Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.4: Coaxial Cable - Frequency Response"

From LNTwww
 
(28 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Koaxialkabel
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Properties_of_Coaxial_Cables
 
}}
 
}}
  
[[File:P_ID1813__LZI_A_4_4.png|right|]]
+
[[File:LZI_A_4_4_vers3.png|right|frame|Various coaxial cable types]]
:Ein so genanntes Normalkoaxialkabel mit dem Kerndurchmesser 2.6 mm, dem Außendurchmesser 9.5 mm und der Länge <i>l</i> besitzt den folgenden Frequenzgang:
+
A so-called normal coaxial cable of length &nbsp;l&nbsp; with
:$$H_K(f)  =  e^{- \alpha_0 \cdot l} \cdot e^{- \alpha_1 \cdot l \cdot f} \cdot e^{- \alpha_2 \cdot l \sqrt{f}} \cdot e^{-j \cdot \beta_1 \cdot l \cdot f} \cdot e^{-j \cdot \beta_2 \cdot l \cdot \sqrt{f}}$$
+
*core diameter&nbsp; $\text{2.6 mm}$,&nbsp; and
:Die Dämpfungsparameter <i>&alpha;</i><sub>0</sub>, <i>&alpha;</i><sub>1</sub> und <i>&alpha;</i><sub>2</sub> sind in Neper (Np), die Phasenparameter <i>&beta;</i><sub>1</sub> und <i>&beta;</i><sub>2</sub> in Radian (rad) einzusetzen.
+
*outer diameter&nbsp; $\text{9.5 mm}$
 +
  
:Es gelten folgende Zahlenwerte:
+
has the following frequency response:
:$$\alpha_0 = 0.00162 \hspace{0.15cm}\frac {\rm Np}{\rm km} \hspace{0.05cm},\hspace{0.2cm}
+
:$$H_{\rm K}(f) =  {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l} \cdot
   \alpha_1 = 0.000435 \hspace{0.15cm}\frac {\rm Np}{{\rm km} \cdot {\rm MHz}} \hspace{0.05cm},
+
  {\rm e}^{- \alpha_1  \hspace{0.05cm}\cdot \hspace{0.05cm}l \hspace{0.05cm}\cdot \hspace{0.05cm}f} \cdot
  \hspace{0.2cm}
+
  {\rm e}^{- \alpha_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
  \alpha_2 = 0.2722 \hspace{0.15cm}\frac {\rm Np}{{\rm km} \cdot \sqrt{\rm MHz}} \hspace{0.05cm}.$$
+
  \sqrt{f}}  \cdot
:Häufig verwendet man zur systemtheoretischen Beschreibung eines linearen zeitinvarianten Systems
+
   {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1  \hspace{0.05cm}\cdot \hspace{0.05cm} l \hspace{0.05cm}\cdot \hspace{0.05cm}f} \cdot
 +
  {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 +
  \sqrt{f}}  \hspace{0.05cm}.$$
 +
The attenuation parameters &nbsp;α0, &nbsp;α1 and &nbsp;α2 are to be used in&nbsp; "Neper per kilometer"&nbsp; (Np/km)&nbsp;  and the phase parameters &nbsp;β1 and &nbsp;β2 in&nbsp; "Radian per kilometer"&nbsp; (rad/km).&nbsp; The following numerical values apply:
 +
:$$\alpha_0 = 0.00162 \hspace{0.15cm}{\rm Np}/{\rm km} \hspace{0.05cm},$$
 +
:$$\alpha_1 = 0.000435 \hspace{0.15cm} {\rm Np}/{{\rm km} \cdot {\rm MHz}} \hspace{0.05cm},$$
 +
:$$\alpha_2 = 0.2722 \hspace{0.15cm}{\rm Np}/{{\rm km} \cdot \sqrt{\rm MHz}} \hspace{0.05cm}.$$
  
