Difference between revisions of "Aufgaben:Exercise 4.4: Coaxial Cable - Frequency Response"
(28 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Properties_of_Coaxial_Cables |
}} | }} | ||
− | [[File: | + | [[File:LZI_A_4_4_vers3.png|right|frame|Various coaxial cable types]] |
− | + | A so-called normal coaxial cable of length l with | |
− | + | *core diameter $\text{2.6 mm}$, and | |
− | + | *outer diameter $\text{9.5 mm}$ | |
+ | |||
− | + | has the following frequency response: | |
− | :$$\alpha_0 | + | :$$H_{\rm K}(f) = {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l} \cdot |
− | \ | + | {\rm e}^{- \alpha_1 \hspace{0.05cm}\cdot \hspace{0.05cm}l \hspace{0.05cm}\cdot \hspace{0.05cm}f} \cdot |
− | + | {\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | |
− | + | \sqrt{f}} \cdot | |
− | + | {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1 \hspace{0.05cm}\cdot \hspace{0.05cm} l \hspace{0.05cm}\cdot \hspace{0.05cm}f} \cdot | |
+ | {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | ||
+ | \sqrt{f}} \hspace{0.05cm}.$$ | ||
+ | The attenuation parameters α0, α1 and α2 are to be used in "Neper per kilometer" (Np/km) and the phase parameters β1 and β2 in "Radian per kilometer" (rad/km). The following numerical values apply: | ||
+ | :$$\alpha_0 = 0.00162 \hspace{0.15cm}{\rm Np}/{\rm km} \hspace{0.05cm},$$ | ||
+ | :$$\alpha_1 = 0.000435 \hspace{0.15cm} {\rm Np}/{{\rm km} \cdot {\rm MHz}} \hspace{0.05cm},$$ | ||
+ | :$$\alpha_2 = 0.2722 \hspace{0.15cm}{\rm Np}/{{\rm km} \cdot \sqrt{\rm MHz}} \hspace{0.05cm}.$$ | ||
− | :* | + | For the system-theoretical description of a coaxial cable (German: "Koaxialkabel" ⇒ subscipt "K"), one uses |
− | :$${ | + | |
+ | * the attenuation function (in Np or dB): | ||
+ | :$${ a}_{\rm K}(f) = - {\rm ln} \hspace{0.10cm}|H_{\rm K}(f)|= - 20 \cdot {\rm lg} \hspace{0.10cm}|H_{\rm K}(f)| | ||
\hspace{0.05cm},$$ | \hspace{0.05cm},$$ | ||
− | + | * the phase function (in rad or degree): | |
:$$b_{\rm K}(f) = - {\rm arc} \hspace{0.10cm}H_{\rm K}(f) | :$$b_{\rm K}(f) = - {\rm arc} \hspace{0.10cm}H_{\rm K}(f) | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | In practice, one often uses the approximation | |
:$$H_{\rm K}(f) = | :$$H_{\rm K}(f) = | ||
{\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | {\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | ||
\sqrt{f}} \cdot | \sqrt{f}} \cdot | ||
{\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | ||
− | \sqrt{f}} | + | \sqrt{f}}$$ |
− | \sqrt{f}, \hspace{0. | + | :$$\Rightarrow \hspace{0.3cm} a_{\rm K}(f) = \alpha_2 \cdot l \cdot |
− | + | \sqrt{f}, \hspace{0.8cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot | |
− | + | {\rm rad}/{\rm Np}\hspace{0.05cm}.$$ | |
− | :$${ | + | This is allowed because α2 and β2 have exactly the same numerical value and differ only by different pseudo units. |
− | : | + | |
+ | With the definition of the characteristic cable attenuation (in Neper or decibel) | ||
+ | :a⋆(Np)=aK(f=R/2)=0.1151⋅a⋆(dB) | ||
+ | digital systems with different bit rate R and cable length l can be treated uniformly. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Notes: | ||
+ | *The exercise belongs to the chapter [[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Koaxialkabeln|Properties of Coaxial Cables]]. | ||
+ | |||
+ | *You can use the interactive "HTML 5/JS" applet [[Applets:Attenuation_of_Copper_Cables|Applets:Attenuation of Copper Cables]] to check your results. | ||
− | |||
− | |||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Which terms of $H_{\rm K}(f)$ do not lead to distortions? The |
|type="[]"} | |type="[]"} | ||
− | + | + | + α0–term, |
− | - | + | - α1–term, |
