Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Theory of Stochastic Signals/Power-Spectral Density"

From LNTwww
(Die Seite wurde neu angelegt: „ {{Header |Untermenü=Zufallsgrößen mit statistischen Bindungen |Vorherige Seite=Autokorrelationsfunktion (AKF) |Nächste Seite=Kreuzkorrelationsfunktion un…“)
 
 
(68 intermediate revisions by 8 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Zufallsgrößen mit statistischen Bindungen
+
|Untermenü=Random Variables with Statistical Dependence
|Vorherige Seite=Autokorrelationsfunktion (AKF)
+
|Vorherige Seite=Auto-Correlation Function
|Nächste Seite=Kreuzkorrelationsfunktion und Kreuzleistungsdichte
+
|Nächste Seite=Cross-Correlation Function and Cross Power Density
 
}}
 
}}
==Theorem von Wiener-Chintchine==
+
==Wiener-Khintchine Theorem==
Im Weiteren beschränken wir uns auf ergodische Prozesse. Wie im Kapitel 4.4  gezeigt wurde, gelten dann die folgenden Aussagen:   
+
<br>
*Jede einzelne Musterfunktion xi(t) ist repräsentativ für den gesamten Zufallsprozess { $x_i(t)$}. Alle Zeitmittelwerte sind somit identisch mit den dazugehörigen Scharmittelwerten.  
+
In the remainder of this paper we restrict ourselves to ergodic processes.&nbsp; As was shown in the&nbsp; [[Theory_of_Stochastic_Signals/Auto-Correlation_Function#Ergodic_random_processes|"last chapter"]]&nbsp; the following statements then hold:   
*Die Autokorrelationsfunktion, die allgemein von den beiden Zeitparametern t1 und t2 beeinflusst wird, hängt nur noch von der Zeitdifferenz $τ = t_2 t_1$ ab:  
+
*Each individual pattern function&nbsp; xi(t)&nbsp; is representative of the entire random process&nbsp; $\{x_i(t)\}$.  
φx(t1,t2)=E[x(t1)x(t2)]=φx(τ)=+x(t)x(t+τ)dt.
+
*All time means are thus identical to the corresponding coulter means.  
 +
*The auto-correlation function,&nbsp; which is generally affected by the two time parameters&nbsp; t1&nbsp; and&nbsp; t2,&nbsp; now depends only on the time difference&nbsp; $τ = t_2 - t_1$:  
 +
:$$\varphi_x(t_1,t_2)={\rm E}\big[x(t_{\rm 1})\cdot x(t_{\rm 2})\big] = \varphi_x(\tau)= \int^{+\infty}_{-\infty}x(t)\cdot x(t+\tau)\,{\rm d}t.$$
  
 +
The auto-correlation function provides quantitative information about the&nbsp; (linear)&nbsp; statistical bindings within the ergodic process&nbsp; {xi(t)}&nbsp; in the time domain.&nbsp; The equivalent descriptor in the frequency domain is the&nbsp; "power-spectral density",&nbsp; often also referred to as the&nbsp; "power-spectral density".
  
Diese Funktion liefert quantitative Aussagen über die (linearen) statistischen Bindungen innerhalb des ergodischen Prozesses { $x_i(t)$} im Zeitbereich. Die äquivalente Beschreibungsgröße im Frequenzbereich ist die ''spektrale Leistungsdichte,'' häufig auch als ''Leistungsdichtespektrum'' (LDS) bezeichnet.  
+
{{BlaueBox|TEXT= 
 +
Definition:&nbsp; The&nbsp; &raquo;'''power-spectral density'''&laquo;&nbsp; $\rm (PSD)&nbsp; of an ergodic random process&nbsp;\{x_i(t)\}$&nbsp; is the Fourier transform of the auto-correlation function&nbsp; (ACF):
 +
:$${\it \Phi}_x(f)=\int^{+\infty}_{-\infty}\varphi_x(\tau) \cdot {\rm e}^{- {\rm j\hspace{0.05cm}\cdot \hspace{0.05cm} \pi}\hspace{0.05cm}\cdot \hspace{0.05cm} f \hspace{0.05cm}\cdot \hspace{0.05cm}\tau} {\rm d} \tau. $$
 +
This functional relationship is called the&nbsp; "Theorem of&nbsp; [https://en.wikipedia.org/wiki/Norbert_Wiener Wiener]&nbsp; and&nbsp; [https://en.wikipedia.org/wiki/Aleksandr_Khinchin Khinchin]". }}
  
  
{{Definition}}
+
Similarly,&nbsp; the auto-correlation function can be computed as the inverse Fourier transform of the power-spectral density&nbsp; (see section&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_second_Fourier_integral|"Inverse Fourier transform"]]&nbsp; in the book&nbsp; "Signal Representation"):  
Das Leistungsdichtespektrum (LDS) eines ergodischen Zufallsprozesses { xi(t)} ist die Fouriertransformierte der Autokorrelationsfunktion (AKF):  
+
:$$ \varphi_x(\tau)=\int^{+\infty}_{-\infty} {\it \Phi}_x \cdot {\rm e}^{- {\rm j\hspace{0.05cm}\cdot \hspace{0.05cm} \pi}\hspace{0.05cm}\cdot \hspace{0.05cm} f \hspace{0.05cm}\cdot \hspace{0.05cm}\tau} {\rm d} f.$$
$${\Phi}_x(f)=\int^{+\infty}_{-\infty}\varphi_x(\tau) \cdot {\rm e}^{- {\rm j\pi} f \tau} {\rm d} \tau. $$
+
*The two equations are directly applicable only if the random process contains neither a DC component nor periodic components.  
Diesen Funktionalzusammenhang nennt man das Theorem von Wiener und Chintchine.  
+
*Otherwise,&nbsp; one must proceed according to the specifications given in section&nbsp; [[Theory_of_Stochastic_Signals/Power-Spectral_Density#Power-spectral_density_with_DC_component|"Power-spectral density with DC component"]].
{{end}}
 