:* die Dämpfungsfunktion (in Np bzw. dB):
+
For the system-theoretical description of a coaxial cable&nbsp; (German:&nbsp; "Koaxialkabel" &nbsp; &rArr; &nbsp; subscipt&nbsp; "K"),&nbsp; one uses
:$${\rm a}_{\rm K}(f) = - {\rm ln} \hspace{0.10cm}|H_{\rm K}(f)|= - 20 \cdot {\rm lg} \hspace{0.10cm}|H_{\rm K}(f)|
+
 
 +
* the attenuation function&nbsp; (in Np or dB):
 +
:$${ a}_{\rm K}(f) = - {\rm ln} \hspace{0.10cm}|H_{\rm K}(f)|= - 20 \cdot {\rm lg} \hspace{0.10cm}|H_{\rm K}(f)|
 
     \hspace{0.05cm},$$
 
     \hspace{0.05cm},$$
  
:* die Phasenfunktion (in rad bzw. Grad):
+
* the phase function&nbsp; (in rad or degree):
 
:$$b_{\rm K}(f) = - {\rm arc} \hspace{0.10cm}H_{\rm K}(f)
 
:$$b_{\rm K}(f) = - {\rm arc} \hspace{0.10cm}H_{\rm K}(f)
 
     \hspace{0.05cm}.$$
 
     \hspace{0.05cm}.$$
  
:In der Praxis benutzt man häufig die Näherung
+
In practice,&nbsp; one often uses the approximation
 
:$$H_{\rm K}(f) =
 
:$$H_{\rm K}(f) =
 
   {\rm e}^{- \alpha_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 
   {\rm e}^{- \alpha_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 
   \sqrt{f}}  \cdot
 
   \sqrt{f}}  \cdot
 
   {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 
   {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
   \sqrt{f}}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} a_{\rm K}(f) = \alpha_2  \cdot l \cdot
+
   \sqrt{f}}$$
   \sqrt{f}, \hspace{0.2cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot
+
:$$\Rightarrow \hspace{0.3cm} a_{\rm K}(f) = \alpha_2  \cdot l \cdot
   \frac{\rm rad}{\rm Np}\hspace{0.05cm}.$$
+
   \sqrt{f}, \hspace{0.8cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot
:Dies ist erlaubt, da <i>&alpha;</i><sub>2</sub> und <i>&beta;</i><sub>2</sub> genau den gleichen Zahlenwert &ndash; nur unterschiedliche Pseudoeinheiten &ndash; besitzen. Mit der Definition der charakteristischen Kabeldämpfung (in Neper bzw. Dezibel)
+
   {\rm rad}/{\rm Np}\hspace{0.05cm}.$$
:$${\rm a}_{\rm \star(Np)} = {\rm a}_{\rm K}(f = {R}/{2}) = 0.1151 \cdot {\rm a}_{\rm \star(dB)}$$
+
This is allowed because &nbsp;α2&nbsp; and &nbsp;β2&nbsp; have exactly the same numerical value and differ only by different pseudo units.
:lassen sich zudem Digitalsysteme mit unterschiedlicher Bitrate <i>R</i> und Kabellänge <i>l</i> einheitlich behandeln.
+
 
 +
With the definition of the characteristic cable attenuation&nbsp; (in Neper or decibel)
 +
:a(Np)=aK(f=R/2)=0.1151a(dB)
 +
digital systems with different bit rate &nbsp;R&nbsp; and cable length &nbsp;l&nbsp; can be treated uniformly.
 +
 
 +
 
 +
 
 +
 
 +
Notes:  
 +
*The exercise belongs to the chapter&nbsp;  [[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Koaxialkabeln|Properties of Coaxial Cables]].
 +
 +
*You can use the interactive&nbsp; "HTML 5/JS" applet &nbsp;[[Applets:Attenuation_of_Copper_Cables|Applets:Attenuation of Copper Cables]]&nbsp; to check your results.
  
