Difference between revisions of "Aufgaben:Exercise 2.5Z: Flower Meadow"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Stochastische Signaltheorie/Poissonverteilung }} right| :Ein Bauer freut sich über die Blü…“)
 
 
(22 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Poissonverteilung
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Poisson_Distribution
 
}}
 
}}
  
[[File:P_ID124__Sto_Z_2_5.gif|right|]]
+
[[File:P_ID124__Sto_Z_2_5.gif|right|frame|Flower meadow – another example of the Poisson distribution]]
:Ein Bauer freut sich &uuml;ber die Bl&uuml;tenpracht auf seinem Grund und m&ouml;chte wissen, wie viele L&ouml;wenzahn gerade auf seiner Wiese bl&uuml;hen. Er wei&szlig;, dass die Wiese eine Fl&auml;che von 5000 Quadratmeter hat und au&szlig;erdem wei&szlig; er noch von der Landwirtschaftsschule, dass die Anzahl der Blumen in einem kleinen Gebiet stets <i>poissonverteilt</i> ist. Er steckt &uuml;ber der gesamten Wiese &ndash; zuf&auml;llig verteilt &ndash; zehn Quadrate mit einer jeweiligen Kantenl&auml;nge von 25 cm ab und z&auml;hlt in jedem dieser Quadrate die Blumen. Dabei kommt er zu folgendem Ergebnis:
+
A farmer is happy about the splendor of flowers on his land and wants to know how many dandelions are currently blooming on his meadow.  
:$$\rm 3, 4, 1, 5, 0, 3, 2, 4, 2, 6.$$
+
*He knows that the meadow has an area of&nbsp; $5000$&nbsp; square meters and he also knows from the agricultural school that the number of flowers in a small area is always Poisson distributed.  
 +
*He stakes out ten squares,&nbsp; each with an edge length of&nbsp; $\text{25 cm}$,&nbsp; randomly distributed over the entire meadow and counts the flowers in each of these squares:
 +
::$$\rm 3, \ 4, \ 1, \ 5, \ 0, \ 3, \ 2, \ 4, \ 2, \ 6.$$
  
:Betrachten Sie diese Zahlenwerte als zuf&auml;llige Ergebnisse der diskreten Zufallsgr&ouml;&szlig;e <i>z</i>.
+
Consider these numerical values as random results of the discrete random variable&nbsp; $z$.
  
:Es ist offensichtlich, dass die Stichprobenmenge mit 10 sehr klein ist, aber &ndash; soviel sei verraten &ndash; der Bauer hat Gl&uuml;ck. &Uuml;berlegen Sie sich zun&auml;chst, wie Sie zur L&ouml;sung dieser Aufgabe vorgehen w&uuml;rden, und beantworten Sie dann die nachfolgenden Fragen.
+
It is obvious that the sample size&nbsp; $(10)$&nbsp; is very small but &ndash; this much is revealed &ndash; the farmer is lucky.&nbsp; First consider how you would proceed to solve this task,&nbsp; and then answer the following questions.
  
:<b>Hinweis:</b> Diese Aufgabe bezieht sich auf den Lehrstoff von Kapitel 2.2 und Kapitel 2.4.
 
  
  
===Fragebogen===
+
 
 +
Hints:
 +
*This exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Poisson_Distribution|Poisson Distribution]].
 +
*Reference is also made to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Moments_of_a_Discrete_Random_Variable|Moments of a Discrete Random Variable]].
 +
 
 +
 
 +
 
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Ermitteln Sie den Mittelwert von <i>z</i>, das heißt die mittlere Anzahl der in den zehn Quadraten  abgez&auml;hlten Blumen.
+
{Find the mean of&nbsp; $z$,&nbsp; that is,&nbsp; the mean number of flowers counted in each of the ten squares.
 
|type="{}"}
 
|type="{}"}
$m_z$ = { 3 3% }
+
$m_z \ =$ { 3 3% }
  
  
{Bestimmen Sie die Streuung der Zufallsgr&ouml;&szlig;e <i>z</i>.
+
{Determine the standard deviation of the random variable&nbsp; $z$.
 
|type="{}"}
 
|type="{}"}
$\sigma_z$ = { 1.732 3% }
+
$\sigma_z\ = \ $ { 1.732 3% }
  
  
{Welche der nachfolgenden Aussagen sind zutreffend?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
+ Eigentlich m&uuml;sste man deutlich mehr als zehn Zufallszahlen (Quadrate) zur Momentenberechnung heranziehen.
+
+ Actually,&nbsp; one would have to use considerably more than ten random numbers&nbsp; (squares)&nbsp; for the moment calculation.
+ Die Zufallsgr&ouml;&szlig;e <i>z</i> ist tats&auml;chlich poissonverteilt.
+
+ The random variable&nbsp; $z$&nbsp; is in fact Poisson distributed.
- Die Rate <i>&lambda;</i> der Poissonverteilung ist gleich der Streuung <i>&sigma;<sub>z</sub></i>.
+
- The rate&nbsp; $\lambda$&nbsp; of the Poisson distribution is equal to the standard deviation&nbsp; $\sigma_z$.
+ Die Rate <i>&lambda;</i> der Poissonverteilung ist gleich dem Mittelwert <i>m<sub>z</sub></i>.
+
+ The rate&nbsp; $\lambda$&nbsp; of the Poisson distribution is equal to the mean&nbsp; $m_z$.
  
