Difference between revisions of "Aufgaben:Exercise 3.5Z: Integration of Dirac Functions"
From LNTwww
(24 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Signal_Representation/Fourier_Transform_Laws |
}} | }} | ||
− | [[File:P_ID515__Sig_Z_3_5_neu.png|right|]] | + | [[File:P_ID515__Sig_Z_3_5_neu.png|right|frame|Integration of Dirac functions ]] |
− | + | Like in [[Aufgaben:3.5_Differentiation_eines_Dreicksignals|Exercise 3.5]] the spectrum ${Y(f)}$ of the signal | |
− | :$$y( t ) = \left\{ \begin{array}{c} A \\ - A \\ 0 \\ \end{array} \right.\quad \begin{array}{*{20}c} {{\rm{ | + | :$$y( t ) = \left\{ \begin{array}{c} A \\ - A \\ 0 \\ \end{array} \right.\quad \begin{array}{*{20}c} {{\rm{for}}} \\ {{\rm{for}}} \\ {\rm{else.}} \\ \end{array}\;\begin{array}{*{20}c} { - T \le t < 0,} \\ {0 < t \le T,} \\ {} \\\end{array}$$ |
− | + | can be determined. Again, $A = 1 \,\text{V}$ and $T = 0.5 \,\text{ms}$ apply. | |
− | + | Assume the time signal ${x(t)}$ according to the middle sketch, which is composed of three Dirac pulses at $–T$, $0$ and $+T$ with the pulse weights ${AT}$, $-2{AT}$ und ${AT}$ . | |
− | + | The spectral function ${X(f)}$ can be given directly by applying the [[Signal_Representation/Fourier_Transform_Theorems#Duality_Theorem|Duality Theorem]] if one takes into account that the time function belonging to ${U(f)}$ is as follows (see lower sketch): | |
:$$u( t ) = - 2A + 2A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$ | :$$u( t ) = - 2A + 2A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$ | ||
− | + | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ''Hints:'' | ||
+ | *This exercise belongs to the chapter [[Signal_Representation/Fourier_Transform_Theorems|Fourier Transform Theorems]]. | ||
+ | *All the laws presented here are illustrated with examples in the (German language) learning video<br> [[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|Gesetzmäßigkeiten der Fouriertransformation]] ⇒ "Regularities to the Fourier transform". | ||
+ | *The following relationship exists between ${x(t)}$ and ${y(t)}$ : | ||
:$$y( t ) = \frac{1}{T} \cdot \hspace{-0.1cm} \int_{ - \infty }^{\hspace{0.05cm}t} {x( \tau )}\, {\rm d}\tau .$$ | :$$y( t ) = \frac{1}{T} \cdot \hspace{-0.1cm} \int_{ - \infty }^{\hspace{0.05cm}t} {x( \tau )}\, {\rm d}\tau .$$ | ||
− | + | *The [[Signal_Representation/Fourier_Transform_Laws#Integration_Theorem|Integration Theorem]] reads in a correspondingly adapted form: | |
− | :$$\frac{1}{T}\cdot \hspace{-0.1cm} \int_{ - \infty }^{\hspace{0.05cm}t} {x( \tau )}\,\, {\rm d}\tau\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,X( f )\left( {\frac{1}{{{\rm{j}}2{\rm{\pi }}fT}} + \frac{1}{2T}\cdot {\rm \delta} ( f )} \right).$$ | + | :$$\frac{1}{T}\cdot \hspace{-0.1cm} \int_{ - \infty }^{\hspace{0.05cm}t} {x( \tau )}\,\, {\rm d}\tau\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ X( f ) \cdot \left( {\frac{1}{{{\rm{j}}\cdot 2{\rm{\pi }\cdot }fT}} + \frac{1}{2T}\cdot {\rm \delta} ( f )} \right).$$ |
− | + | ||
− | |||
− | |||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Calculate the spectral function ${X(f)}$. What is its magnitude at the frequencies $f = 0$ and $f = 1\, \text{kHz}$? |
|type="{}"} | |type="{}"} | ||
− | $| | + | $|{X(f = 0)}| \ = \ $ { 0. } $\text{mV/Hz}$ |
− | $| | + | $|{X(f = 1\, \text{kHz})}|\ = \ $ { 2 3% } $\text{mV/Hz}$ |
− | { | + | {Calculate the spectral function ${Y(f)}$. What values result at the frequencies $f = 0$ and $f = 1\, \text{kHz}$? |
|type="{}"} | |type="{}"} | ||
