Difference between revisions of "Aufgaben:Exercise 1.2: Coaxial Cable"
(52 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/System_Description_in_Frequency_Domain}} |
− | [[File: P_ID787__LZI_A_1_2.png | | + | |
− | + | [[File: P_ID787__LZI_A_1_2.png | Various coaxial cable types|right|frame]] | |
− | $$H(f) = {\rm e}^{-\alpha_{0\hspace{0.02cm}} \hspace{0.05cm} \cdot \hspace{0.05cm} l} | + | The frequency response of a normal coaxial cable of length $l$ (with a diameter of $2.6 \ \text{mm}$ of the inner conductor and an external diameter of $9.5 \ \text{mm}$) is for frequencies $f > 0$: |
+ | :$$H(f) = {\rm e}^{-\alpha_{0\hspace{0.02cm}} \hspace{0.05cm} \cdot \hspace{0.05cm} l} | ||
\cdot {\rm e}^{-(\alpha_1 + {\rm j}\hspace{0.05cm} \cdot | \cdot {\rm e}^{-(\alpha_1 + {\rm j}\hspace{0.05cm} \cdot | ||
\hspace{0.05cm} \beta_1)\hspace{0.05cm} \cdot \hspace{0.05cm} f | \hspace{0.05cm} \beta_1)\hspace{0.05cm} \cdot \hspace{0.05cm} f | ||
− | \cdot \hspace{0.05cm} l}\cdot {\rm e}^{-(\alpha_2 + {\rm | + | \cdot \hspace{0.05cm} l}\hspace{0.05cm}\cdot\hspace{0.05cm} {\rm e}^{-(\alpha_2 + {\rm |
− | j}\hspace{0.05cm} \cdot \beta_2) \hspace{0.05cm} \cdot | + | j}\hspace{0.05cm} \cdot \hspace{0.05cm}\beta_2) \hspace{0.05cm} \cdot |
− | \hspace{0.05cm} \sqrt{f} \cdot \hspace{0.05cm} l}.$$ | + | \hspace{0.05cm} \sqrt{f} \hspace{0.05cm}\cdot \hspace{0.05cm} l}.$$ |
+ | |||
+ | *The first term in this equation, arising from the ohmic losses, is described by the "kilometric damping" $α_0 = 0.00162\, \text{Np/km}$. | ||
+ | |||
+ | |||
+ | *The frequency-proportional damping component ⇒ $α_1 · f · l$ mit $α_1 = 0.000435 \,\text{Np/(km · MHz)}$ is due to the lateral losses. This only becomes noticeable at very high frequencies and is neglected in the following. | ||
+ | |||
+ | |||
+ | *Also, the frequency-proportional phase $β_1 · f · l$ with $β_1 = 21.78 \,\text{rad/(km · MHz)}$ is left out of consideration because this only leads to an equal transit time for all frequencies. | ||
− | |||
− | + | Hence, for frequencies between $200 \ \text{kHz}$ and $400 \ \text{MHz}$ the frequency response of the coaxial cable is predominantly determined by the influence of | |
+ | *the damping constant $α_2 = 0.2722 \,\text{Np/(km · MHz}^{0.5})$, and | ||
+ | *the phase constant $β_2 = 0.2722 \,\text{rad/(km · MHz}^{0.5})$, | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | which are due to the so-called "skin effect". For positive frequencies the following applies: | |
+ | :$$H(f) = K \cdot {\rm e}^{-(\alpha_2 + {\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \beta_2)\hspace{0.05cm} \cdot \hspace{0.05cm} \sqrt{f} \hspace{0.05cm} \cdot \hspace{0.05cm} l}.$$ | ||
+ | Because of the same numerical values of $α_2$ and $β_2$ this can be expressed as follows: | ||
+ | :$$H(f) = K \cdot {\rm e}^{- \sqrt{2\hspace{0.05cm} \cdot \hspace{0.05cm}{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} f/f_0} },$$ | ||
+ | where the parameter $f_0$ equally accounts for the two constants $α_2$ and $β_2$ and the cable length $l$ . | ||
− | === | + | |
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ''Please note:'' | ||