  
{Sagen Sie die Gesamtzahl <i>B</i> aller Blumen auf der Wiese voraus.
+
{Predict the total number&nbsp; $B$&nbsp; of all flowers in the meadow.
 
|type="{}"}
 
|type="{}"}
$B$ = { 240000 3% }
+
$B\ = \ $ { 240 3% } $\ \text{thousand}$
  
  
{Wie gro&szlig; ist die Wahrscheinlichkeit f&uuml;r ein Quadrat ganz ohne Blumen?
+
{What is the probability of a square without any flowers?
 
|type="{}"}
 
|type="{}"}
$Pr(z\ =\ 0)$ = { 0.05 3% }
+
${\rm Pr}(z = 0) \ = \ $ { 5 3% } $\ \%$
  
  
Line 48: Line 60:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Der lineare Mittelwert dieser 10 Zahlen ergibt <u><i>m<sub>z</sub></i> = 3</u>.
+
'''(1)'''&nbsp; The linear mean of these ten numbers gives&nbsp;
 +
:$$\underline{m_z = 3}.$$
 +
 
 +
 
 +
'''(2)'''&nbsp; For the second moment of the random variable&nbsp; $z$&nbsp; applies accordingly:
 +
:$$m_{\rm 2\it z}=\frac{1}{10}\cdot (0^2+1^2+ 2\cdot 2^2+ 2\cdot 3^2+2\cdot 4^2+ 5^2+6^2)=12.$$
 +
 
 +
*According to Steiner's theorem, the variance is:  
 +
:$$\sigma_z^2 =12 -3^2 = 3,$$
 +
:and thus the standard deviation:
 +
:$$\underline{\sigma_z \approx 1.732}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; Correct are&nbsp; <u>solutions 1, 2, and 4</u>:
 +
*Mean and standard deviation agree here.&nbsp; This is indicative of the Poisson distribution with rate&nbsp; $\lambda = 3$&nbsp; <br>(equal to the mean and equal to the variance,&nbsp; not equal to the standard deviation).
 +
*Naturally,&nbsp; it is questionable to make this statement on the basis of only ten values.&nbsp;
 +
*However,&nbsp; in the case of moments,&nbsp; a smaller sample number is less serious than,&nbsp; for example,&nbsp; in the case of probabilities.
 +
 
  
:<b>2.</b>&nbsp;&nbsp;F&uuml;r den quadratischen Mittelwert der Zufallsgr&ouml;&szlig;e <i>z</i> gilt entsprechend:
 
:$$\it m_{\rm 2\it z}=\rm \frac{1}{10}\cdot (0^2+1^2+ 2\cdot 2^2+ 2\cdot 3^2+2\cdot 4^2+ 5^2+6^2)=12.$$
 
  
:Die Varianz ist nach dem Satz von Steiner somit gleich 12 &ndash; 3<sup>2</sup> = 3 und die Streuung <u><i>&sigma;<sub>z</sub></i> &asymp; 1.732</u>.
+
'''(4)'''&nbsp; In total,&nbsp; there&nbsp; are $80000$&nbsp; such squares,&nbsp; each with three flowers in the mean.&nbsp;
 +
*This suggests a total of &nbsp; $\underline{B = 240}$&nbsp; thousand flowers.
  
:<b>3.</b>&nbsp;&nbsp;Mittelwert und Varianz stimmen hier &uuml;berein. Dies ist ein Indiz f&uuml;r eine Poissonverteilung mit der Rate <i>&lambda;</i> = 3 (gleich dem Mittelwert und gleich der Varianz, nicht gleich der Streuung).
 
  
:Nat&uuml;rlich ist es fragw&uuml;rdig, diese Aussage auf der Basis von nur zehn Werten zu treffen. Bei den Momenten ist eine geringere Stichprobenanzahl aber weniger gravierend als beispielsweise bei den Wahrscheinlichkeiten.
 