  
 +
==Physical interpretation and measurement==
 +
<br>
 +
The lower chart shows an arrangement for&nbsp; (approximate)&nbsp; metrological determination of the power-spectral density&nbsp; Φx(f).&nbsp; The following should be noted in this regard:
 +
*The random signal&nbsp; x(t)&nbsp; is applied to a&nbsp; (preferably)&nbsp; rectangular and&nbsp; (preferably)&nbsp; narrowband filter with center frequency&nbsp; f&nbsp; and bandwidth&nbsp; Δf&nbsp; where&nbsp; Δf&nbsp; must be chosen sufficiently small according to the desired frequency resolution.
 +
*The corresponding output signal&nbsp; x_f(t)&nbsp; is squared and then the mean value is formed over a sufficiently long measurement period&nbsp; T_{\rm M}.&nbsp; This gives the&nbsp; "power of&nbsp; x_f(t)"&nbsp; or the&nbsp; "power components of&nbsp; x(t)&nbsp; in the spectral range from&nbsp; f - Δf/2&nbsp; to&nbsp; f + Δf/2":
 +
[[File: P_ID387__Sto_T_4_5_S2_neu.png |right|frame| To measure the power-spectral density]]
 +
:P_{x_f} =\overline{x_f(t)^2}=\frac{1}{T_{\rm M}}\cdot\int^{T_{\rm M}}_{0}x_f^2(t) \hspace{0.1cm}\rm d \it t.
 +
*Division by&nbsp; Δf&nbsp; leads to the power-spectral density&nbsp; \rm (PSD):
 +
:{{\it \Phi}_{x \rm +}}(f)  =\frac{P_{x_f}}{{\rm \Delta} f} \hspace {0.5cm} \Rightarrow  \hspace {0.5cm} {\it \Phi}_{x}(f) = \frac{P_{x_f}}{{\rm 2 \cdot \Delta} f}.
 +
*{\it \Phi}_{x+}(f) = 2 \cdot {\it \Phi}_x(f)&nbsp; denotes&nbsp;the one-sided PSD defined only for positive frequencies. &nbsp; For&nbsp; f<0 &nbsp; &rArr; &nbsp; {\it \Phi}_{x+}(f) = 0.&nbsp; In contrast,&nbsp; for the commonly used two-sided power-spectral density:
 +
:{\it \Phi}_x(-f) = {\it \Phi}_x(f).
 +
*While the power&nbsp; P_{x_f}&nbsp; tends to zero as the bandwidth&nbsp; Δf&nbsp; becomes smaller,&nbsp; the power-spectral density remains nearly constant above a sufficiently small value of&nbsp; Δf.&nbsp; For the exact determination of&nbsp; {\it \Phi}_x(f)&nbsp; two boundary crossings are necessary:
 +
:{{\it \Phi}_x(f)} = \lim_{{\rm \Delta}f\to 0} \hspace{0.2cm} \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{{\rm 2 \cdot \Delta}f\cdot T_{\rm M}}\cdot\int^{T_{\rm M}}_{0}x_f^2(t) \hspace{0.1cm} \rm d \it t.
  
Ebenso kann die AKF als Fourierrücktransformierte des LDS berechnet werden (siehe Kapitel 3.1  des Buches „Signaldarstellung”):  
+
{{BlaueBox|TEXT= 
$$ \varphi_x(\tau)=\int^{+\infty}_{-\infty} \Phi_x(f) \cdot {\rm e}^{{\rm j\pi} f \tau} {\rm d} f.$$
+
\text{Conclusion:}&nbsp;
Die beiden Gleichungen sind nur dann direkt anwendbar, wenn der Zufallsprozess weder einen Gleichanteil noch periodische Anteile beinhaltet. Andernfalls muss man nach den Angaben auf Seite 4 dieses Abschnitts vorgehen: Spektrale Leistungsdichte mit Gleichsignalkomponente.
+
*From this physical interpretation it further follows that the power-spectral density is always real and can never become negative. &nbsp;
 +
*The total power of the random signal&nbsp; $x(t)$&nbsp; is then obtained by integration over all spectral components:  
 +
:$$P_x = \int^{\infty}_{0}{\it \Phi}_{x \rm +}(f) \hspace{0.1cm}{\rm d} f = \int^{+\infty}_{-\infty}{\it \Phi}_x(f)\hspace{0.1cm} {\rm d} f .$$}}
  
 +
==Reciprocity law of ACF duration and PSD bandwidth==
 +
<br>
 +
All the&nbsp; [[Signal_Representation/Fourier_Transform_Laws|\text{Fourier transform theorems}]]&nbsp; derived in the book&nbsp; "Signal Representation"&nbsp; for deterministic signals can also be applied to
 +
[[File:P_ID390__Sto_T_4_5_S3_Ganz_neu.png |frame| On the&nbsp; "Reciprocity Theorem"&nbsp; of ACF and PSD]]
  
 +
*the&nbsp; auto-correlation function&nbsp; \rm (ACF),&nbsp; and
 +
*the&nbsp; power-spectral density&nbsp; \rm (PSD).&nbsp;
 +
<br>However,&nbsp; not all laws yield meaningful results due to the specific properties
 +
*of auto-correlation function&nbsp; (always real and even)
 +
*and power-spectral density&nbsp; (always real, even, and non&ndash;negative).
 +
  
 +
We now consider as in the section&nbsp; [[Theory_of_Stochastic_Signals/Auto-Correlation_Function#Interpretation_of_the_auto-correlation_function|"Interpretation of the auto-correlation function"]]&nbsp; two different ergodic random processes&nbsp; \{x_i(t)\}&nbsp; and&nbsp; \{y_i(t)\}&nbsp; based on
 +
#two pattern signals&nbsp; x(t)&nbsp; and&nbsp; y(t) &nbsp; ⇒ &nbsp; upper sketch,
 +
#two auto-correlation functions&nbsp; φ_x(τ)&nbsp; and&nbsp; φ_y(τ) &nbsp; ⇒ &nbsp; middle sketch,
 +
#two power-spectral densities&nbsp; {\it \Phi}_x(f)&nbsp; and&nbsp; {\it \Phi}_y(f) &nbsp; ⇒ &nbsp; bottom sketch.
  
