Difference between revisions of "Aufgaben:Exercise 1.1Z: Sum of Two Ternary Signals"

From LNTwww
 
(21 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Einige grundlegende Definitionen}}
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Some_Basic_Definitions}}
  
[[File:P_ID146__Sto_Z1_1.png|right|]]
+
[[File:P_ID146__Sto_Z1_1.png|right|framed|Sum $S$ of two <br>ternary signals&nbsp; $X$&nbsp; and&nbsp; $Y$]]
Gegeben seien zwei dreistufige Nachrichtenquellen $X$ und $Y$, deren Ausgangssignale jeweils nur die Werte –1, 0 und +1 annehmen können. Die Signalquellen sind statistisch voneinander unabhängig. Eine einfache Schaltung bildet nun das Summensignal $S = X + Y$.
+
Let two three-stage message sources&nbsp; $X$&nbsp; and&nbsp; $Y$&nbsp;  be given,&nbsp; whose output signals can only assume the values&nbsp; $-1$,&nbsp; $0$&nbsp; and&nbsp; $+1$&nbsp; respectively.&nbsp; The signal sources are statistically independent of each other.  
Bei der Signalquelle $X$ treten die Werte –1, 0 und +1 mit gleicher Wahrscheinlichkeit auf, während bei der Quelle $Y$ der Signalwert 0 doppelt so wahrscheinlich ist wie die beiden anderen Werte –1 bzw. +1.
 
  
'''Hinweis''': Diese Aufgabe bezieht sich auf den gesamten Stoff von Kapitel 1.1. Der Inhalt dieses Abschnitts ist im nachfolgenden Lernvideo zusammengefasst:
+
*A simple circuit now forms the sum signal&nbsp; $S = X + Y$.
===Fragebogen===
+
*At the signal source&nbsp; $X$,&nbsp; the values&nbsp; $-1$,&nbsp; $0$&nbsp; and&nbsp; $+1$&nbsp; occur with equal probability.
 +
*For source&nbsp; $Y$,&nbsp; the signal value&nbsp; $0$&nbsp; is twice as likely as the other two values&nbsp; $-1$&nbsp; and&nbsp; $+1$, respectively.
 +
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Einige_grundlegende_Definitionen | Some basic definitions of probability theory]].
 +
 +
*Solve the subtasks&nbsp; '''(3)'''&nbsp; and&nbsp; '''(4)'''&nbsp; according to the classical definition.
 +
*Nevertheless,&nbsp; consider the different occurrence frequencies of the signal&nbsp; $Y$.
 +
*The topic of this section is illustrated with examples in the (German language) learning video &nbsp; <br>[[Klassische_Definition_der_Wahrscheinlickeit_(Lernvideo)|Klassische Definition der Wahrscheinlichkeit]]&nbsp; $\Rightarrow$ "Classical definition of probability".
 +
 
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß sind die Auftrittswahrscheinlichkeiten der Signalwerte von $Y$? Wie groß ist die Wahrscheinlichkeit, dass $Y = 0$ ist ?
+
{What are the probabilities of occurrence of the signal values of&nbsp; $Y$?&nbsp; What is the probability that&nbsp; $Y = 0$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$Pr(Y=0) = $ { 0.5 3% }
+
${\rm Pr}(Y=0) \ = \ $ { 0.5 3% }
  
  
{Wieviele unterschiedliche Signalwerte $I$ kann das Summensignal $S$ annehmen? Welche sind dies?
+
{How many different signal values&nbsp; $(I)$&nbsp; can the sum signal&nbsp; $S$&nbsp; assume?&nbsp; Which are these?
 
|type="{}"}
 
|type="{}"}
$ I = $ { 5 3% }
+
$ I \ = \ $ { 5 3% }
  
  
{Mit welchen Wahrscheinlichkeiten treten die in $2)$ ermittelten Werte auf? Wie wahrscheinlich ist der Maximalwert $S_\max$? Hinweis: Lösen Sie die Aufgabe nach der klassischen Definition. Berücksichtigen Sie trotzdem die unterschiedlichen Auftrittshäufigkeiten des Signals $Y$.
+
{What are the probabilities of the values determined in subtask&nbsp; '''(2)'''?&nbsp; How probable is the maximum value&nbsp; $S_{\rm max}$?  
 
|type="{}"}
 
|type="{}"}
$ Pr(S = S_\max ) = $ { 0.0833 3% }
+
$ {\rm Pr}(S = S_{\rm max} ) \ = \ $ { 0.0833 3% }
  