:<b>Hinweis:</b> Die Aufgabe bezieht sich auf das Kapitel 4.2 dieses Buches. Sie können zur Überprüfung Ihrer Ergebnisse das folgende Interaktionsmodul benutzen:
 
:Dämpfung von Kupferkabeln
 
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Terme von <i>H</i><sub>K</sub>(<i>f</i>) führen zu keinen Verzerrungen? Der
+
{Which terms of &nbsp;$H_{\rm K}(f)$&nbsp; do not lead to distortions? The
 
|type="[]"}
 
|type="[]"}
+ <i>&alpha;</i><sub>0</sub>&ndash;Term,
+
+ α0&ndash;term,
- <i>&alpha;</i><sub>1</sub>&ndash;Term,
+
- α1&ndash;term,
- <i>&alpha;</i><sub>2</sub>&ndash;Term,
+
- α2&ndash;term,
+ <i>&beta;</i><sub>1</sub>&ndash;Term,
+
+ β1&ndash;term,
- <i>&beta;</i><sub>2</sub>&ndash;Term,
+
- β2&ndash;term.
  
  
{Welche Länge <i>l</i><sub>max</sub> könnte ein solches Kabel besitzen, damit ein Gleichsignal um nicht mehr als 1% gedämpft wird?
+
{What length &nbsp;$l_{\rm max}&nbsp; could such a cable have so that a DC signal is attenuated by no more than &nbsp;1\%$&nbsp;?
 
|type="{}"}
 
|type="{}"}
lmax = { 6.173 3% } km
+
$l_\text{max} \ = \ { 6.173 3% }\ \rm km$
  
  
{Welche Dämpfung (in Np) ergibt sich bei der Frequenz <i>f</i> = 70 MHz, wenn die Kabellänge <i>l</i> = 2 km beträgt?
+
{What is the attenuation&nbsp; (in Np)&nbsp; at frequency &nbsp;$f = 70 \ \rm MHz&nbsp; when the cable length is &nbsp;\underline{l = 2 \ \rm km}$?
 
|type="{}"}
 
|type="{}"}
$l = 2\ km:\ a_K(f = 70\ MHz)$ = { 4.619 3% } Np
+
$a_{\rm K}(f = 70\ \rm MHz) \ = \ { 4.619 3% }\ \rm Np$
  
  
{Welche Dämpfung ergibt sich bei sonst gleichen Voraussetzungen, wenn man nur den <i>&alpha;</i><sub>2</sub>&ndash;Term berücksichtigt?
+
{Assuming all other things are equal,&nbsp; what is the attenuation when only the &nbsp;α2&ndash;term is considered?
 
|type="{}"}
 
|type="{}"}
$nur\ \alpha_2:\ a_K(f = 70\ MHz) $ = { 4.555 3% } Np
+
$a_{\rm K}(f = 70\ \rm MHz) \ = \ { 4.555 3% }\ \rm Np$
  
  
{Wie lautet die Formel für die Umrechnung zwischen Np und dB? Welcher dB&ndash;Wert ergibt sich für die unter d) berechnete Dämpfung?
+
{What is the formula for the conversion between &nbsp;$\rm Np&nbsp; and &nbsp;\rm dB$? &nbsp;What is the&nbsp;$\rm dB$ value that results for the attenuation calculated in&nbsp; '''(4)'''?
 
|type="{}"}
 
|type="{}"}
$nur\ \alpha_2:\ a_K(f = 70\ MHz) $ = { 39.56 3% } dB
+
$a_{\rm K}(f = 70\ \rm MHz) \ = \ { 39.56 3% }\ \rm dB$
  
  
{Welche der Aussagen sind unter der Voraussetzung zutreffend, dass man sich bezüglich der Dämpfungsfunktion auf den <i>&alpha;</i><sub>2</sub>&ndash;Wert beschränkt?
+
{Which statements are true if we restrict ourselves to the &nbsp;α2&ndash;value with respect to the attenuation function?
 