  
 +
Based on these exemplary graphs,&nbsp; the following statements can be made:
 +
*The areas under the PSD curves are equal &nbsp; ⇒ &nbsp; the processes&nbsp; \{x_i(t)\}&nbsp; and&nbsp; \{y_i(t)\}&nbsp; have the same power:
 +
:{\varphi_x({\rm 0})}\hspace{0.05cm}  =\hspace{0.05cm} \int^{+\infty}_{-\infty}{{\it \Phi}_x(f)} \hspace{0.1cm} {\rm d} f \hspace{0.2cm} = \hspace{0.2cm}{\varphi_y({\rm 0})} = \int^{+\infty}_{-\infty}{{\it \Phi}_y(f)} \hspace{0.1cm} {\rm d} f .
 +
*The from classical&nbsp; (deterministic)&nbsp; system theory well known &nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Reciprocity_Theorem_of_time_duration_and_bandwidth|\text{Reciprocity Theorem of time duration and bandwidth}]]&nbsp; also applies here: &nbsp; '''A narrow ACF corresponds to a broad PSD and vice versa'''.
 +
*As a descriptive quantity,&nbsp; we use here the&nbsp; &raquo;'''equivalent PSD bandwidth'''&laquo; &nbsp; ∇f&nbsp; (one speaks&nbsp; "Nabla-f"),&nbsp; <br>similarly defined as the equivalent ACF duration&nbsp;  ∇τ&nbsp; in chapter&nbsp; [[Theory_of_Stochastic_Signals/Auto-Correlation_Function#Interpretation_of_the_auto-correlation_function|"Interpretation of the auto-correlation function"]]:
 +
:{{\rm \nabla} f_x} = \frac {1}{{\it \Phi}_x(f = {\rm 0})} \cdot \int^{+\infty}_{-\infty}{{\it \Phi}_x(f)} \hspace{0.1cm} {\rm d} f,
 +
:{ {\rm \nabla} \tau_x} = \frac {\rm 1}{ \varphi_x(\tau = \rm 0)} \cdot \int^{+\infty}_{-\infty}{\varphi_x(\tau )} \hspace{0.1cm} {\rm d} \tau.
 +
*With these definitions,&nbsp; the following basic relationship holds:
 +
:$${{\rm \nabla} \tau_x} \cdot {{\rm \nabla} f_x} = 1\hspace{1cm}{\rm resp.}\hspace{1cm}
 +
{{\rm \nabla} \tau_y} \cdot {{\rm \nabla} f_y} = 1.$$
  
