Difference between revisions of "Aufgaben:Exercise 4.2: UMTS Radio Channel Basics"

From LNTwww
 
(7 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Allgemeine Beschreibung von UMTS
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/General_Description_of_UMTS
  
 
}}
 
}}
  
[[File:P_ID1931__Bei_A_4_2.png|right|frame|Pfadverlust, frequenz– und zeitselektives Fading]]
+
[[File:EN_Bei_A_4_2_v2.png|right|frame|Path loss,  frequency/time–selective fading ]]
Auch bei UMTS gibt es etliche zu Degradationen führende Effekte, die man bereits bei der Systemplanung berücksichtigen muss:
+
UMTS also has quite a few effects leading to degradation that must be taken into account during system planning:
*${\rm Interferenzen}$:  Da alle Nutzer gleichzeitig im gleichen Frequenzband versorgt werden, wird jeder Nutzer durch andere Nutzer gestört.
+
*${\rm Interference}$:  Since all users are simultaneously served in the same frequency band,  each user is interfered by other users.
*${\rm Pfadverlust}$:  Die Empfangsleistung  $P_{\rm E}$  eines Funksignals nimmt mit der Entfernung  $d$  um den Faktor  $d^{- \gamma}$  ab.
 
*${\rm Mehrwegeempfang}$:  Das Signal erreicht den mobilen Empfänger nicht nur über den direkten Pfad, sondern auf mehreren Wegen – unterschiedlich gedämpft und verschieden verzögert.
 
*${\rm Dopplereffekt}$:  Bewegen sich Sender und/oder Empfänger, so kann es abhängig von Richtung (Welcher Winkel? Aufeinander zu? Voneinander weg?) und Geschwindigkeit zu Frequenzverschiebungen kommen.
 
  
 +
*${\rm Path\:loss}$:  The received power  $P_{\rm E}$  of a radio signal decreases with distance   $d$   by a factor  $d^{- \gamma}$.
  
Im Buch  [[Mobile Kommunikation]]  wurden diese Effekte bereits im Detail behandelt. Die Diagramme vermitteln nur einige wenige Informationen bezüglich
+
*${\rm Multipath\:propagation}$:  The signal reaches the mobile receiver not only through the direct path,  but through several paths – differently attenuated and differently delayed.
*<u>Pfadverlust:</u>&nbsp; Der Pfadverlust gibt die Verminderung der Empfangsleistung mit der Entfernung&nbsp; $d$&nbsp; vom Sender an. Oberhalb des so genannten&nbsp; ''Break Points''&nbsp; gilt für die Empfangsleistung näherungsweise:
 
:$$\frac{P(d)}{P(d_0)} = \alpha_0 \cdot \left ( {d}/{d_0}\right )^{-4}.$$
 
:Nach der oberen Grafik gilt&nbsp; $\alpha_{0} = 10^{–5}$&nbsp; $($entsprechend&nbsp; $50 \ \rm dB)$&nbsp; und&nbsp; $d_{0} = 100 \ \rm m$.
 
*<u>Frequenzselektives Fading:</u>&nbsp; Die Leistungsübertragungsfunktion&nbsp; $|H_{\rm K}(f)|^{2}$&nbsp; zu einem gegebenen Zeitpunkt gemäß der mittleren Grafik verdeutlicht frequenzselektives Fading. Die blau–gestrichelt eingezeichnete Horizontale kennzeichnet dagegen nichtfrequenzselektives Fading.
 
::Ein solches frequenzselektives Fading entsteht, wenn die Kohärenzbandbreite&nbsp; $B_{\rm K}$&nbsp; sehr viel kleiner als die Signalbandbreite&nbsp; $B_{\rm S}$&nbsp; ist. Dabei gilt mit der&nbsp; ''Mehrwegeverbreiterung''&nbsp; (englisch:&nbsp; ''Delay Spread''&nbsp;)&nbsp; $T_{\rm V}$ &nbsp; &rArr; &nbsp;  Differenz zwischen der maximalen und der minimalen Verzögerungszeit:
 
:$$B_{\rm K}\approx \frac{1}{T_{\rm V}}= \frac{1}{\tau_{\rm max}- \tau_{\rm min}}.$$
 
*<u>Zeitselektives Fading:</u>&nbsp; Die untere Grafik zeigt  die Leistungsübertragungsfunktion&nbsp; $|H_{\rm K}(t)|^{2}$&nbsp; für eine feste Frequenz&nbsp; $f_{0}$. Die Skizze ist "schematisch" zu verstehen, weil für das hier betrachtete zeitselektive Fading genau der gleiche Verlauf gewählt wurde wie in der mittleren Grafik für das frequenzselektive Fading (reine Bequemlichkeit des Autors).
 