− | $| | + | $|{Y(f = 0)}|\ = \ $ { 0. } $\text{mV/Hz}$ |
− | $| | + | $|{Y(f = 1\, \text{kHz})}| \ = \ $ { 0.636 3% } $\text{mV/Hz}$ |
Line 39: | Line 46: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | '''(1)''' In the task description you will find the Fourier correspondence between ${u(t)}$ and ${U(f)}$. |
+ | *Since both the time functions ${u(t)}$ and ${x(t)}$ and the corresponding spectra ${U(f)}$ and ${X(f)}$ are even and real, ${X(f)}$ can be easily calculated by applying the "Duality Theorem": | ||
:$$X( f ) = - 2 \cdot A \cdot T + 2 \cdot A \cdot T \cdot \cos \left( {{\rm{2\pi }}fT} \right).$$ | :$$X( f ) = - 2 \cdot A \cdot T + 2 \cdot A \cdot T \cdot \cos \left( {{\rm{2\pi }}fT} \right).$$ | ||
− | + | *Because of the relation $\sin^{2}(\alpha) = (1 – \cos(\alpha))/2$ it can also be written for this: | |
:$$X( f ) = - 4 \cdot A \cdot T \cdot \sin ^2 ( {{\rm{\pi }}fT} ).$$ | :$$X( f ) = - 4 \cdot A \cdot T \cdot \sin ^2 ( {{\rm{\pi }}fT} ).$$ | ||
− | + | :*At frequency $f = 0$ the signal ${x(t)}$ has no spectral components ⇒ ${X(f = 0)} \;\underline{= 0}$. | |
− | :$$X( f = 1\;{\rm{kHz}} ) = - 4 \cdot A \cdot T = -2 \cdot 10^{ - 3} \;{\rm{V/Hz}}\ | + | :*For $f = 1 \,\text{kHz}$ – and also $f \cdot T = 0.5$ – on the other hand: |
− | |X( {f = 1\;{\rm{kHz}}} )| \hspace{0.15 cm}\underline{= 2 | + | :$$X( f = 1\;{\rm{kHz}} ) = - 4 \cdot A \cdot T = -2 \cdot 10^{ - 3} \;{\rm{V/Hz}}\; \Rightarrow \; |
+ | |X( {f = 1\;{\rm{kHz}}} )| \hspace{0.15 cm}\underline{= 2 \;{\rm{mV/Hz}}}{\rm{.}}$$ | ||
+ | |||
+ | |||
− | '''2 | + | '''(2)''' The spectrum ${Y(f)}$ can be determined from ${X(f)}$ by applying the "Integration Theorem". |
+ | *Because of ${X(f = 0)} = 0$ the Dirac function does not have to be taken into account at the frequency $f = 0$ and one obtains: | ||
:$$Y( f ) = \frac{X( f )}{{{\rm{j}} \cdot 2{\rm{\pi }}fT}} = \frac{{ - 4 \cdot A \cdot T \cdot \sin ^2 ( {{\rm{\pi }}fT} )}}{{{\rm{j}}\cdot 2{\rm{\pi }}fT}} = 2{\rm{j}} \cdot A \cdot T \cdot \frac{{\sin ^2 ( {{\rm{\pi }}fT} )}}{{{\rm{\pi }}fT}}.$$ | :$$Y( f ) = \frac{X( f )}{{{\rm{j}} \cdot 2{\rm{\pi }}fT}} = \frac{{ - 4 \cdot A \cdot T \cdot \sin ^2 ( {{\rm{\pi }}fT} )}}{{{\rm{j}}\cdot 2{\rm{\pi }}fT}} = 2{\rm{j}} \cdot A \cdot T \cdot \frac{{\sin ^2 ( {{\rm{\pi }}fT} )}}{{{\rm{\pi }}fT}}.$$ | ||
− | + | *Of course, the result is the same as in [[Aufgaben:3.5_Differentiation_eines_Dreicksignals|Exercise 3.5]]: | |
− | :$$|Y( {f = 1\;{\rm{kHz}}} )| = \frac{4 \cdot A \cdot T}{\rm{\pi }} \hspace{0.15 cm}\underline{= {\rm{0}}{\rm{.636}} | + | :*At frequency $f = 0$ The signal ${y(t)}$ also has no spectral components ⇒ ${Y(f = 0)} \;\underline{= 0}$. |
+ | :*For $f = 1\,\text{kHz} \ \ (f \cdot T = 0.5)$ one obtains a value smaller by a factor $\pi$ compared to $X(f)$: | ||
+ | :$$|Y( {f = 1\;{\rm{kHz}}} )| = \frac{4 \cdot A \cdot T}{\rm{\pi }} \hspace{0.15 cm}\underline{= {\rm{0}}{\rm{.636}} \;{\rm{mV/Hz}}}{\rm{.}}$$ | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
__NOEDITSECTION__ | __NOEDITSECTION__ | ||
− | [[Category: | + | [[Category:Signal Representation: Exercises|^3.3 Fourier Transform Theorems^]] |
Latest revision as of 14:21, 24 May 2021
Like in Exercise 3.5 the spectrum ${Y(f)}$ of the signal
- $$y( t ) = \left\{ \begin{array}{c} A \\ - A \\ 0 \\ \end{array} \right.\quad \begin{array}{*{20}c} {{\rm{for}}} \\ {{\rm{for}}} \\ {\rm{else.}} \\ \end{array}\;\begin{array}{*{20}c} { - T \le t < 0,} \\ {0 < t \le T,} \\ {} \\\end{array}$$
can be determined. Again, $A = 1 \,\text{V}$ and $T = 0.5 \,\text{ms}$ apply.