 +
{{GraueBox|TEXT= 
 +
\text{Example 1:}&nbsp; We start from the graph at the top of this section:
 +
*The characteristics of the higher frequency signal&nbsp; x(t)&nbsp; are&nbsp; ∇τ_x = 0.33\hspace{0.08cm} \rm &micro;s&nbsp; &nbsp;and&nbsp; ∇f_x = 3 \hspace{0.08cm} \rm MHz.
 +
*The equivalent ACF duration of the signal&nbsp; y(t)&nbsp; is three times: &nbsp; ∇τ_y = 1 \hspace{0.08cm} \rm &micro;s.
 +
*The equivalent PSD bandwidth  of the signal&nbsp; y(t)&nbsp; is thus only&nbsp; ∇f_y = ∇f_x/3 = 1 \hspace{0.08cm} \rm MHz. }}
 +
 +
 +
{{BlaueBox|TEXT=
 +
\text{General:}&nbsp;
 +
'''The product of equivalent ACF duration&nbsp; { {\rm \nabla} \tau_x}&nbsp; and equivalent PSD bandwidth&nbsp; { {\rm \nabla} f_x}&nbsp; is always "one"''':
 +
:{ {\rm \nabla} \tau_x} \cdot { {\rm \nabla} f_x} = 1.}}
 +
 +
 +
{{BlaueBox|TEXT=
 +
\text{Proof:}&nbsp; According to the above definitions:
 +
:{ {\rm \nabla} \tau_x} = \frac {\rm 1}{ \varphi_x(\tau = \rm 0)} \cdot \int^{+\infty}_{-\infty}{ \varphi_x(\tau )} \hspace{0.1cm} {\rm d} \tau = \frac { {\it \Phi}_x(f = {\rm 0)} }{ \varphi_x(\tau = \rm 0)},
 +
:{ {\rm \nabla} f_x} = \frac {1}{ {\it \Phi}_x(f = {\rm0})} \cdot \int^{+\infty}_{-\infty}{ {\it \Phi}_x(f)} \hspace{0.1cm} {\rm d} f = \frac {\varphi_x(\tau = {\rm 0)} }{ {\it \Phi}_x(f = \rm 0)}.
 +
 +
Thus,&nbsp; the product is equal to&nbsp; 1.
 +
<div align="right">'''q.e.d.'''</div> }}
 +
 +
 +
{{GraueBox|TEXT= 
 +
\text{Example 2:}&nbsp; 
 +
A limiting case of the reciprocity theorem represents the so-called&nbsp; "White Noise":
 +
*This includes all spectral components&nbsp; (up to infinity).
 +
*The equivalent PSD bandwidth&nbsp; ∇f&nbsp; is infinite.
 +
 +
 +
The theorem given here states that for the equivalent ACF duration&nbsp; ∇τ = 0&nbsp; must hold &nbsp; &rArr; &nbsp; &raquo;'''white noise has a Dirac-shaped ACF'''&laquo;.
 +
 +
For more on this topic, see the three-part&nbsp; (German language)&nbsp; learning video&nbsp; [[Der_AWGN-Kanal_(Lernvideo)|"The AWGN channel"]],&nbsp; especially the second part.}}
 +
 +
 +
==Power-spectral density with DC component==
 +
<br>
 +
We assume a DC&ndash;free random process&nbsp; \{x_i(t)\}.&nbsp; Further,&nbsp; we assume that the process also contains no periodic components.&nbsp; Then holds:
 +
*The auto-correlation function&nbsp; φ_x(τ) vanishes&nbsp; for&nbsp; τ → ∞.
 +
*The power-spectral density&nbsp; {\it \Phi}_x(f) &nbsp;&ndash;&nbsp; computable as the Fourier transform of&nbsp; φ_x(τ)&nbsp; &ndash;&nbsp; is both continuous in value and continuous in time,&nbsp; i.e.,&nbsp; without discrete components.
 +
 +
 +
We now consider a second random process&nbsp; \{y_i(t)\},&nbsp; which differs from the process&nbsp; \{x_i(t)\}&nbsp; only by an additional DC component&nbsp; m_y:
 +
:\left\{ y_i (t) \right\} = \left\{ x_i (t) + m_y \right\}.
 +
 +
The statistical descriptors of the mean-valued random process&nbsp; \{y_i(t)\}&nbsp; then have the following properties:
 +
*The limit of the ACF for&nbsp; τ → ∞&nbsp; is now no longer zero,&nbsp; but&nbsp; m_y^2. &nbsp; Throughout the&nbsp; τ&ndash;range from&nbsp; -∞&nbsp; to&nbsp; +∞&nbsp; the ACF&nbsp; φ_y(τ)&nbsp; is larger than&nbsp; φ_x(τ)&nbsp; by&nbsp; m_y^2:
 +
:{\varphi_y ( \tau)} = {\varphi_x ( \tau)} + m_y^2 .
 +
*According to the elementary laws of the Fourier transform,&nbsp; the constant ACF contribution in the PSD leads to a Dirac delta function&nbsp; δ(f)&nbsp; with weight&nbsp; m_y^2:
 +
:{{\it \Phi}_y ( f)} = {\Phi_x ( f)} + m_y^2 \cdot \delta (f).
 +
 +
*More information about the&nbsp; \delta&ndash;function can be found in the chapter&nbsp; [[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal|"Direct current signal - Limit case of a periodic signal"]]&nbsp; of the book "Signal Representation".&nbsp;  Furthermore,&nbsp; we would like to refer you here to the&nbsp; (German language)&nbsp;  learning video&nbsp; [[Herleitung_und_Visualisierung_der_Diracfunktion_(Lernvideo)|"Herleitung und Visualisierung der Diracfunktion"]] &nbsp; &rArr; &nbsp; "Derivation and visualization of the Dirac delta function".
 +
 +
==Numerical PSD determination==
 +
<br>
 +
Auto-correlation function and power-spectral density are strictly related via the&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#Fourier_transform|\text{Fourier transform}]].&nbsp; This relationship also holds for discrete-time ACF representation with the sampling operator&nbsp; {\rm A} \{ \varphi_x ( \tau ) \} ,&nbsp; thus for
 +
:{\rm A} \{ \varphi_x ( \tau ) \} = \varphi_x ( \tau ) \cdot \sum_{k= - \infty}^{\infty} T_{\rm A} \cdot \delta ( \tau - k \cdot T_{\rm A}).
 +
 +
The transition from the time domain to the spectral domain can be derived with the following steps:
 +
*The distance&nbsp; T_{\rm A}&nbsp; of two samples is determined by the absolute bandwidth&nbsp; B_x&nbsp; (maximum occurring frequency within the process)&nbsp; via the sampling theorem:
 +
:T_{\rm A}\le\frac{1}{2B_x}.
 +
*The Fourier transform of the discrete-time&nbsp; (sampled)&nbsp; auto-correlation function yields an with&nbsp; {\rm 1}/T_{\rm A}&nbsp; periodic power-spectral density:
 +
:{\rm A} \{ \varphi_x ( \tau ) \}  \hspace{0.3cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.3cm} {\rm P} \{{{\it \Phi}_x} ( f) \} = \sum_{\mu = - \infty}^{\infty} {{\it \Phi}_x} ( f - \frac {\mu}{T_{\rm A}}).