::Hier entsteht eine so genannte Dopplerverbreiterung&nbsp; $B_{\rm D}$, definiert als Differenz zwischen der maximalen und der minimalen Dopplerfrequenz. Der Kehrwert&nbsp; $T_{\rm D} = 1/B_{\rm D}$&nbsp; wird als&nbsp; ''Kohärenzzeit''&nbsp; oder auch als&nbsp; ''Korrelationsdauer''&nbsp; bezeichnet. Bei UMTS tritt immer dann zeitselektives Fading auf, wenn&nbsp; $T_{\rm D} \ll T_{\rm C}$&nbsp; (Chipdauer) ist.
 
  
 +
*${\rm Doppler\:effect}$:&nbsp; If transmitter and/or receiver move,&nbsp; frequency shifts can occur depending on speed and the direction&nbsp; $($Which angle?&nbsp; Towards each other? Away from each other?$)$. 
  
  
 +
In the book&nbsp; "[[Mobile Communications]]"&nbsp; these effects have already been discussed in detail. The diagrams convey only a few pieces of information regarding
 +
*<u>Path loss:</u>&nbsp; Path loss indicates the decrease in the received power with distance&nbsp; $d$&nbsp; from the transmitter.&nbsp; Above the so-called&nbsp; "break point"&nbsp; applies approximately to the received power:
 +
::$$\frac{P(d)}{P(d_0)} = \alpha_0 \cdot \left ( {d}/{d_0}\right )^{-4}.$$
 +
:According to the upper graph&nbsp; $\alpha_{0} = 10^{-5}$&nbsp; $($correspondingly&nbsp; $50 \ \rm dB)$&nbsp; and&nbsp; $d_{0} = 100 \ \rm m$.
  
 +
*<u>Frequency-selective fading:</u>&nbsp; The power transfer function&nbsp; $|H_{\rm K}(f)|^{2}$&nbsp; at a given time according to the middle graph illustrates frequency-selective fading.&nbsp; The blue-dashed horizontal line,&nbsp; on the other hand,&nbsp; indicates non-frequency-selective fading.
 +
::Such frequency-selective fading occurs when the coherence bandwidth&nbsp; $B_{\rm K}$&nbsp; is much smaller than the signal bandwidth&nbsp; $B_{\rm S}$.&nbsp; Here,&nbsp; with the&nbsp; "delay spread"&nbsp; $T_{\rm V}$ &nbsp; &rArr; &nbsp; difference between the maximum and minimum delay times:
 +
::$$B_{\rm K}\approx \frac{1}{T_{\rm V}}= \frac{1}{\tau_{\rm max}- \tau_{\rm min}}.$$
  
 +
*<u>Time-selective fading:</u>&nbsp; The bottom graph shows the power transfer function&nbsp; $|H_{\rm K}(t)|^{2}$&nbsp; for a fixed frequency&nbsp; $f_{0}$.&nbsp; The sketch is to be understood schematically,&nbsp; because for the time-selective fading considered here exactly the same course was chosen as in the middle diagram for the frequency-selective fading&nbsp; $($pure convenience of the author$)$.
 +
::Here a so-called&nbsp; "Doppler spread"&nbsp; $B_{\rm D}$&nbsp; arises,&nbsp; defined as the difference between the maximum and the minimum Doppler frequency.&nbsp; The inverse&nbsp; $T_{\rm D} = 1/B_{\rm D}$&nbsp; is called&nbsp; "coherence time"&nbsp; or also&nbsp; "correlation duration".&nbsp; In UMTS,&nbsp; time-selective fading occurs whenever&nbsp; $T_{\rm D} \ll T_{\rm C}$&nbsp; $($chip duration$)$.
  