+ | *This exercise belongs to the chapter [[Linear_and_Time_Invariant_Systems/System_Description_in_Frequency_Domain | System Description in Frequency Domain]]. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ===Questions=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {What is the frequency response constant $K$ for a cable length of $l = 5\,\text{ km}$? |
|type="{}"} | |type="{}"} | ||
− | $K =$ { 0.992 5% } | + | $K \ = \ $ { 0.992 5% } |
− | { | + | {What length $l_{\rm max}$ could a cable have such that a direct (DC) signal is not damped by no more than $3\%$ ? |
|type="{}"} | |type="{}"} | ||
− | $l_{\rm max} =$ { | + | $l_{\rm max} \ = \ $ { 18.8 5% } $\text{ km}$ |
− | { | + | {What is the characteristic frequency $f_0$ for a cable length of $l = 5\,\text{ km}$. Consider the relation $\rm \sqrt{2j} = 1 + j$. |
|type="{}"} | |type="{}"} | ||
− | $f_0 =$ { 0.54 5% } MHz | + | $f_0\ = \ $ { 0.54 5% } $\text{ MHz}$ |
− | { | + | {A cosine signal of frequency $f_x = f_0$ is applied to the cable input with a power of $P_x = \,\text{1 W}$. What is the output power $P_y$? |
|type="{}"} | |type="{}"} | ||
− | $P_y | + | $P_y \ = \ $ { 135 5% } $\text{ mW}$ |
− | { | + | {What output power is obtained with the signal frequency $f_x = 10 \ \rm MHz$? |
|type="{}"} | |type="{}"} | ||
− | $P_y | + | $P_y \ = \ $ { 0.184 5% } $\text{ mW}$ |
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | + | '''(1)''' For the direct signal transmission factor the following holds: | |
− | $$K = H(f=0) = {\rm e}^{-\alpha_0 \hspace{0.05cm}\cdot | + | :$$K = H(f=0) = {\rm e}^{-\alpha_0 \hspace{0.05cm}\cdot |
\hspace{0.05cm} l} = {\rm e}^{-0.00162 \hspace{0.05cm} \cdot | \hspace{0.05cm} l} = {\rm e}^{-0.00162 \hspace{0.05cm} \cdot | ||
\hspace{0.05cm} 5}\hspace{0.15cm}\underline{ \approx 0.992}.$$ | \hspace{0.05cm} 5}\hspace{0.15cm}\underline{ \approx 0.992}.$$ | ||
− | + | ||
− | $${\rm e}^{\rm -a_0 } \ge 0.97 | + | '''(2)''' With ${\rm a_0 } = α_0 · l$ the following equation should be satisfied: |
+ | :$${\rm e}^{\rm -a_0 } \ge 0.97 | ||
\hspace{0.2cm} \Rightarrow \hspace{0.2cm} {\rm a_0 } < \ln \frac{1}{0.97 | \hspace{0.2cm} \Rightarrow \hspace{0.2cm} {\rm a_0 } < \ln \frac{1}{0.97 | ||
} \approx 0.0305\,{\rm Np}.$$ | } \approx 0.0305\,{\rm Np}.$$ | ||
− | + | *Thus, the maximum length is $l_{\rm max} = 0.0305 \ \text{Np}/0.00162 \ \text{Np/km} \rm \underline{\: ≈ \: 18.8 \: km}$. | |
+ | |||
− | + | '''(3)''' Because of $β_2 = α_2$ and the given relation $\rm 1 + j = \sqrt{2j}$ the frequency response can be formulated as follows: | |
− | $$H(f) = K \cdot {\rm e}^{- \sqrt{2{\rm j}\hspace{0.05cm} \cdot | + | :$$H(f) = K \cdot {\rm e}^{- \sqrt{2\hspace{0.05cm} \cdot |
+ | \hspace{0.05cm}{\rm j}\hspace{0.05cm} \cdot | ||
\hspace{0.05cm} f \hspace{0.05cm} \cdot \hspace{0.05cm} {\alpha_2}^2 | \hspace{0.05cm} f \hspace{0.05cm} \cdot \hspace{0.05cm} {\alpha_2}^2 | ||
\hspace{0.05cm} \cdot \hspace{0.05cm} l^2} }= K \cdot {\rm e}^{- | \hspace{0.05cm} \cdot \hspace{0.05cm} l^2} }= K \cdot {\rm e}^{- | ||
− | \sqrt{2{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} f/f_0} }.$$ | + | \sqrt{2\hspace{0.05cm} \cdot |
− | : | + | \hspace{0.05cm}{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} f/f_0} }.$$ |
− | $$ | + | *By comparing the coefficients with the equation given above the following is obtained: |