 +
 +
{{BlaueBox|TEXT=
 +
\text{Conclusion:}&nbsp; Since both&nbsp; φ_x(τ)&nbsp; and&nbsp; {\it \Phi}_x(f)&nbsp; are even and real functions,&nbsp; the following relation holds:
 +
:{\rm P} \{ { {\it \Phi}_x} ( f) \} = T_{\rm A} \cdot \varphi_x ( k = 0) +2 T_{\rm A} \cdot \sum_{k = 1}^{\infty} \varphi_x ( k T_{\rm A}) \cdot {\rm cos}(2{\rm \pi} f k T_{\rm A}).
 +
*The power-spectral density&nbsp; \rm (PSD)&nbsp; of the continuous-time process is obtained from&nbsp; {\rm P} \{ { {\it \Phi}_x} ( f) \}&nbsp; by bandlimiting to the range&nbsp; \vert f \vert ≤ 1/(2T_{\rm A}).
 +
*In the time domain,&nbsp; this operation means interpolating the individual ACF samples with the&nbsp; {\rm sinc} function, where&nbsp; {\rm sinc}(x)&nbsp; stands for&nbsp; \sin(\pi x)/(\pi x).}}
 +
 +
 +
{{GraueBox|TEXT=
 +
\text{Example 3:}&nbsp; A Gaussian ACF&nbsp; φ_x(τ)&nbsp; is sampled at distance&nbsp; T_{\rm A}&nbsp; where the sampling theorem is satisfied:
 +
[[File:EN_Sto_T_4_5_S5.png |right|frame| Discrete-time auto-correlation function,&nbsp; periodically continued power-spectral density]]
 +
*The Fourier transform of the discrete-time ACF &nbsp; &rArr; &nbsp; {\rm A} \{φ_x(τ) \}&nbsp; be the periodically continued PSD &nbsp; &rArr; &nbsp; {\rm P} \{ { {\it \Phi}_x} ( f) \}.&nbsp;
 +
 +
 +
*This with&nbsp; {\rm 1}/T_{\rm A}&nbsp; periodic function&nbsp; {\rm P} \{ { {\it \Phi}_x} ( f) \}&nbsp; is accordingly infinitely extended&nbsp; (red curve).
 +
 +
 +
*The PSD&nbsp; {\it \Phi}_x(f)&nbsp; of the continuous-time process&nbsp; \{x_i(t)\}&nbsp; is obtained by band-limiting to the frequency range&nbsp; \vert f \cdot T_{\rm A} \vert ≤ 0.5,&nbsp; highlighted in blue in the figure. }}
 +
 +
==Accuracy of the numerical PSD calculation==
 +
<br>
 +
For the following analysis,&nbsp; we make the following assumptions:
 +
#The discrete-time ACF&nbsp; φ_x(k \cdot T_{\rm A})&nbsp; was determined numerically from&nbsp; N&nbsp; samples. &nbsp;
 +
#As already shown in section&nbsp; [[Theory_of_Stochastic_Signals/Auto-Correlation_Function#Accuracy_of_the_numerical_ACF_calculation|"Accuracy of the numerical ACF calculation"]],&nbsp; these values are in error and the errors are correlated if&nbsp; N&nbsp; was chosen too small.
 +
#To calculate the periodic power-spectral density&nbsp; \rm (PSD),&nbsp; we use only the ACF values&nbsp; φ_x(0), ... , φ_x(K \cdot T_{\rm A}):
 +
::{\rm P} \{{{\it \Phi}_x} ( f) \} = T_{\rm A} \cdot \varphi_x ( k = 0) +2 T_{\rm A} \cdot  \sum_{k = 1}^{K} \varphi_x  ( k T_{\rm A})\cdot {\rm cos}(2{\rm \pi} f k T_{\rm A}).
 +
 +
{{BlaueBox|TEXT= 
 +
\text{Conclusion:}&nbsp;
 +
The accuracy of the power-spectral density calculation is determined to a strong extent by the parameter&nbsp; K
 +
*If&nbsp; K&nbsp; is chosen too small,&nbsp; the ACF values actually present&nbsp; φ_x(k - T_{\rm A})&nbsp; with&nbsp; k > K&nbsp; will not be taken into account.
 +
*If&nbsp; K&nbsp; is too large,&nbsp; also such ACF values are considered,&nbsp; which should actually be zero and are finite only because of the numerical ACF calculation.
 +
*These values are only errors&nbsp; (due to a small&nbsp; N&nbsp; in the ACF calculation)  and impair the PSD calculation more than they provide a useful contribution to the result. }}
 +
 +
 +
{{GraueBox|TEXT=
 +
\text{Example 4:}&nbsp; We consider here a zero mean process with statistically independent samples.&nbsp; Thus,&nbsp; only the ACF value&nbsp; φ_x(0) = σ_x^2&nbsp; should be different from zero.
 +
[[File:EN_Sto_T_4_5_S5_b_neu_v2.png |450px|right|frame| Accuracy of numerical PSD calculation ]]
 +
*But if one determines the ACF numerically from only&nbsp; N = 1000&nbsp; samples,&nbsp; one obtains finite ACF values even for&nbsp; k ≠ 0.
 +
 +
*The upper figure shows that these erroneous ACF values can be up to&nbsp; 6\%&nbsp; of the maximum value.
 +
 +
*The numerically determined PSD is shown below.&nbsp; The theoretical&nbsp; (yellow) curve should be constant for&nbsp; \vert f \cdot T_{\rm A} \vert ≤ 0.5.
 +
 +
*The green and purple curves illustrate how by&nbsp; K = 3 &nbsp;resp.&nbsp; K = 10,&nbsp; the result is distorted compared to&nbsp; K = 0.
 +
 +
*In this case&nbsp; (statistically independent random variables)&nbsp; the error grows monotonically with increasing K.&nbsp;
 +
 +
 +
In contrast,&nbsp; for a random variable with statistical bindings,&nbsp; there is an optimal value for&nbsp; K&nbsp; in each case.
 +
#If this is chosen too small,&nbsp; significant bindings are not considered.
 +
#In contrast,&nbsp; a too large value  leads to oscillations that can only be attributed to erroneous ACF values.}}
 +
 +
==Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise_4.12:_Power-Spectral_Density_of_a_Binary_Signal|Exercise 4.12: Power-Spectral Density of a Binary Signal]]
 +
 +
[[Aufgaben:Exercise_4.12Z:_White_Gaussian_Noise|Exercise 4.12Z: White Gaussian Noise]]
 +
 +
[[Aufgaben:Exercise_4.13:_Gaussian_ACF_and_PSD|Exercise 4.13: Gaussian ACF and PSD]]
 +
 +
[[Aufgaben:Exercise_4.13Z:_AMI_Code|Exercise 4.13Z: AMI Code]]
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 17:13, 22 December 2022