  
:Richtig sind somit die <u>Lösungsvorschläge 1, 2 und 4</u>.
+
'''(5)'''&nbsp; According to the Poisson distribution,&nbsp; this probability results in
 +
:$${\rm Pr}(z = 0) = \frac{3^0}{0!} \cdot{\rm e}^{-3}\hspace{0.15cm}\underline{\approx 5\%}.$$
  
:<b>4.</b>&nbsp;&nbsp;Insgesamt gibt es 80000 solcher Quadrate mit jeweils 3 Blumen im Mittel. Dies l&auml;sst auf insgesamt <u><i>B</i> = 240000</u> Blumen schlie&szlig;en.
+
*However,&nbsp; the small sample size&nbsp; $N = 10$&nbsp; on which this task was based would have indicated probability&nbsp; ${\rm Pr}(z = 0) = { 10\%}$&nbsp; <br>since only in a single square no single flower was counted.
  
:<b>5.</b>&nbsp;&nbsp;Diese Wahrscheinlichkeit ergibt sich gemäß der Poissonverteilung zu 3<sup>0</sup>/ 0! &middot; e<sup>&ndash;3</sup> <u>&asymp; 0.05</u>. Die dieser Aufgabe zugrunde gelegte kleine Stichprobenmenge <i>N</i> = 10 h&auml;tte allerdings auf die Wahrscheinlichkeit Pr(<i>z</i> = 0) = 10% hingedeutet, da nur in einem einzigen Quadrat keine einzige Blume gez&auml;hlt wurde.
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^2.4 Poissonverteilung^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^2.4 Poisson Distribution^]]

Latest revision as of 13:20, 18 January 2023

Flower meadow – another example of the Poisson distribution

A farmer is happy about the splendor of flowers on his land and wants to know how many dandelions are currently blooming on his meadow.

  • He knows that the meadow has an area of  $5000$  square meters and he also knows from the agricultural school that the number of flowers in a small area is always Poisson distributed.
  • He stakes out ten squares,  each with an edge length of  $\text{25 cm}$,  randomly distributed over the entire meadow and counts the flowers in each of these squares:
$$\rm 3, \ 4, \ 1, \ 5, \ 0, \ 3, \ 2, \ 4, \ 2, \ 6.$$

Consider these numerical values as random results of the discrete random variable  $z$.

It is obvious that the sample size  $(10)$  is very small but – this much is revealed – the farmer is lucky.  First consider how you would proceed to solve this task,  and then answer the following questions.



Hints:




Questions

1

Find the mean of  $z$,  that is,  the mean number of flowers counted in each of the ten squares.

$m_z \ =$

2

Determine the standard deviation of the random variable  $z$.

$\sigma_z\ = \ $

3

Which of the following statements are true?

Actually,  one would have to use considerably more than ten random numbers  (squares)  for the moment calculation.
The random variable  $z$  is in fact Poisson distributed.
The rate  $\lambda$  of the Poisson distribution is equal to the standard deviation  $\sigma_z$.
The rate  $\lambda$  of the Poisson distribution is equal to the mean  $m_z$.

4

Predict the total number  $B$  of all flowers in the meadow.

$B\ = \ $

$\ \text{thousand}$

5

What is the probability of a square without any flowers?

${\rm Pr}(z = 0) \ = \ $

$\ \%$


Solution

(1)  The linear mean of these ten numbers gives 

$$\underline{m_z = 3}.$$


(2)  For the second moment of the random variable  $z$  applies accordingly:

$$m_{\rm 2\it z}=\frac{1}{10}\cdot (0^2+1^2+ 2\cdot 2^2+ 2\cdot 3^2+2\cdot 4^2+ 5^2+6^2)=12.$$
  • According to Steiner's theorem, the variance is:
$$\sigma_z^2 =12 -3^2 = 3,$$
and thus the standard deviation:
$$\underline{\sigma_z \approx 1.732}.$$


(3)  Correct are  solutions 1, 2, and 4:

  • Mean and standard deviation agree here.  This is indicative of the Poisson distribution with rate  $\lambda = 3$ 
    (equal to the mean and equal to the variance,  not equal to the standard deviation).
  • Naturally,  it is questionable to make this statement on the basis of only ten values. 
  • However,  in the case of moments,  a smaller sample number is less serious than,  for example,  in the case of probabilities.


(4)  In total,  there  are $80000$  such squares,  each with three flowers in the mean. 

  • This suggests a total of   $\underline{B = 240}$  thousand flowers.


(5)  According to the Poisson distribution,  this probability results in

$${\rm Pr}(z = 0) = \frac{3^0}{0!} \cdot{\rm e}^{-3}\hspace{0.15cm}\underline{\approx 5\%}.$$
  • However,  the small sample size  $N = 10$  on which this task was based would have indicated probability  ${\rm Pr}(z = 0) = { 10\%}$ 
    since only in a single square no single flower was counted.