  
  
''Hinweise:''
+
<u>Hints:</u>
  
*Die Aufgabe gehört zum Themengebiet von&nbsp; [[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_UMTS|Allgemeine Beschreibung von UMTS]].
+
*This exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/General_Description_of_UMTS|"General Description of UMTS"]].
*Bezug genommen wird insbesondere auf die Seiten&nbsp; [[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_UMTS#Eigenschaften_des_UMTS-Funkkanals|Eigenschaften des UMTS-Funkkanals]]&nbsp; sowie&nbsp; [[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_UMTS#Frequenz.E2.80.93_und_zeitselektives_Fading|Frequenz&ndash; und zeitselektives Fading]].
 
*Bei UMTS beträgt die Bandbreite&nbsp;  $B_{\rm S} = 5 \ \rm MHz$&nbsp; und die Chipdauer ist&nbsp; $T_{\rm C} \approx 0.26 \  \rm &micro; s$.
 
 
   
 
   
 +
*Reference is made in particular to the sections &nbsp; [[Examples_of_Communication_Systems/General_Description_of_UMTS#Properties_of_the_UMTS_radio_channel|"Properties of the UMTS radio channel"]] &nbsp; and &nbsp; [[Examples_of_Communication_Systems/General_Description_of_UMTS#Frequency.E2.80.93selective_and_time.E2.80.93selective_fading|"Frequency-selective and time-selective fading"]].
  
 +
*For UMTS,&nbsp; the bandwidth:&nbsp; $B_{\rm S} = 5 \ \rm MHz$&nbsp; and the chip duration:&nbsp; $T_{\rm C} \approx 0.26 \ \rm &micro; s$.
 +
  
  
===Fragebogen===
+
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Berechnen Sie – ausgehend von der oberen Grafik auf der Angabenseite – den Pfadverlust&nbsp; $($in&nbsp; $\rm dB)$&nbsp; für&nbsp; $d =   \rm 5 \ km$.
+
{Starting from the top graph on the information page,&nbsp; calculate the path loss&nbsp; $($in&nbsp; $\rm dB)$&nbsp; for&nbsp; $d = \rm 5 \ km$.
 
|type="{}"}
 
|type="{}"}
${\rm Pfadverlust} \ = \ $ { 118 3% } $\ \rm dB $
+
${\rm path\ loss} \ = \ $ { 118 3% } $\ \rm dB $.
  
{Welche Aussagen gelten bezüglich des frequenzselektiven Fadings?
+
{What statements are true regarding frequency-selective fading?
 
|type="[]"}
 
|type="[]"}
+ Dieses entsteht durch Mehrwegeempfang.
+
+ This is caused by multipath reception.
- Es entsteht durch Bewegung von Sender und/oder Empfänger.
+
- It is caused by movement of transmitter and/or receiver.
+ Verschiedene Frequenzen werden unterschiedlich gedämpft.
+
+ Different frequencies are attenuated differently.
+ Ein Echo im Abstand&nbsp; $1\ \rm &micro; s$&nbsp; führt zu frequenzselektivem Fading.
+
+ An echo at a distance&nbsp; $1\ \rm &micro; s$&nbsp; results in frequency-selective fading.
  
{Welche Aussagen gelten bezüglich des zeitselektiven Fadings?
+
{What statements are true regarding time-selective fading?
 
|type="[]"}
 
|type="[]"}
- Dieses entsteht durch Mehrwegeempfang.
+
- This arises due to multipath reception.
+ Es entsteht durch Bewegung von Sender und/oder Empfänger.
+
+ It results from movement of transmitter and/or receiver.
- Verschiedene Frequenzen werden unterschiedlich gedämpft.
+
- Different frequencies are attenuated differently.
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp; Entsprechend der Skizze liegt der Breakpoint bei $d_{0} = 100 \ \rm m$.  
+
'''(1)'''&nbsp; According to the sketch,&nbsp; the breakpoint is at&nbsp; $d_{0} = 100 \ \rm m$.  
*Für $d ≤ d_{0}$ ist der Pfadverlust gleich $\alpha_{0} \cdot (d/d_{0})^{–2}$. Für $d = d_{0} = 100 \ \rm m$ gilt:
+
*For&nbsp; $d ≤ d_{0}$,&nbsp; the path loss is equal to&nbsp; $\alpha_{0} \cdot (d/d_{0})^{-2}$.&nbsp; For $d = d_{0} = 100 \ \rm m$&nbsp; holds:
:$${\rm Pfadverlust} = \alpha_0 = 10^{-5}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}{50\,{\rm dB}}.$$
+
:$${\rm path\ loss} = \alpha_0 = 10^{-5}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}{50\,{\rm dB}}.$$
*Oberhalb von $d_{0}$ ist der Pfadverlust gleich  $\alpha_{0} \cdot (d/d_{0})^{–4}$. Somit erhält man in $5 \ \rm km$ Entfernung:
+
 