Wiener-Khintchine Theorem


In the remainder of this paper we restrict ourselves to ergodic processes.  As was shown in the  "last chapter"  the following statements then hold:

  • Each individual pattern function  x_i(t)  is representative of the entire random process  \{x_i(t)\}.
  • All time means are thus identical to the corresponding coulter means.
  • The auto-correlation function,  which is generally affected by the two time parameters  t_1  and  t_2,  now depends only on the time difference  τ = t_2 - t_1:
\varphi_x(t_1,t_2)={\rm E}\big[x(t_{\rm 1})\cdot x(t_{\rm 2})\big] = \varphi_x(\tau)= \int^{+\infty}_{-\infty}x(t)\cdot x(t+\tau)\,{\rm d}t.

The auto-correlation function provides quantitative information about the  (linear)  statistical bindings within the ergodic process  \{x_i(t)\}  in the time domain.  The equivalent descriptor in the frequency domain is the  "power-spectral density",  often also referred to as the  "power-spectral density".

\text{Definition:}  The  »power-spectral density«  \rm (PSD)  of an ergodic random process  \{x_i(t)\}  is the Fourier transform of the auto-correlation function  \rm (ACF):

{\it \Phi}_x(f)=\int^{+\infty}_{-\infty}\varphi_x(\tau) \cdot {\rm e}^{- {\rm j\hspace{0.05cm}\cdot \hspace{0.05cm} \pi}\hspace{0.05cm}\cdot \hspace{0.05cm} f \hspace{0.05cm}\cdot \hspace{0.05cm}\tau} {\rm d} \tau.

This functional relationship is called the  "Theorem of  \text{Wiener}  and  \text{Khinchin}".


Similarly,  the auto-correlation function can be computed as the inverse Fourier transform of the power-spectral density  (see section  "Inverse Fourier transform"  in the book  "Signal Representation"):

\varphi_x(\tau)=\int^{+\infty}_{-\infty} {\it \Phi}_x \cdot {\rm e}^{- {\rm j\hspace{0.05cm}\cdot \hspace{0.05cm} \pi}\hspace{0.05cm}\cdot \hspace{0.05cm} f \hspace{0.05cm}\cdot \hspace{0.05cm}\tau} {\rm d} f.
  • The two equations are directly applicable only if the random process contains neither a DC component nor periodic components.
  • Otherwise,  one must proceed according to the specifications given in section  "Power-spectral density with DC component".

Physical interpretation and measurement


The lower chart shows an arrangement for  (approximate)  metrological determination of the power-spectral density  {\it \Phi}_x(f).  The following should be noted in this regard:

  • The random signal  x(t)  is applied to a  (preferably)  rectangular and  (preferably)  narrowband filter with center frequency  f  and bandwidth  Δf  where  Δf  must be chosen sufficiently small according to the desired frequency resolution.
  • The corresponding output signal  x_f(t)  is squared and then the mean value is formed over a sufficiently long measurement period  T_{\rm M}.  This gives the  "power of  x_f(t)"  or the  "power components of  x(t)  in the spectral range from  f - Δf/2  to  f + Δf/2":
To measure the power-spectral density
P_{x_f} =\overline{x_f(t)^2}=\frac{1}{T_{\rm M}}\cdot\int^{T_{\rm M}}_{0}x_f^2(t) \hspace{0.1cm}\rm d \it t.
  • Division by  Δf  leads to the power-spectral density  \rm (PSD):
{{\it \Phi}_{x \rm +}}(f) =\frac{P_{x_f}}{{\rm \Delta} f} \hspace {0.5cm} \Rightarrow \hspace {0.5cm} {\it \Phi}_{x}(f) = \frac{P_{x_f}}{{\rm 2 \cdot \Delta} f}.
  • {\it \Phi}_{x+}(f) = 2 \cdot {\it \Phi}_x(f)  denotes the one-sided PSD defined only for positive frequencies.   For  f<0   ⇒   {\it \Phi}_{x+}(f) = 0.  In contrast,  for the commonly used two-sided power-spectral density:
{\it \Phi}_x(-f) = {\it \Phi}_x(f).
  • While the power  P_{x_f}  tends to zero as the bandwidth  Δf  becomes smaller,  the power-spectral density remains nearly constant above a sufficiently small value of  Δf.  For the exact determination of  {\it \Phi}_x(f)  two boundary crossings are necessary:
{{\it \Phi}_x(f)} = \lim_{{\rm \Delta}f\to 0} \hspace{0.2cm} \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{{\rm 2 \cdot \Delta}f\cdot T_{\rm M}}\cdot\int^{T_{\rm M}}_{0}x_f^2(t) \hspace{0.1cm} \rm d \it t.

\text{Conclusion:} 

  • From this physical interpretation it further follows that the power-spectral density is always real and can never become negative.  
  • The total power of the random signal  x(t)  is then obtained by integration over all spectral components:
P_x = \int^{\infty}_{0}{\it \Phi}_{x \rm +}(f) \hspace{0.1cm}{\rm d} f = \int^{+\infty}_{-\infty}{\it \Phi}_x(f)\hspace{0.1cm} {\rm d} f .