  
{Wie ändern sich die Wahrscheinlichkeiten, wenn nun anstelle der Summe die Differenz $D = X - Y$ betrachtet wird? Begründen Sie Ihre Antwort.
+
{How do the probabilities change,&nbsp; if now instead of the sum the difference&nbsp; $D = X - Y$&nbsp; is considered?&nbsp; Give reasons for your answer.
 
|type="[]"}
 
|type="[]"}
+ Die Wahrscheinlichkeiten bleiben gleich.
+
+ The probabilities remain the same.
- Die Wahrscheinlichkeiten ändern sich. Wie ändern sie sich?
+
- The probabilities change.&nbsp; How do they change?
  
  
Line 34: Line 50:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:'''1.'''Da die Wahrscheinlichkeiten von ±1 gleich sind und $Pr(Y = 0) = 2 * Pr(Y = 1)$ gilt, erhält man:
+
'''(1)'''&nbsp; Since the probabilities of&nbsp; $ \pm 1$&nbsp; are the same and&nbsp; ${\rm Pr}(Y = 0) = 2 \cdot {\rm Pr}(Y = 1)$&nbsp; holds, we get:
 +
 
 +
:$${\rm Pr}(Y = 1) + {\rm Pr}(Y = 0) + {\rm Pr}(Y = -1) = 1/2 \cdot {\rm Pr}(Y = 0) + {\rm Pr}(Y = 0) + 1/2\cdot {\rm Pr}(Y = 0) = 1\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm Pr}(Y = 0)\;\underline { = 0.5}. $$
  
$Pr(Y = 1) + Pr(Y = 0) + Pr(Y = -1) = 1$
 
  
$ \Rightarrow 1/2*Pr(Y = 0) + Pr(Y = 0) + 1/2*Pr(Y = 0) = 1$
+
[[File:EN_Sto_Z1_1_c_neu.png|right|frame|400px|Sum and difference of ternary random variables]]
 +
'''(2)'''&nbsp; $S$&nbsp; can take a total of&nbsp; $\underline {I =5}$&nbsp; values, namely&nbsp; $0$,&nbsp; $\pm 1$&nbsp; and&nbsp; $\pm 2$.
  
$ \Rightarrow PR(Y = 0) = 1/2 $
 
:'''2.''' $S$ kann insgesamt <u>5 Werte</u> annehmen, nämlich –2, –1, 0, +1 und +2
 
:'''3.'''[[File:P_ID192__Sto_Z1_1_c.png|frame|]]Da $Y$ nicht gleichverteilt ist, kann man hier die "klassische Definition der Wahrscheinlichkeit" (eigentlich) nicht anwenden.
 
Teilt man $Y$ jedoch gemäß dem Bild in vier Bereiche auf, wobei man zwei der Bereiche dem Ereignis $Y = 0$ zuordnet, so kann man die klassische Definition dennoch anwenden. Man erhält dann:
 
  
$Pr(S = 0) = \frac{4}{12} = \frac{1}{3}$,
+
'''(3)'''&nbsp; Since&nbsp; $Y$&nbsp; is not equally distributed, one cannot (actually) apply the "Classical Definition of Probability" here.
  
$Pr(S = -1) = \frac{3}{12} = \frac{1}{4}$,
+
*However,&nbsp; if we divide&nbsp; $Y$&nbsp; into four ranges according to the graph,&nbsp; assigning two of the ranges to the event&nbsp; $Y = 0$,&nbsp; we can still proceed according to the classical definition.
 +
*One then obtains:
  
$Pr(S = +1) = \frac{3}{12} = \frac{1}{4}$,
+
:$${\rm Pr}(S = 0) = {4}/{12} = {1}/{3},$$
 +
:$${\rm Pr}(S = +1) = {\rm Pr}(S = -1) ={3}/{12} = {1}/{4},$$
 +
:$${\rm Pr}(S = +2) = {\rm Pr}(S = -2) ={1}/{12}$$
 +
:$$\Rightarrow \hspace{0.3cm}{\rm Pr}(S = S_{\rm max}) = {\rm Pr}(S = +2) =1/12 \;\underline {= 0.0833}.$$
  
$Pr(S = -2) = \frac{1}{12}, Pr(S = +2) = \frac{1}{12}$
 
  
$\Rightarrow Pr(S = S_\max) = 1/12 = 0.0833$.
+
'''(4)'''&nbsp; It is also evident from the graph that the difference signal&nbsp; $D$&nbsp; and the sum signal&nbsp; $S$&nbsp; take the same values with equal probabilities.
  