− | - | + | - α2–term, |
− | + | + | + β1–term, |
− | - | + | - β2–term. |
− | { | + | {What length $l_{\rm max} could such a cable have so that a DC signal is attenuated by no more than 1\%$ ? |
|type="{}"} | |type="{}"} | ||
− | lmax | + | $l_\text{max} \ = \ { 6.173 3% }\ \rm km$ |
− | { | + | {What is the attenuation (in Np) at frequency $f = 70 \ \rm MHz when the cable length is \underline{l = 2 \ \rm km}$? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $a_{\rm K}(f = 70\ \rm MHz) \ = \ { 4.619 3% }\ \rm Np$ |
− | { | + | {Assuming all other things are equal, what is the attenuation when only the α2–term is considered? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $a_{\rm K}(f = 70\ \rm MHz) \ = \ { 4.555 3% }\ \rm Np$ |
− | { | + | {What is the formula for the conversion between $\rm Np and \rm dB$? What is the $\rm dB$ value that results for the attenuation calculated in '''(4)'''? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $a_{\rm K}(f = 70\ \rm MHz) \ = \ { 39.56 3% }\ \rm dB$ |
− | { | + | {Which statements are true if we restrict ourselves to the α2–value with respect to the attenuation function? |
|type="[]"} | |type="[]"} | ||
− | + | + | + One can also do without the phase term with β1. |
− | - | + | - One can also do without the phase term with β2. |
− | - | + | - a⋆≈40 dB holds for a system with $R = 70 \ \rm Mbit/s and l = 2 \ \rm km$. |
− | + | + | + a⋆≈40 dB holds for a system with $R = 140 \ \rm Mbit/s and l = 2 \ \rm km$. |
− | + | + | + a⋆≈40 dB holds for a system with $R = 560 \ \rm Mbit/s and l = 1 \ \rm km$. |
Line 83: | Line 101: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | + | '''(1)''' <u>Solutions 1 and 4</u> are correct: | |
+ | *The α0–term causes only a frequency-independent attenuation. | ||
+ | *The β1–term (linear phase) results in a frequency-independent delay. | ||
+ | *All other terms contribute to the (linear) distortions. | ||
− | + | ||
+ | '''(2)''' With ${\rm a}_0 = \alpha_0 \cdot l$ the following equation must be satisfied: | ||
:$${\rm e}^{- {\rm a}_0 } \ge 0.99 | :$${\rm e}^{- {\rm a}_0 } \ge 0.99 | ||
\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm a}_0 < {\rm ln} | \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm a}_0 < {\rm ln} | ||
\hspace{0.10cm}\frac{1}{0.99}\approx 0.01\,\,{\rm (Np)} | \hspace{0.10cm}\frac{1}{0.99}\approx 0.01\,\,{\rm (Np)} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | : | + | *This gives the maximum cable length: |
:$$l_{\rm max} = \frac{{\rm a}_0 }{\alpha_0 } = \frac{0.01\,\,{\rm Np}}{0.00162\,\,{\rm Np/km}}\hspace{0.15cm}\underline{\approx 6.173\,\,{\rm km}} | :$$l_{\rm max} = \frac{{\rm a}_0 }{\alpha_0 } = \frac{0.01\,\,{\rm Np}}{0.00162\,\,{\rm Np/km}}\hspace{0.15cm}\underline{\approx 6.173\,\,{\rm km}} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | '''(3)''' The following applies to the attenuation curve when all terms are taken into account: | |
− | :$$ | + | :$${a}_{\rm K}(f) = [\alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot |
− | \sqrt{f}\hspace{0.05cm}] \cdot l | + | \sqrt{f}\hspace{0.05cm}] \cdot l |
− | = [0.00162 + 0.000435 \cdot 70 + 0.2722 \cdot \sqrt{70}\hspace{0.05cm}]\, \frac{\rm Np}{\rm km} \cdot 2\,{\rm km} = \\ | + | = \big[0.00162 + 0.000435 \cdot 70 + 0.2722 \cdot \sqrt{70}\hspace{0.05cm}\big]\, \frac{\rm Np}{\rm km} \cdot 2\,{\rm km} $$ |
− | + | :$$ \Rightarrow \hspace{0.3cm}{a}_{\rm K}(f = 70\ \rm MHz) = \big[0.003 + 0.061 + 4.555 \hspace{0.05cm}\big]\, {\rm Np}\hspace{0.15cm}\underline{= 4.619\, {\rm Np}}\hspace{0.05cm}.$$ | |
− | |||
− | + | '''(4)''' According to the calculation in subtask '''(3)''', the attenuation value aK(f=70 MHz)=4.555 Np_ is obtained here. | |