|type="[]"}
 
|type="[]"}
+ Man kann auch auf den Phasenterm mit <i>&beta;</i><sub>1</sub> verzichten.
+
+ One can also do without the phase term with &nbsp;β1.
- Man kann auch auf den Phasenterm mit <i>&beta;</i><sub>2</sub> verzichten.
+
- One can also do without the phase term with &nbsp;β2.
- a<sub>&#8727;</sub> &asymp; 40 dB gilt für ein System mit <i>R</i> = 70 Mbit/s und <i>l</i> = 2 km.
+
- a40 dB&nbsp; holds for a system with &nbsp;$R = 70 \ \rm Mbit/s&nbsp; and &nbsp;l = 2 \ \rm  km$.
+ a<sub>&#8727;</sub> &asymp; 40 dB gilt für ein System mit <i>R</i> = 140 Mbit/s und <i>l</i> = 2 km.
+
+ a40 dB&nbsp; holds for a system with &nbsp;$R = 140 \ \rm Mbit/s&nbsp; and &nbsp;l = 2 \ \rm  km$.
+ a<sub>&#8727;</sub> &asymp; 40 dB gilt für ein System mit <i>R</i> = 560 Mbit/s und <i>l</i> = 1 km.
+
+ a40 dB&nbsp; holds for a system with &nbsp;$R = 560 \ \rm Mbit/s&nbsp;  and &nbsp;l = 1 \ \rm  km$.
  
  
Line 83: Line 101:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Der <i>&alpha;</i><sub>0</sub>&ndash;Term bewirkt nur eine frequenzunabhängige Dämpfung und der <i>&beta;</i><sub>1</sub>&ndash;Term (lineare Phase) eine frequenzunabhängige Laufzeit. Alle anderen Terme tragen zu den (linearen) Verzerrungen bei &nbsp;&#8658;&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 4</u>.
+
'''(1)'''&nbsp; <u>Solutions 1 and 4</u>&nbsp; are correct:
 +
*The&nbsp; α0&ndash;term causes only a frequency-independent attenuation.
 +
*The&nbsp; β1&ndash;term&nbsp; (linear phase)&nbsp; results in a frequency-independent delay.
 +
*All other terms contribute to the&nbsp; (linear)&nbsp; distortions.
  
:<b>2.</b>&nbsp;&nbsp;Mit a<sub>0</sub> = <i>a</i><sub>0</sub> &middot; <i>l</i> muss folgende Gleichung erfüllt sein:
+
 
 +
'''(2)'''&nbsp; With&nbsp; ${\rm a}_0 = \alpha_0 \cdot l$&nbsp; the following equation must be satisfied:
 
:$${\rm e}^{- {\rm a}_0 }  \ge 0.99
 
:$${\rm e}^{- {\rm a}_0 }  \ge 0.99
 
   \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm a}_0 < {\rm ln}
 
   \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm a}_0 < {\rm ln}
 
   \hspace{0.10cm}\frac{1}{0.99}\approx 0.01\,\,{\rm (Np)}
 
   \hspace{0.10cm}\frac{1}{0.99}\approx 0.01\,\,{\rm (Np)}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
:Damit erhält man für die maximale Kabellänge
+
*This gives the maximum cable length:
 
:$$l_{\rm max} = \frac{{\rm a}_0 }{\alpha_0 }  = \frac{0.01\,\,{\rm Np}}{0.00162\,\,{\rm Np/km}}\hspace{0.15cm}\underline{\approx 6.173\,\,{\rm km}}
 