+ | :$${1}/{f_0} = \alpha_2^2 \hspace{0.05cm} \cdot \hspace{0.05cm} l^2 = \big ( \frac { {\rm 0.272} }{\rm km \hspace{0.05cm} \cdot \hspace{0.05cm} \sqrt{MHz} }\big )^2 \cdot ({\rm 5 \hspace{0.05cm} km})^2 = \frac{1.855}{ {\rm MHz} }\hspace{0.2cm} \Rightarrow \hspace{0.2cm} f_0 \hspace{0.15cm}\rm \underline{= 0.540 \: MHz}.$$ | ||
+ | |||
− | + | '''(4)''' For the frequency response it holds: | |
− | $$\begin{align*}H(f) & = K \cdot {\rm e}^{- \sqrt{2{\rm j}\hspace{0.05cm} \cdot | + | :$$\begin{align*}H(f) & = K \cdot {\rm e}^{- \sqrt{2\hspace{0.05cm} \cdot |
+ | \hspace{0.05cm}{\rm j}\hspace{0.05cm} \cdot | ||
\hspace{0.05cm} f/f_0} } = K \cdot {\rm e}^{- \sqrt{ f/f_0} } | \hspace{0.05cm} f/f_0} } = K \cdot {\rm e}^{- \sqrt{ f/f_0} } | ||
− | \cdot {\rm e}^{- {\rm j}\sqrt{ f/f_0} } \ | + | \cdot {\rm e}^{- {\rm j}\hspace{0.05cm} \cdot |
− | {\rm e}^{- 2\sqrt{ f/f_0} }.\end{align*}$$ | + | \hspace{0.05cm}\sqrt{ f/f_0} } \hspace{0.05 cm} \Rightarrow \hspace{0.05 cm} |H(f)|^2 = K^2 \cdot |
− | + | {\rm e}^{- 2\hspace{0.05cm} \cdot | |
− | $$P_y = P_x \cdot |H(f = f_0)|^2 \hspace{0.15cm}\underline{\approx135\hspace{0.05cm}{\rm mW}}.$$ | + | \hspace{0.05cm}\sqrt{ f/f_0} }.\end{align*}$$ |
+ | *For this, $K^2 \cdot \rm e^{–2} ≈ 0.135$ is obtained for $f = f_0$ . From this it follows that: | ||
+ | :$$P_y = P_x \cdot |H(f = f_0)|^2 \hspace{0.15cm}\underline{\approx135\hspace{0.05cm}{\rm mW}}.$$ | ||
+ | |||
− | + | '''(5)''' With the higher frequency $f_x = 10\:\text{MHz}$ the output power is significantly smaller compared to $f_x = 0.54\:\text{MHz}$ : | |
− | $$P_y = P_x \cdot {\rm e}^{- 2\sqrt{ 10/0.54} }\approx P_x \cdot {\rm e}^{- 8.6 } \hspace{0.15cm}\underline{\approx 0.184 \hspace{0.1cm}{\rm mW}}.$$ | + | :$$P_y = P_x \cdot {\rm e}^{- 2\hspace{0.05cm} \cdot |
+ | \hspace{0.05cm}\sqrt{ 10/0.54} }\approx P_x \cdot {\rm e}^{- 8.6 } \hspace{0.15cm}\underline{\approx 0.184 \hspace{0.1cm}{\rm mW}}.$$ | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
Line 94: | Line 125: | ||
− | [[Category: | + | [[Category:Linear and Time-Invariant Systems: Exercises|^1.1 System Description in Frequency Domain^]] |
Latest revision as of 16:40, 11 July 2021
The frequency response of a normal coaxial cable of length $l$ (with a diameter of $2.6 \ \text{mm}$ of the inner conductor and an external diameter of $9.5 \ \text{mm}$) is for frequencies $f > 0$:
- $$H(f) = {\rm e}^{-\alpha_{0\hspace{0.02cm}} \hspace{0.05cm} \cdot \hspace{0.05cm} l} \cdot {\rm e}^{-(\alpha_1 + {\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \beta_1)\hspace{0.05cm} \cdot \hspace{0.05cm} f \cdot \hspace{0.05cm} l}\hspace{0.05cm}\cdot\hspace{0.05cm} {\rm e}^{-(\alpha_2 + {\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}\beta_2) \hspace{0.05cm} \cdot \hspace{0.05cm} \sqrt{f} \hspace{0.05cm}\cdot \hspace{0.05cm} l}.$$
- The first term in this equation, arising from the ohmic losses, is described by the "kilometric damping" $α_0 = 0.00162\, \text{Np/km}$.
- The frequency-proportional damping component ⇒ $α_1 · f · l$ mit $α_1 = 0.000435 \,\text{Np/(km · MHz)}$ is due to the lateral losses. This only becomes noticeable at very high frequencies and is neglected in the following.
- Also, the frequency-proportional phase $β_1 · f · l$ with $β_1 = 21.78 \,\text{rad/(km · MHz)}$ is left out of consideration because this only leads to an equal transit time for all frequencies.