+ | |||
+ | |||
+ | '''(5)''' For any positive quantity $x$ the following holds: | ||
:$$x_{\rm Np} = {\rm ln} \hspace{0.10cm} x = \frac{{\rm lg} \hspace{0.10cm} x}{{\rm lg} \hspace{0.10cm} {\rm e}} | :$$x_{\rm Np} = {\rm ln} \hspace{0.10cm} x = \frac{{\rm lg} \hspace{0.10cm} x}{{\rm lg} \hspace{0.10cm} {\rm e}} | ||
= \frac{1}{{20 \cdot \rm lg} \hspace{0.10cm} {\rm e}} \cdot | = \frac{1}{{20 \cdot \rm lg} \hspace{0.10cm} {\rm e}} \cdot | ||
− | (20 \cdot {\rm lg} \hspace{0.10cm} x) = 0.1151 \cdot x_{\rm dB} | + | (20 \cdot {\rm lg} \hspace{0.10cm} x) = 0.1151 \cdot x_{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x_{\rm dB} = 8.6859 \cdot x_{\rm |
− | |||
Np}\hspace{0.05cm}.$$ | Np}\hspace{0.05cm}.$$ | ||
− | + | The attenuation value $4.555 \ {\rm Np} is thus identical to {a}_{\rm K}(f = 70\ \rm MHz)\hspace{0.15cm}\underline{=39.56 \ \rm dB}$. | |
− | + | ||
+ | '''(6)''' <u>Solutions 1, 4 and 5</u> are correct. Explanation: | ||
+ | *With the restriction to the attenuation term with α2, the following applies to the frequency response: | ||
:$$H_{\rm K}(f) = | :$$H_{\rm K}(f) = | ||
{\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | {\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | ||
Line 119: | Line 144: | ||
{\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | ||
\sqrt{f}} \hspace{0.05cm}.$$ | \sqrt{f}} \hspace{0.05cm}.$$ | ||
− | + | *If the β1–phase term is omitted, nothing changes with respect to the distortions. Only the phase and group delay would be (both equal) smaller by the value $\tau_1 = (\beta_1 \cdot l)/(2\pi)$. | |
− | + | *If, on the other hand, we omit the β2–term, we obtain completely different conditions: | |
− | + | ::'''(a)''' The frequency response $H_{\rm K}(f)$ no longer fulfills the requirement of a causal system; in such a case, $H_{\rm K}(f)$ would have to be in minimum phase. | |
− | : | + | ::'''(b)''' The impulse response $h_{\rm K}(t) is symmetrical at t = 0$ with real frequency response, which does not correspond to the conditions. |
− | + | *Therefore, as an approximation for the coaxial cable frequency response, the following is allowed: | |
− | : | + | :$${a}_{\rm K}(f) = \alpha_2 \cdot l \cdot |
− | + | \sqrt{f},$$ | |
− | + | :$$ b_{\rm K}(f) = a_{\rm K}(f) \cdot | |
− | :$$ | ||
− | \sqrt{f}, | ||
{\rm rad}/{\rm Np}\hspace{0.05cm}.$$ | {\rm rad}/{\rm Np}\hspace{0.05cm}.$$ | ||
− | : | + | *That means: ${a}_{\rm K}(f) and {b}_{\rm K}(f)$ of a coaxial cable are in first approximation identical in shape and differ only in their units. |
− | + | *For a digital system with bit rate $R = 140 \ \rm Mbit/s$ ⇒ $R/2 = 70 \ \rm Mbit/s and cable length l = 2 \ \rm km$ , $a_\star \approx 40 \ \rm dB$ holds (see solution to the last sub-task). | |
− | :$$ | + | *A system with four times the bit rate $R/2 = 280 \ \rm Mbit/s and half the length (l = 1 \ \rm km)$ results in the same characteristic cable attenuation. |
+ | *In contrast, the following holds for a system with $R/2 = 35 \ \rm Mbit/s and l = 2 \ \rm km$: | ||
+ | :$${a}_\star = 0.2722 \hspace{0.15cm}\frac {\rm Np}{\rm km \cdot \sqrt{MHz}} \cdot {\rm 2\,km}\cdot\sqrt{\rm 35\,MHz} | ||
\cdot 8.6859 \,\frac {\rm dB}{\rm Np} \approx 28\,{\rm dB} | \cdot 8.6859 \,\frac {\rm dB}{\rm Np} \approx 28\,{\rm dB} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | [[Category: | + | [[Category:Linear and Time-Invariant Systems: Exercises|^4.2 Coaxial Cable^]] |
Latest revision as of 18:21, 12 November 2021
A so-called normal coaxial cable of length l with
- core diameter 2.6 mm, and
- outer diameter 9.5 mm
has the following frequency response:
- HK(f)=e−α0⋅l⋅e−α1⋅l⋅f⋅e−α2⋅l⋅√f⋅e−j⋅β1⋅l⋅f⋅e−j⋅β2⋅l⋅√f.