:$$l_{\rm max} = \frac{{\rm a}_0 }{\alpha_0 }  = \frac{0.01\,\,{\rm Np}}{0.00162\,\,{\rm Np/km}}\hspace{0.15cm}\underline{\approx 6.173\,\,{\rm km}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
:<b>3.</b>&nbsp;&nbsp;Für den Dämpfungsverlauf gilt bei Berücksichtigung aller Terme:
+
'''(3)'''&nbsp; The following applies to the attenuation curve&nbsp; when all terms are taken into account:
:$$a_{\rm K}(f)  =  [\alpha_0 + \alpha_1  \cdot f + \alpha_2  \cdot
+
:$${a}_{\rm K}(f)  =  [\alpha_0 + \alpha_1  \cdot f + \alpha_2  \cdot
   \sqrt{f}\hspace{0.05cm}] \cdot l = \\
+
   \sqrt{f}\hspace{0.05cm}] \cdot l  
   =  [0.00162 + 0.000435  \cdot 70 + 0.2722  \cdot \sqrt{70}\hspace{0.05cm}]\, \frac{\rm Np}{\rm km} \cdot 2\,{\rm km} = \\
+
   =  \big[0.00162 + 0.000435  \cdot 70 + 0.2722  \cdot \sqrt{70}\hspace{0.05cm}\big]\, \frac{\rm Np}{\rm km} \cdot 2\,{\rm km} $$
  =  [0.003 + 0.061  + 4.555  \hspace{0.05cm}]\, {\rm Np}\hspace{0.15cm}\underline{= 4.619\, {\rm Np}}\hspace{0.05cm}.$$
+
:$$  \Rightarrow \hspace{0.3cm}{a}_{\rm K}(f = 70\ \rm MHz)  \big[0.003 + 0.061  + 4.555  \hspace{0.05cm}\big]\, {\rm Np}\hspace{0.15cm}\underline{= 4.619\, {\rm Np}}\hspace{0.05cm}.$$
  
:<b>4.</b>&nbsp;&nbsp;Entsprechend der Berechnung bei Punkt 3) erhält man hier den Dämpfungswert <u>4.555 Np</u>.
 
  
:<b>5.</b>&nbsp;&nbsp;Für eine jede positive Größe <i>x</i> gilt:
+
'''(4)'''&nbsp; According to the calculation in subtask&nbsp; '''(3)''',&nbsp; the attenuation value&nbsp; aK(f=70 MHz)=4.555 Np_ is obtained here.
 +
 
 +
 
 +
'''(5)'''&nbsp; For any positive quantity&nbsp; $x$&nbsp; the following holds:
 
:$$x_{\rm Np} = {\rm ln} \hspace{0.10cm} x =  \frac{{\rm lg} \hspace{0.10cm} x}{{\rm lg} \hspace{0.10cm} {\rm e}}
 
:$$x_{\rm Np} = {\rm ln} \hspace{0.10cm} x =  \frac{{\rm lg} \hspace{0.10cm} x}{{\rm lg} \hspace{0.10cm} {\rm e}}
 
   =  \frac{1}{{20 \cdot \rm lg} \hspace{0.10cm} {\rm e}} \cdot
 
   =  \frac{1}{{20 \cdot \rm lg} \hspace{0.10cm} {\rm e}} \cdot
   (20 \cdot {\rm lg} \hspace{0.10cm} x) = 0.1151 \cdot x_{\rm dB}$$
+
   (20 \cdot {\rm lg} \hspace{0.10cm} x) = 0.1151 \cdot x_{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x_{\rm dB} = 8.6859 \cdot x_{\rm
:$$\Rightarrow \hspace{0.3cm} x_{\rm dB} = 8.6859 \cdot x_{\rm
 
 
  Np}\hspace{0.05cm}.$$
 
  Np}\hspace{0.05cm}.$$
:Der Dämpfungswert 4.555 Np ist somit identisch mit <u>39.56 dB</u>.
+
The attenuation value&nbsp; $4.555 \ {\rm Np}&nbsp; is thus identical to&nbsp;{a}_{\rm K}(f = 70\ \rm MHz)\hspace{0.15cm}\underline{=39.56 \ \rm dB}$.
  