Reciprocity law of ACF duration and PSD bandwidth


All the  \text{Fourier transform theorems}  derived in the book  "Signal Representation"  for deterministic signals can also be applied to

On the  "Reciprocity Theorem"  of ACF and PSD
  • the  auto-correlation function  \rm (ACF),  and
  • the  power-spectral density  \rm (PSD)


However,  not all laws yield meaningful results due to the specific properties

  • of auto-correlation function  (always real and even)
  • and power-spectral density  (always real, even, and non–negative).


We now consider as in the section  "Interpretation of the auto-correlation function"  two different ergodic random processes  \{x_i(t)\}  and  \{y_i(t)\}  based on

  1. two pattern signals  x(t)  and  y(t)   ⇒   upper sketch,
  2. two auto-correlation functions  φ_x(τ)  and  φ_y(τ)   ⇒   middle sketch,
  3. two power-spectral densities  {\it \Phi}_x(f)  and  {\it \Phi}_y(f)   ⇒   bottom sketch.


Based on these exemplary graphs,  the following statements can be made:

  • The areas under the PSD curves are equal   ⇒   the processes  \{x_i(t)\}  and  \{y_i(t)\}  have the same power:
{\varphi_x({\rm 0})}\hspace{0.05cm} =\hspace{0.05cm} \int^{+\infty}_{-\infty}{{\it \Phi}_x(f)} \hspace{0.1cm} {\rm d} f \hspace{0.2cm} = \hspace{0.2cm}{\varphi_y({\rm 0})} = \int^{+\infty}_{-\infty}{{\it \Phi}_y(f)} \hspace{0.1cm} {\rm d} f .
{{\rm \nabla} f_x} = \frac {1}{{\it \Phi}_x(f = {\rm 0})} \cdot \int^{+\infty}_{-\infty}{{\it \Phi}_x(f)} \hspace{0.1cm} {\rm d} f,
{ {\rm \nabla} \tau_x} = \frac {\rm 1}{ \varphi_x(\tau = \rm 0)} \cdot \int^{+\infty}_{-\infty}{\varphi_x(\tau )} \hspace{0.1cm} {\rm d} \tau.
  • With these definitions,  the following basic relationship holds:
{{\rm \nabla} \tau_x} \cdot {{\rm \nabla} f_x} = 1\hspace{1cm}{\rm resp.}\hspace{1cm} {{\rm \nabla} \tau_y} \cdot {{\rm \nabla} f_y} = 1.

\text{Example 1:}  We start from the graph at the top of this section:

  • The characteristics of the higher frequency signal  x(t)  are  ∇τ_x = 0.33\hspace{0.08cm} \rm µs   and  ∇f_x = 3 \hspace{0.08cm} \rm MHz.
  • The equivalent ACF duration of the signal  y(t)  is three times:   ∇τ_y = 1 \hspace{0.08cm} \rm µs.
  • The equivalent PSD bandwidth of the signal  y(t)  is thus only  ∇f_y = ∇f_x/3 = 1 \hspace{0.08cm} \rm MHz.


\text{General:}  The product of equivalent ACF duration  { {\rm \nabla} \tau_x}  and equivalent PSD bandwidth  { {\rm \nabla} f_x}  is always "one":

{ {\rm \nabla} \tau_x} \cdot { {\rm \nabla} f_x} = 1.


\text{Proof:}  According to the above definitions:

{ {\rm \nabla} \tau_x} = \frac {\rm 1}{ \varphi_x(\tau = \rm 0)} \cdot \int^{+\infty}_{-\infty}{ \varphi_x(\tau )} \hspace{0.1cm} {\rm d} \tau = \frac { {\it \Phi}_x(f = {\rm 0)} }{ \varphi_x(\tau = \rm 0)},
{ {\rm \nabla} f_x} = \frac {1}{ {\it \Phi}_x(f = {\rm0})} \cdot \int^{+\infty}_{-\infty}{ {\it \Phi}_x(f)} \hspace{0.1cm} {\rm d} f = \frac {\varphi_x(\tau = {\rm 0)} }{ {\it \Phi}_x(f = \rm 0)}.

Thus,  the product is equal to  1.

q.e.d.


\text{Example 2:}  A limiting case of the reciprocity theorem represents the so-called  "White Noise":

  • This includes all spectral components  (up to infinity).
  • The equivalent PSD bandwidth  ∇f  is infinite.


The theorem given here states that for the equivalent ACF duration  ∇τ = 0  must hold   ⇒   »white noise has a Dirac-shaped ACF«.

For more on this topic, see the three-part  (German language)  learning video  "The AWGN channel",  especially the second part.


Power-spectral density with DC component


We assume a DC–free random process  \{x_i(t)\}.  Further,  we assume that the process also contains no periodic components.  Then holds:

  • The auto-correlation function  φ_x(τ) vanishes  for  τ → ∞.
  • The power-spectral density  {\it \Phi}_x(f)  –  computable as the Fourier transform of  φ_x(τ)  –  is both continuous in value and continuous in time,  i.e.,  without discrete components.


We now consider a second random process  \{y_i(t)\},  which differs from the process  \{x_i(t)\}  only by an additional DC component  m_y:

\left\{ y_i (t) \right\} = \left\{ x_i (t) + m_y \right\}.

The statistical descriptors of the mean-valued random process  \{y_i(t)\}  then have the following properties:

  • The limit of the ACF for  τ → ∞  is now no longer zero,  but  m_y^2.   Throughout the  τ–range from  -∞  to  +∞  the ACF  φ_y(τ)  is larger than  φ_x(τ)  by  m_y^2:
{\varphi_y ( \tau)} = {\varphi_x ( \tau)} + m_y^2 .
  • According to the elementary laws of the Fourier transform,  the constant ACF contribution in the PSD leads to a Dirac delta function  δ(f)  with weight  m_y^2:
{{\it \Phi}_y ( f)} = {\Phi_x ( f)} + m_y^2 \cdot \delta (f).