:'''4.''' Aus obiger Darstellung ist auch ersichtlich, dass das Differenzsignal $D$ und das Summensignal $S$ die gleichen Werte mit gleichen Wahrscheinlichkeiten annehmen. Dies war zu erwarten, da $Pr(Y = +1)$ gleich $Pr(Y = –1)$ vorgegeben ist <u>Lösungsvorschlag 1.</u>
+
*This was to be expected,&nbsp; since&nbsp; ${\rm Pr}(Y = +1) ={\rm Pr}(Y = -1)$&nbsp; is given &nbsp; &nbsp; <u>Proposed solution 1</u>.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^1.1 Einige grundlegende Definitionen
+
[[Category:Theory of Stochastic Signals: Exercises|^1.1 Some Basic Definitions
 
^]]
 
^]]

Latest revision as of 16:42, 26 November 2021

Sum $S$ of two
ternary signals  $X$  and  $Y$

Let two three-stage message sources  $X$  and  $Y$  be given,  whose output signals can only assume the values  $-1$,  $0$  and  $+1$  respectively.  The signal sources are statistically independent of each other.

  • A simple circuit now forms the sum signal  $S = X + Y$.
  • At the signal source  $X$,  the values  $-1$,  $0$  and  $+1$  occur with equal probability.
  • For source  $Y$,  the signal value  $0$  is twice as likely as the other two values  $-1$  and  $+1$, respectively.



Hints:

  • Solve the subtasks  (3)  and  (4)  according to the classical definition.
  • Nevertheless,  consider the different occurrence frequencies of the signal  $Y$.
  • The topic of this section is illustrated with examples in the (German language) learning video  
    Klassische Definition der Wahrscheinlichkeit  $\Rightarrow$ "Classical definition of probability".



Questions

1

What are the probabilities of occurrence of the signal values of  $Y$?  What is the probability that  $Y = 0$ ?

${\rm Pr}(Y=0) \ = \ $

2

How many different signal values  $(I)$  can the sum signal  $S$  assume?  Which are these?

$ I \ = \ $

3

What are the probabilities of the values determined in subtask  (2)?  How probable is the maximum value  $S_{\rm max}$?

$ {\rm Pr}(S = S_{\rm max} ) \ = \ $

4

How do the probabilities change,  if now instead of the sum the difference  $D = X - Y$  is considered?  Give reasons for your answer.

The probabilities remain the same.
The probabilities change.  How do they change?


Solution

(1)  Since the probabilities of  $ \pm 1$  are the same and  ${\rm Pr}(Y = 0) = 2 \cdot {\rm Pr}(Y = 1)$  holds, we get:

$${\rm Pr}(Y = 1) + {\rm Pr}(Y = 0) + {\rm Pr}(Y = -1) = 1/2 \cdot {\rm Pr}(Y = 0) + {\rm Pr}(Y = 0) + 1/2\cdot {\rm Pr}(Y = 0) = 1\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm Pr}(Y = 0)\;\underline { = 0.5}. $$


Sum and difference of ternary random variables

(2)  $S$  can take a total of  $\underline {I =5}$  values, namely  $0$,  $\pm 1$  and  $\pm 2$.


(3)  Since  $Y$  is not equally distributed, one cannot (actually) apply the "Classical Definition of Probability" here.

  • However,  if we divide  $Y$  into four ranges according to the graph,  assigning two of the ranges to the event  $Y = 0$,  we can still proceed according to the classical definition.
  • One then obtains:
$${\rm Pr}(S = 0) = {4}/{12} = {1}/{3},$$
$${\rm Pr}(S = +1) = {\rm Pr}(S = -1) ={3}/{12} = {1}/{4},$$
$${\rm Pr}(S = +2) = {\rm Pr}(S = -2) ={1}/{12}$$
$$\Rightarrow \hspace{0.3cm}{\rm Pr}(S = S_{\rm max}) = {\rm Pr}(S = +2) =1/12 \;\underline {= 0.0833}.$$


(4)  It is also evident from the graph that the difference signal  $D$  and the sum signal  $S$  take the same values with equal probabilities.

  • This was to be expected,  since  ${\rm Pr}(Y = +1) ={\rm Pr}(Y = -1)$  is given   ⇒   Proposed solution 1.