:<b>6.</b>&nbsp;&nbsp;Mit der Beschränkung auf den Dämpfungsterm mit <i>&alpha;</i><sub>2</sub> gilt für den Frequenzgang:
+
 
 +
'''(6)'''&nbsp; <u>Solutions 1, 4 and 5</u> are correct.&nbsp; Explanation:
 +
*With the restriction to the attenuation term with&nbsp; α2,&nbsp; the following applies to the frequency response:
 
:$$H_{\rm K}(f)  =
 
:$$H_{\rm K}(f)  =
 
   {\rm e}^{- \alpha_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 
   {\rm e}^{- \alpha_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
Line 119: Line 144:
 
   {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 
   {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 
   \sqrt{f}}  \hspace{0.05cm}.$$
 
   \sqrt{f}}  \hspace{0.05cm}.$$
:Verzichtet man auf den <i>&beta;</i><sub>1</sub>&ndash;Phasenterm, so ändert sich bezüglich den Verzerrungen nichts. Lediglich die Phasen&ndash; und die Gruppenlaufzeit würden (beide gleich) um den Wert <i>&tau;</i><sub>1</sub> = (<i>&beta;</i><sub>1</sub> &middot; <i>l</i>)/2&pi; kleiner.
+
*If the&nbsp; β1&ndash;phase term is omitted,&nbsp; nothing changes with respect to the distortions. &nbsp; Only the phase and group delay would be&nbsp; (both equal)&nbsp; smaller by the value&nbsp; $\tau_1 = (\beta_1 \cdot l)/(2\pi)$.
  
:Verzichtet man auf den <i>&beta;</i><sub>2</sub>&ndash;Term, so ergeben sich dagegen völlig andere Verhältnisse:
+
*If,&nbsp; on the other hand,&nbsp; we omit the&nbsp; β2&ndash;term,&nbsp; we obtain completely different conditions:
 
+
::'''(a)''' The frequency response&nbsp; $H_{\rm K}(f)$&nbsp; no longer fulfills the requirement of a causal system;&nbsp; in such a case,&nbsp; $H_{\rm K}(f)$&nbsp; would have to be in minimum phase.
:* Der Frequenzgang <i>H</i><sub>K</sub>(<i>f</i>) erfüllt nun nicht mehr die Voraussetzung eines kausalen Systems; bei einem solchen muss <i>H</i><sub>K</sub>(<i>f</i>) minimalphasig sein.
+
::'''(b)''' The impulse response&nbsp;  $h_{\rm K}(t)&nbsp; is symmetrical at&nbsp;t = 0$&nbsp; with real frequency response,&nbsp; which does not correspond to the conditions.
 
+
*Therefore,&nbsp; as an approximation for the coaxial cable frequency response,&nbsp; the following is allowed:
:* Die Impulsantwort <i>h</i><sub>K</sub>(<i>t</i>) ist bei reellem Frequenzgang symmetrisch um <i>t</i> = 0, was nicht den Gegebenheiten entspricht.
+
:$${a}_{\rm K}(f) = \alpha_2  \cdot l \cdot
 
+
   \sqrt{f},$$
:Deshalb ist als eine Näherung für den Koaxialkabelfrequenzgang erlaubt:
+
:$$ b_{\rm K}(f) = a_{\rm K}(f) \cdot
:$$a_{\rm K}(f) = \alpha_2  \cdot l \cdot
 
   \sqrt{f}, \hspace{0.2cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot
 
 
   {\rm rad}/{\rm Np}\hspace{0.05cm}.$$
 
   {\rm rad}/{\rm Np}\hspace{0.05cm}.$$
:Das heißt: a<sub>K</sub>(<i>f</i>) und <i>b</i><sub>K</sub>(<i>f</i>) eines Koaxialkabels sind in erster Näherung formgleich und unterscheiden sich lediglich in ihren Einheiten.
+
*That means:&nbsp; ${a}_{\rm K}(f)&nbsp; and&nbsp;{b}_{\rm K}(f)$&nbsp; of a coaxial cable are in first approximation identical in shape and differ only in their units.
  