The attenuation parameters α0, α1 and α2 are to be used in "Neper per kilometer" (Np/km) and the phase parameters β1 and β2 in "Radian per kilometer" (rad/km). The following numerical values apply:
- α0=0.00162Np/km,
- α1=0.000435Np/km⋅MHz,
- α2=0.2722Np/km⋅√MHz.
For the system-theoretical description of a coaxial cable (German: "Koaxialkabel" ⇒ subscipt "K"), one uses
- the attenuation function (in Np or dB):
- aK(f)=−ln|HK(f)|=−20⋅lg|HK(f)|,
- the phase function (in rad or degree):
- bK(f)=−arcHK(f).
In practice, one often uses the approximation
- HK(f)=e−α2⋅l⋅√f⋅e−j⋅β2⋅l⋅√f
- ⇒aK(f)=α2⋅l⋅√f,bK(f)=aK(f)⋅rad/Np.
This is allowed because α2 and β2 have exactly the same numerical value and differ only by different pseudo units.
With the definition of the characteristic cable attenuation (in Neper or decibel)
- a⋆(Np)=aK(f=R/2)=0.1151⋅a⋆(dB)
digital systems with different bit rate R and cable length l can be treated uniformly.
Notes:
- The exercise belongs to the chapter Properties of Coaxial Cables.
- You can use the interactive "HTML 5/JS" applet Attenuation of Copper Cables to check your results.
Questions
Solution
- The α0–term causes only a frequency-independent attenuation.
- The β1–term (linear phase) results in a frequency-independent delay.
- All other terms contribute to the (linear) distortions.
(2) With a0=α0⋅l the following equation must be satisfied:
- e−a0≥0.99⇒a0<ln10.99≈0.01(Np).
- This gives the maximum cable length:
- lmax=a0α0=0.01Np0.00162Np/km≈6.173km_.
(3) The following applies to the attenuation curve when all terms are taken into account:
- aK(f)=[α0+α1⋅f+α2⋅√f]⋅l=[0.00162+0.000435⋅70+0.2722⋅√70]Npkm⋅2km
- ⇒aK(f=70 MHz)=[0.003+0.061+4.555]Np=4.619Np_.
(4) According to the calculation in subtask (3), the attenuation value aK(f=70 MHz)=4.555 Np_ is obtained here.
(5) For any positive quantity x the following holds:
- xNp=lnx=lgxlge=120⋅lge⋅(20⋅lgx)=0.1151⋅xdB⇒xdB=8.6859⋅xNp.
The attenuation value 4.555 Np is thus identical to aK(f=70 MHz)=39.56 dB_.
(6) Solutions 1, 4 and 5 are correct. Explanation:
- With the restriction to the attenuation term with α2, the following applies to the frequency response:
- HK(f)=e−α2⋅l⋅√f⋅e−j⋅β1⋅l⋅f⋅e−j⋅β2⋅l⋅√f.
- If the β1–phase term is omitted, nothing changes with respect to the distortions. Only the phase and group delay would be (both equal) smaller by the value τ1=(β1⋅l)/(2π).
- If, on the other hand, we omit the β2–term, we obtain completely different conditions:
- (a) The frequency response HK(f) no longer fulfills the requirement of a causal system; in such a case, HK(f) would have to be in minimum phase.
- (b) The impulse response hK(t) is symmetrical at t=0 with real frequency response, which does not correspond to the conditions.
- Therefore, as an approximation for the coaxial cable frequency response, the following is allowed:
- aK(f)=α2⋅l⋅√f,
- bK(f)=aK(f)⋅rad/Np.
- That means: aK(f) and bK(f) of a coaxial cable are in first approximation identical in shape and differ only in their units.
- For a digital system with bit rate R=140 Mbit/s ⇒ R/2=70 Mbit/s and cable length l=2 km , a⋆≈40 dB holds (see solution to the last sub-task).
- A system with four times the bit rate R/2=280 Mbit/s and half the length (l=1 km) results in the same characteristic cable attenuation.
- In contrast, the following holds for a system with R/2=35 Mbit/s and l=2 km:
- a⋆=0.2722Npkm⋅√MHz⋅2km⋅√35MHz⋅8.6859dBNp≈28dB.