:$${\rm Pfadverlust} = 10^{-5}\cdot 50^{-4} = 1.6 \cdot 10^{-12}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}\underline{118\,{\rm dB}}.$$
+
*Above&nbsp; $d_{0}$,&nbsp; the path loss is equal to&nbsp; $\alpha_{0} \cdot (d/d_{0})^{-4}$. &nbsp; Thus,&nbsp; at&nbsp; $5 \ \rm km$&nbsp; distance,&nbsp; one obtains:
 +
:$${\rm path\ loss} = 10^{-5}\cdot 50^{-4} = 1.6 \cdot 10^{-12}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}\underline{118\,{\rm dB}}.$$
 +
 
  
 +
'''(2)'''&nbsp; Correct are the&nbsp; <u>statements 1, 3, and 4</u>:
 +
*Frequency-selective fading is due to multipath reception.&nbsp; This means:
  
'''(2)'''&nbsp; Richtig sind die <u>Aussagen 1, 3 und 4</u>:
+
*Different frequency components are delayed and attenuated differently by the channel.
*Das frequenzselektive Fading ist auf Mehrwegeempfang zurückzuführen. Das bedeutet:
+
 
*Unterschiedliche Frequenzanteile werden durch den Kanal unterschiedlich verzögert und gedämpft.
+
*This results in attenuation and phase distortion.
*Dadurch entstehen Dämpfungs– und Phasenverzerrungen.
+
   
*Wegen $\tau_{\rm max} = 1 \ \rm &micro; s$ (vereinfachend wird $\tau_{\rm min} = 0$ gesetzt) ergibt sich weiter
+
*Because&nbsp; $\tau_{\rm max} = 1 \ \rm &micro; s$&nbsp; $($simplifying&nbsp; $\tau_{\rm min} = 0$&nbsp; is set$)$&nbsp; further results in
:$$B_{\rm K} = \frac{1}{\tau_{\rm max}- \tau_{\rm min}} = 1\,{\rm MHz}\ \ll \ B_{\rm S} \hspace{0.15cm}\underline {= 5\,{\rm MHz}}.$$
+
:$$B_{\rm K} = \frac{1}{\tau_{\rm max}- \tau_{\rm min}} = 1\,{\rm MHz}\ \ll \ B_{\rm S} \hspace{0.15cm}\underline {= 5\,{\rm MHz}}.$$
  
  
'''(3)'''&nbsp; Richtig ist die <u>Aussage 2</u>.  
+
'''(3)'''&nbsp; Correct is&nbsp; <u>statement 2</u>.  
*Die Aussagen 1 und 3 gelten dagegen für frequenzselektives Fading &ndash; siehe Teilaufgabe '''(2)'''.
+
*Statements 1 and 3,&nbsp; on the other hand,&nbsp; are valid for frequency-selective fading &ndash; see subtask&nbsp; '''(2)'''.
  
  

Latest revision as of 16:26, 13 February 2023

Path loss,  frequency/time–selective fading

UMTS also has quite a few effects leading to degradation that must be taken into account during system planning:

  • ${\rm Interference}$:  Since all users are simultaneously served in the same frequency band,  each user is interfered by other users.
  • ${\rm Path\:loss}$:  The received power  $P_{\rm E}$  of a radio signal decreases with distance   $d$   by a factor  $d^{- \gamma}$.
  • ${\rm Multipath\:propagation}$:  The signal reaches the mobile receiver not only through the direct path,  but through several paths – differently attenuated and differently delayed.
  • ${\rm Doppler\:effect}$:  If transmitter and/or receiver move,  frequency shifts can occur depending on speed and the direction  $($Which angle?  Towards each other? Away from each other?$)$.


