_{\rm A} = 1/N) the sampled and periodified spectral function
- {\rm P}\{X(\mu \cdot f_{\rm A})\} = T_{\rm A} \cdot \sum_{\nu = 0 }^{N-1} {\rm P}\{x(\nu \cdot T_{\rm A})\}\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm} \cdot \hspace{0.05cm}\nu \hspace{0.05cm} \cdot \hspace{0.05cm}\mu /N} \hspace{0.05cm}.
It is taken into account that due to the discretization, the periodified functions are to be used in each case.
For reasons of simplified notation, we now make the following substitutions:
- The N »time-domain coefficients« are with the variable \nu = 0, ... , N - 1:
- d(\nu) = {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A}}\hspace{0.05cm}.
- Let N »frequency domain coefficients« be associated with the variable \mu = 0, ... , N-1:
- D(\mu) = f_{\rm A} \cdot {\rm P}\left\{X(f)\right\}{\big|}_{f \hspace{0.05cm}= \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm A}}\hspace{0.05cm}.
- Abbreviation is written for the from N dependent »complex rotation factor« :
- w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} = \cos \left( {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left( {2 \pi}/{N}\right) \hspace{0.05cm}.
\text{Definition:} The term »Discrete Fourier Transform« \rm (DFT) means the calculation of the N spectral coefficients D(\mu) from the N signal coefficients d(\nu):
- D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1} d(\nu)\cdot {w}^{\hspace{0.05cm}\nu \hspace{0.07cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.
In the diagram you can see:
- The N = 8 signal coefficients d(\nu) by the blue filling,
- the N = 8 spectral coefficients D(\mu) at the green filling.
Inverse discrete Fourier transform
The »inverse discrete Fourier transform« describes the »second Fourier integral«:
- \begin{align*}x(t) & = \int_{-\infty }^{+\infty}X(f) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} f \hspace{0.05cm}\cdot \hspace{0.05cm} t}\hspace{0.1cm} {\rm d}f\end{align*}
in discretized form:
- d(\nu) = {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A}}\hspace{0.01cm}.
\text{Definition:} The term »Inverse Discrete Fourier Transform» \rm (IDFT) means the calculation of the signal coefficients d(\nu) from the spectral coefficients D(\mu):
- d(\nu) = \sum_{\mu = 0 }^{N-1} D(\mu) \cdot {w}^{-\nu \hspace{0.07cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.
- With indices \nu = 0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1, and \mu = 0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1 holds:
- d(\nu) = {\rm P}\left\{x(t)\right\}{\big \vert}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A} }\hspace{0.01cm},
- D(\mu) = f_{\rm A} \cdot {\rm P}\left\{X(f)\right\}{\big \vert}_{f \hspace{0.05cm}= \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm A} } \hspace{0.01cm},
- w = {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} \hspace{0.01cm}.
- A comparison between »DFT« and »IDFT« shows that exactly the same algorithm can be used.
- The only differences between IDFT and DFT are:
- The exponent of the rotation factor is to be applied with different sign.
- In the IDFT, the division by N is omitted.
Interpretation of DFT and IDFT
The graph shows the discrete coefficients in the time and frequency domain together with the periodified continuous-time functions.
When using DFT or IDFT, please note:
- According to the above definitions, the DFT coefficients d(ν) and D(\mu) always have the unit of the time function.
- Dividing D(\mu) by f_{\rm A}, one obtains the spectral value X(\mu \cdot f_{\rm A}).
- The spectral coefficients D(\mu) must always be complex in order to be able to consider odd time functions.
- One also uses complex time coefficients d(\nu) ⇒ DFT and IDFT are also applicable to band-pass signals.
- The basic interval for \nu and \mu is usually defined as the range from 0 to N - 1 (filled circles in the graph).
With the complex-valued number sequences
- \langle \hspace{0.03cm}d(\nu)\hspace{0.03cm}\rangle = \langle \hspace{0.03cm}d(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , d(N-1) \hspace{0.03cm}\rangle,
- \langle \hspace{0.03cm}D(\mu)\hspace{0.03cm}\rangle = \langle \hspace{0.03cm}D(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , D(N-1) \hspace{0.03cm}\rangle,
DFT and IDFT are symbolized similarly to the conventional Fourier transform:
- \langle \hspace{0.03cm} D(\mu)\hspace{0.03cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.03cm} d(\nu) \hspace{0.03cm}\rangle \hspace{0.05cm}.
- If the function x(t) is already limited to the range 0 \le t \lt N \cdot T_{\rm A} then the IDFT output directly give the samples of the time function: d(\nu) = x(\nu \cdot T_{\rm A}).
- If x(t) is shifted with respect to the basic interval, one has to choose the association shown in \text{Example 3} between x(t) and the coefficients d(\nu).
\text{Example 3:} The upper graph shows the asymmetric triangular pulse x(t) whose absolute width is smaller than T_{\rm P} = N \cdot T_{\rm A}.
The sketch below shows the assigned DFT coefficients (valid for N = 8).
- For \nu = 0,\hspace{0.05cm}\text{...} \hspace{0.05cm} , N/2 = 4 holds d(\nu) = x(\nu \cdot T_{\rm A}) :
- d(0) = x (0)\hspace{0.05cm}, \hspace{0.15cm} d(1) = x (T_{\rm A})\hspace{0.05cm}, \hspace{0.15cm} d(2) = x (2T_{\rm A})\hspace{0.05cm},
- d(3) = x (3T_{\rm A})\hspace{0.05cm}, \hspace{0.15cm} d(4) = x (4T_{\rm A})\hspace{0.05cm}.
- The coefficients d(5), d(6) and d(7) are to be set as follows:
- d(5) = x (-3T_{\rm A})\hspace{0.05cm}, \hspace{0.35cm} d(6) = x (-2T_{\rm A})\hspace{0.05cm}, \hspace{0.35cm} d(7) = x (-T_{\rm A})\hspace{0.05cm}
- \Rightarrow \hspace{0.2cm}d(\nu) = x \big ((\nu\hspace{-0.05cm} - \hspace{-0.05cm} N ) \cdot T_{\rm A}\big ).
Exercises for the chapter
Exercise 5.2: Inverse Discrete Fourier Transform
Exercise 5.2Z: DFT of a Triangular Pulse