:Bei einem Digitalsystem mit der Bitrate <i>R</i> = 140 Mbit/s&nbsp;&#8658;&nbsp;<i>R</i>/2 = 70 Mbit/s und der Kabellänge <i>l</i> = 2 km gilt tatsächlich a<sub>&#8727;</sub> &asymp; 40 dB (siehe Musterlösung zur letzten Teilaufgabe). Ein System mit vierfacher Bitrate (<i>R</i>/2 = 280 Mbit/s) und halber Länge (<i>l</i> = 1 km) führt zur gleichen charakteristischen Kabeldämpfung. Dagegen gilt für ein System mit <i>R</i>/2 = 35 Mbit/s und <i>l</i> = 2 km:
+
*For a digital system with bit rate&nbsp; $R = 140 \ \rm Mbit/s$ &nbsp; &#8658; &nbsp; $R/2 = 70 \ \rm Mbit/s&nbsp; and cable length&nbsp;l = 2 \ \rm km$&nbsp;, &nbsp; $a_\star \approx 40 \ \rm dB$&nbsp; holds (see solution to the last sub-task).  
:$$a_{\rm dB} = 0.2722 \hspace{0.15cm}\frac {\rm Np}{km \cdot \sqrt{MHz}} \cdot {\rm 2\,km}\cdot\sqrt{\rm 35\,MHz}
+
*A system with four times the bit rate&nbsp; $R/2 = 280 \ \rm Mbit/s&nbsp; and half the length&nbsp;(l = 1 \ \rm km)$&nbsp; results in the same characteristic cable attenuation.  
 +
*In contrast,&nbsp; the following holds for a system with&nbsp; $R/2 = 35 \ \rm Mbit/s&nbsp; and&nbsp;l = 2 \ \rm km$:
 +
:$${a}_\star = 0.2722 \hspace{0.15cm}\frac {\rm Np}{\rm km \cdot \sqrt{MHz}} \cdot {\rm 2\,km}\cdot\sqrt{\rm 35\,MHz}
 
  \cdot 8.6859 \,\frac {\rm dB}{\rm Np} \approx 28\,{\rm dB}
 
  \cdot 8.6859 \,\frac {\rm dB}{\rm Np} \approx 28\,{\rm dB}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
:Richtig sind somit <u>die Lösungsvorschläge 1, 4 und 5</u>.
+
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^4.2 Koaxialkabel^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^4.2 Coaxial Cable^]]

Latest revision as of 18:21, 12 November 2021

Various coaxial cable types

A so-called normal coaxial cable of length  l  with

  • core diameter  2.6 mm,  and
  • outer diameter  9.5 mm


has the following frequency response:

HK(f)=eα0leα1lfeα2lfejβ1lfejβ2lf.

The attenuation parameters  α0,  α1 and  α2 are to be used in  "Neper per kilometer"  (Np/km)  and the phase parameters  β1 and  β2 in  "Radian per kilometer"  (rad/km).  The following numerical values apply:

α0=0.00162Np/km,
α1=0.000435Np/kmMHz,
α2=0.2722Np/kmMHz.

For the system-theoretical description of a coaxial cable  (German:  "Koaxialkabel"   ⇒   subscipt  "K"),  one uses

  • the attenuation function  (in Np or dB):
aK(f)=ln|HK(f)|=20lg|HK(f)|,
  • the phase function  (in rad or degree):
bK(f)=arcHK(f).

In practice,  one often uses the approximation

HK(f)=eα2lfejβ2lf
aK(f)=α2lf,bK(f)=aK(f)rad/Np.

This is allowed because  α2  and  β2  have exactly the same numerical value and differ only by different pseudo units.

With the definition of the characteristic cable attenuation  (in Neper or decibel)

a(Np)=aK(f=R/2)=0.1151a(dB)

digital systems with different bit rate  R  and cable length  l  can be treated uniformly.