In the book  "Mobile Communications"  these effects have already been discussed in detail. The diagrams convey only a few pieces of information regarding

  • Path loss:  Path loss indicates the decrease in the received power with distance  $d$  from the transmitter.  Above the so-called  "break point"  applies approximately to the received power:
$$\frac{P(d)}{P(d_0)} = \alpha_0 \cdot \left ( {d}/{d_0}\right )^{-4}.$$
According to the upper graph  $\alpha_{0} = 10^{-5}$  $($correspondingly  $50 \ \rm dB)$  and  $d_{0} = 100 \ \rm m$.
  • Frequency-selective fading:  The power transfer function  $|H_{\rm K}(f)|^{2}$  at a given time according to the middle graph illustrates frequency-selective fading.  The blue-dashed horizontal line,  on the other hand,  indicates non-frequency-selective fading.
Such frequency-selective fading occurs when the coherence bandwidth  $B_{\rm K}$  is much smaller than the signal bandwidth  $B_{\rm S}$.  Here,  with the  "delay spread"  $T_{\rm V}$   ⇒   difference between the maximum and minimum delay times:
$$B_{\rm K}\approx \frac{1}{T_{\rm V}}= \frac{1}{\tau_{\rm max}- \tau_{\rm min}}.$$
  • Time-selective fading:  The bottom graph shows the power transfer function  $|H_{\rm K}(t)|^{2}$  for a fixed frequency  $f_{0}$.  The sketch is to be understood schematically,  because for the time-selective fading considered here exactly the same course was chosen as in the middle diagram for the frequency-selective fading  $($pure convenience of the author$)$.
Here a so-called  "Doppler spread"  $B_{\rm D}$  arises,  defined as the difference between the maximum and the minimum Doppler frequency.  The inverse  $T_{\rm D} = 1/B_{\rm D}$  is called  "coherence time"  or also  "correlation duration".  In UMTS,  time-selective fading occurs whenever  $T_{\rm D} \ll T_{\rm C}$  $($chip duration$)$.


Hints:

  • For UMTS,  the bandwidth:  $B_{\rm S} = 5 \ \rm MHz$  and the chip duration:  $T_{\rm C} \approx 0.26 \ \rm µ s$.



Questions

1

Starting from the top graph on the information page,  calculate the path loss  $($in  $\rm dB)$  for  $d = \rm 5 \ km$.

${\rm path\ loss} \ = \ $

$\ \rm dB $.

2

What statements are true regarding frequency-selective fading?

This is caused by multipath reception.
It is caused by movement of transmitter and/or receiver.
Different frequencies are attenuated differently.
An echo at a distance  $1\ \rm µ s$  results in frequency-selective fading.

3

What statements are true regarding time-selective fading?

This arises due to multipath reception.
It results from movement of transmitter and/or receiver.
Different frequencies are attenuated differently.


Solution

(1)  According to the sketch,  the breakpoint is at  $d_{0} = 100 \ \rm m$.

  • For  $d ≤ d_{0}$,  the path loss is equal to  $\alpha_{0} \cdot (d/d_{0})^{-2}$.  For $d = d_{0} = 100 \ \rm m$  holds:
$${\rm path\ loss} = \alpha_0 = 10^{-5}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}{50\,{\rm dB}}.$$
  • Above  $d_{0}$,  the path loss is equal to  $\alpha_{0} \cdot (d/d_{0})^{-4}$.   Thus,  at  $5 \ \rm km$  distance,  one obtains:
$${\rm path\ loss} = 10^{-5}\cdot 50^{-4} = 1.6 \cdot 10^{-12}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}\underline{118\,{\rm dB}}.$$


(2)  Correct are the  statements 1, 3, and 4:

  • Frequency-selective fading is due to multipath reception.  This means:
  • Different frequency components are delayed and attenuated differently by the channel.
  • This results in attenuation and phase distortion.
  • Because  $\tau_{\rm max} = 1 \ \rm µ s$  $($simplifying  $\tau_{\rm min} = 0$  is set$)$  further results in
$$B_{\rm K} = \frac{1}{\tau_{\rm max}- \tau_{\rm min}} = 1\,{\rm MHz}\ \ll \ B_{\rm S} \hspace{0.15cm}\underline {= 5\,{\rm MHz}}.$$


(3)  Correct is  statement 2.

  • Statements 1 and 3,  on the other hand,  are valid for frequency-selective fading – see subtask  (2).