Hence, for frequencies between $200 \ \text{kHz}$ and $400 \ \text{MHz}$ the frequency response of the coaxial cable is predominantly determined by the influence of
- the damping constant $α_2 = 0.2722 \,\text{Np/(km · MHz}^{0.5})$, and
- the phase constant $β_2 = 0.2722 \,\text{rad/(km · MHz}^{0.5})$,
which are due to the so-called "skin effect". For positive frequencies the following applies:
- $$H(f) = K \cdot {\rm e}^{-(\alpha_2 + {\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \beta_2)\hspace{0.05cm} \cdot \hspace{0.05cm} \sqrt{f} \hspace{0.05cm} \cdot \hspace{0.05cm} l}.$$
Because of the same numerical values of $α_2$ and $β_2$ this can be expressed as follows:
- $$H(f) = K \cdot {\rm e}^{- \sqrt{2\hspace{0.05cm} \cdot \hspace{0.05cm}{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} f/f_0} },$$
where the parameter $f_0$ equally accounts for the two constants $α_2$ and $β_2$ and the cable length $l$ .
Please note:
- This exercise belongs to the chapter System Description in Frequency Domain.
Questions
Solution
- $$K = H(f=0) = {\rm e}^{-\alpha_0 \hspace{0.05cm}\cdot \hspace{0.05cm} l} = {\rm e}^{-0.00162 \hspace{0.05cm} \cdot \hspace{0.05cm} 5}\hspace{0.15cm}\underline{ \approx 0.992}.$$
(2) With ${\rm a_0 } = α_0 · l$ the following equation should be satisfied:
- $${\rm e}^{\rm -a_0 } \ge 0.97 \hspace{0.2cm} \Rightarrow \hspace{0.2cm} {\rm a_0 } < \ln \frac{1}{0.97 } \approx 0.0305\,{\rm Np}.$$
- Thus, the maximum length is $l_{\rm max} = 0.0305 \ \text{Np}/0.00162 \ \text{Np/km} \rm \underline{\: ≈ \: 18.8 \: km}$.
(3) Because of $β_2 = α_2$ and the given relation $\rm 1 + j = \sqrt{2j}$ the frequency response can be formulated as follows:
- $$H(f) = K \cdot {\rm e}^{- \sqrt{2\hspace{0.05cm} \cdot \hspace{0.05cm}{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} f \hspace{0.05cm} \cdot \hspace{0.05cm} {\alpha_2}^2 \hspace{0.05cm} \cdot \hspace{0.05cm} l^2} }= K \cdot {\rm e}^{- \sqrt{2\hspace{0.05cm} \cdot \hspace{0.05cm}{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} f/f_0} }.$$
- By comparing the coefficients with the equation given above the following is obtained:
- $${1}/{f_0} = \alpha_2^2 \hspace{0.05cm} \cdot \hspace{0.05cm} l^2 = \big ( \frac { {\rm 0.272} }{\rm km \hspace{0.05cm} \cdot \hspace{0.05cm} \sqrt{MHz} }\big )^2 \cdot ({\rm 5 \hspace{0.05cm} km})^2 = \frac{1.855}{ {\rm MHz} }\hspace{0.2cm} \Rightarrow \hspace{0.2cm} f_0 \hspace{0.15cm}\rm \underline{= 0.540 \: MHz}.$$
(4) For the frequency response it holds:
- $$\begin{align*}H(f) & = K \cdot {\rm e}^{- \sqrt{2\hspace{0.05cm} \cdot \hspace{0.05cm}{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} f/f_0} } = K \cdot {\rm e}^{- \sqrt{ f/f_0} } \cdot {\rm e}^{- {\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}\sqrt{ f/f_0} } \hspace{0.05 cm} \Rightarrow \hspace{0.05 cm} |H(f)|^2 = K^2 \cdot {\rm e}^{- 2\hspace{0.05cm} \cdot \hspace{0.05cm}\sqrt{ f/f_0} }.\end{align*}$$
- For this, $K^2 \cdot \rm e^{–2} ≈ 0.135$ is obtained for $f = f_0$ . From this it follows that:
- $$P_y = P_x \cdot |H(f = f_0)|^2 \hspace{0.15cm}\underline{\approx135\hspace{0.05cm}{\rm mW}}.$$
(5) With the higher frequency $f_x = 10\:\text{MHz}$ the output power is significantly smaller compared to $f_x = 0.54\:\text{MHz}$ :
- $$P_y = P_x \cdot {\rm e}^{- 2\hspace{0.05cm} \cdot \hspace{0.05cm}\sqrt{ 10/0.54} }\approx P_x \cdot {\rm e}^{- 8.6 } \hspace{0.15cm}\underline{\approx 0.184 \hspace{0.1cm}{\rm mW}}.$$