Notes:


Questions

1

Which terms of  HK(f)  do not lead to distortions? The

α0–term,
α1–term,
α2–term,
β1–term,
β2–term.

2

What length  lmax  could such a cable have so that a DC signal is attenuated by no more than  1% ?

lmax = 

 km

3

What is the attenuation  (in Np)  at frequency  f=70 MHz  when the cable length is  l=2 km_?

aK(f=70 MHz) = 

 Np

4

Assuming all other things are equal,  what is the attenuation when only the  α2–term is considered?

aK(f=70 MHz) = 

 Np

5

What is the formula for the conversion between  Np  and  dB?  What is the dB value that results for the attenuation calculated in  (4)?

aK(f=70 MHz) = 

 dB

6

Which statements are true if we restrict ourselves to the  α2–value with respect to the attenuation function?

One can also do without the phase term with  β1.
One can also do without the phase term with  β2.
a40 dB  holds for a system with  R=70 Mbit/s  and  l=2 km.
a40 dB  holds for a system with  R=140 Mbit/s  and  l=2 km.
a40 dB  holds for a system with  R=560 Mbit/s  and  l=1 km.


Solution

(1)  Solutions 1 and 4  are correct:

  • The  α0–term causes only a frequency-independent attenuation.
  • The  β1–term  (linear phase)  results in a frequency-independent delay.
  • All other terms contribute to the  (linear)  distortions.


(2)  With  a0=α0l  the following equation must be satisfied:

ea00.99a0<ln10.990.01(Np).
  • This gives the maximum cable length:
lmax=a0α0=0.01Np0.00162Np/km6.173km_.

(3)  The following applies to the attenuation curve  when all terms are taken into account:

aK(f)=[α0+α1f+α2f]l=[0.00162+0.00043570+0.272270]Npkm2km
aK(f=70 MHz)=[0.003+0.061+4.555]Np=4.619Np_.


(4)  According to the calculation in subtask  (3),  the attenuation value  aK(f=70 MHz)=4.555 Np_ is obtained here.


(5)  For any positive quantity  x  the following holds:

xNp=lnx=lgxlge=120lge(20lgx)=0.1151xdBxdB=8.6859xNp.

The attenuation value  4.555 Np  is thus identical to  aK(f=70 MHz)=39.56 dB_.


(6)  Solutions 1, 4 and 5 are correct.  Explanation:

  • With the restriction to the attenuation term with  α2,  the following applies to the frequency response:
HK(f)=eα2lfejβ1lfejβ2lf.
  • If the  β1–phase term is omitted,  nothing changes with respect to the distortions.   Only the phase and group delay would be  (both equal)  smaller by the value  τ1=(β1l)/(2π).
  • If,  on the other hand,  we omit the  β2–term,  we obtain completely different conditions:
(a) The frequency response  HK(f)  no longer fulfills the requirement of a causal system;  in such a case,  HK(f)  would have to be in minimum phase.
(b) The impulse response  hK(t)  is symmetrical at  t=0  with real frequency response,  which does not correspond to the conditions.
  • Therefore,  as an approximation for the coaxial cable frequency response,  the following is allowed:
aK(f)=α2lf,
bK(f)=aK(f)rad/Np.
  • That means:  aK(f)  and  bK(f)  of a coaxial cable are in first approximation identical in shape and differ only in their units.
  • For a digital system with bit rate  R=140 Mbit/s   ⇒   R/2=70 Mbit/s  and cable length  l=2 km ,   a40 dB  holds (see solution to the last sub-task).
  • A system with four times the bit rate  R/2=280 Mbit/s  and half the length  (l=1 km)  results in the same characteristic cable attenuation.
  • In contrast,  the following holds for a system with  R/2=35 Mbit/s  and  l=2 km:
a=0.2722NpkmMHz2km35MHz8.6859dBNp28dB.