Numerical PSD determination


Auto-correlation function and power-spectral density are strictly related via the  \text{Fourier transform}.  This relationship also holds for discrete-time ACF representation with the sampling operator  {\rm A} \{ \varphi_x ( \tau ) \} ,  thus for

{\rm A} \{ \varphi_x ( \tau ) \} = \varphi_x ( \tau ) \cdot \sum_{k= - \infty}^{\infty} T_{\rm A} \cdot \delta ( \tau - k \cdot T_{\rm A}).

The transition from the time domain to the spectral domain can be derived with the following steps:

  • The distance  T_{\rm A}  of two samples is determined by the absolute bandwidth  B_x  (maximum occurring frequency within the process)  via the sampling theorem:
T_{\rm A}\le\frac{1}{2B_x}.
  • The Fourier transform of the discrete-time  (sampled)  auto-correlation function yields an with  {\rm 1}/T_{\rm A}  periodic power-spectral density:
{\rm A} \{ \varphi_x ( \tau ) \} \hspace{0.3cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.3cm} {\rm P} \{{{\it \Phi}_x} ( f) \} = \sum_{\mu = - \infty}^{\infty} {{\it \Phi}_x} ( f - \frac {\mu}{T_{\rm A}}).

\text{Conclusion:}  Since both  φ_x(τ)  and  {\it \Phi}_x(f)  are even and real functions,  the following relation holds:

{\rm P} \{ { {\it \Phi}_x} ( f) \} = T_{\rm A} \cdot \varphi_x ( k = 0) +2 T_{\rm A} \cdot \sum_{k = 1}^{\infty} \varphi_x ( k T_{\rm A}) \cdot {\rm cos}(2{\rm \pi} f k T_{\rm A}).
  • The power-spectral density  \rm (PSD)  of the continuous-time process is obtained from  {\rm P} \{ { {\it \Phi}_x} ( f) \}  by bandlimiting to the range  \vert f \vert ≤ 1/(2T_{\rm A}).
  • In the time domain,  this operation means interpolating the individual ACF samples with the  {\rm sinc} function, where  {\rm sinc}(x)  stands for  \sin(\pi x)/(\pi x).


\text{Example 3:}  A Gaussian ACF  φ_x(τ)  is sampled at distance  T_{\rm A}  where the sampling theorem is satisfied:

Discrete-time auto-correlation function,  periodically continued power-spectral density
  • The Fourier transform of the discrete-time ACF   ⇒   {\rm A} \{φ_x(τ) \}  be the periodically continued PSD   ⇒   {\rm P} \{ { {\it \Phi}_x} ( f) \}


  • This with  {\rm 1}/T_{\rm A}  periodic function  {\rm P} \{ { {\it \Phi}_x} ( f) \}  is accordingly infinitely extended  (red curve).


  • The PSD  {\it \Phi}_x(f)  of the continuous-time process  \{x_i(t)\}  is obtained by band-limiting to the frequency range  \vert f \cdot T_{\rm A} \vert ≤ 0.5,  highlighted in blue in the figure.

Accuracy of the numerical PSD calculation


For the following analysis,  we make the following assumptions:

  1. The discrete-time ACF  φ_x(k \cdot T_{\rm A})  was determined numerically from  N  samples.  
  2. As already shown in section  "Accuracy of the numerical ACF calculation",  these values are in error and the errors are correlated if  N  was chosen too small.
  3. To calculate the periodic power-spectral density  \rm (PSD),  we use only the ACF values  φ_x(0), ... , φ_x(K \cdot T_{\rm A}):
{\rm P} \{{{\it \Phi}_x} ( f) \} = T_{\rm A} \cdot \varphi_x ( k = 0) +2 T_{\rm A} \cdot \sum_{k = 1}^{K} \varphi_x ( k T_{\rm A})\cdot {\rm cos}(2{\rm \pi} f k T_{\rm A}).

\text{Conclusion:}  The accuracy of the power-spectral density calculation is determined to a strong extent by the parameter  K:

  • If  K  is chosen too small,  the ACF values actually present  φ_x(k - T_{\rm A})  with  k > K  will not be taken into account.
  • If  K  is too large,  also such ACF values are considered,  which should actually be zero and are finite only because of the numerical ACF calculation.
  • These values are only errors  (due to a small  N  in the ACF calculation) and impair the PSD calculation more than they provide a useful contribution to the result.


\text{Example 4:}  We consider here a zero mean process with statistically independent samples.  Thus,  only the ACF value  φ_x(0) = σ_x^2  should be different from zero.

Accuracy of numerical PSD calculation
  • But if one determines the ACF numerically from only  N = 1000  samples,  one obtains finite ACF values even for  k ≠ 0.
  • The upper figure shows that these erroneous ACF values can be up to  6\%  of the maximum value.
  • The numerically determined PSD is shown below.  The theoretical  (yellow) curve should be constant for  \vert f \cdot T_{\rm A} \vert ≤ 0.5.
  • The green and purple curves illustrate how by  K = 3  resp.  K = 10,  the result is distorted compared to  K = 0.
  • In this case  (statistically independent random variables)  the error grows monotonically with increasing K


In contrast,  for a random variable with statistical bindings,  there is an optimal value for  K  in each case.

  1. If this is chosen too small,  significant bindings are not considered.
  2. In contrast,  a too large value leads to oscillations that can only be attributed to erroneous ACF values.

Exercises for the chapter


Exercise 4.12: Power-Spectral Density of a Binary Signal

Exercise 4.12Z: White Gaussian Noise

Exercise 4.13: Gaussian ACF and PSD

Exercise 4.13Z: AMI Code