Assume the time signal ${x(t)}$ according to the middle sketch, which is composed of three Dirac pulses at $–T$, $0$ and $+T$ with the pulse weights ${AT}$, $-2{AT}$ und ${AT}$ .
The spectral function ${X(f)}$ can be given directly by applying the Duality Theorem if one takes into account that the time function belonging to ${U(f)}$ is as follows (see lower sketch):
- $$u( t ) = - 2A + 2A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$
Hints:
- This exercise belongs to the chapter Fourier Transform Theorems.
- All the laws presented here are illustrated with examples in the (German language) learning video
Gesetzmäßigkeiten der Fouriertransformation ⇒ "Regularities to the Fourier transform". - The following relationship exists between ${x(t)}$ and ${y(t)}$ :
- $$y( t ) = \frac{1}{T} \cdot \hspace{-0.1cm} \int_{ - \infty }^{\hspace{0.05cm}t} {x( \tau )}\, {\rm d}\tau .$$
- The Integration Theorem reads in a correspondingly adapted form:
- $$\frac{1}{T}\cdot \hspace{-0.1cm} \int_{ - \infty }^{\hspace{0.05cm}t} {x( \tau )}\,\, {\rm d}\tau\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ X( f ) \cdot \left( {\frac{1}{{{\rm{j}}\cdot 2{\rm{\pi }\cdot }fT}} + \frac{1}{2T}\cdot {\rm \delta} ( f )} \right).$$
Questions
Solution
(1) In the task description you will find the Fourier correspondence between ${u(t)}$ and ${U(f)}$.
- Since both the time functions ${u(t)}$ and ${x(t)}$ and the corresponding spectra ${U(f)}$ and ${X(f)}$ are even and real, ${X(f)}$ can be easily calculated by applying the "Duality Theorem":
- $$X( f ) = - 2 \cdot A \cdot T + 2 \cdot A \cdot T \cdot \cos \left( {{\rm{2\pi }}fT} \right).$$
- Because of the relation $\sin^{2}(\alpha) = (1 – \cos(\alpha))/2$ it can also be written for this:
- $$X( f ) = - 4 \cdot A \cdot T \cdot \sin ^2 ( {{\rm{\pi }}fT} ).$$
- At frequency $f = 0$ the signal ${x(t)}$ has no spectral components ⇒ ${X(f = 0)} \;\underline{= 0}$.
- For $f = 1 \,\text{kHz}$ – and also $f \cdot T = 0.5$ – on the other hand:
- $$X( f = 1\;{\rm{kHz}} ) = - 4 \cdot A \cdot T = -2 \cdot 10^{ - 3} \;{\rm{V/Hz}}\; \Rightarrow \; |X( {f = 1\;{\rm{kHz}}} )| \hspace{0.15 cm}\underline{= 2 \;{\rm{mV/Hz}}}{\rm{.}}$$
(2) The spectrum ${Y(f)}$ can be determined from ${X(f)}$ by applying the "Integration Theorem".
- Because of ${X(f = 0)} = 0$ the Dirac function does not have to be taken into account at the frequency $f = 0$ and one obtains:
- $$Y( f ) = \frac{X( f )}{{{\rm{j}} \cdot 2{\rm{\pi }}fT}} = \frac{{ - 4 \cdot A \cdot T \cdot \sin ^2 ( {{\rm{\pi }}fT} )}}{{{\rm{j}}\cdot 2{\rm{\pi }}fT}} = 2{\rm{j}} \cdot A \cdot T \cdot \frac{{\sin ^2 ( {{\rm{\pi }}fT} )}}{{{\rm{\pi }}fT}}.$$
- Of course, the result is the same as in Exercise 3.5:
- At frequency $f = 0$ The signal ${y(t)}$ also has no spectral components ⇒ ${Y(f = 0)} \;\underline{= 0}$.
- For $f = 1\,\text{kHz} \ \ (f \cdot T = 0.5)$ one obtains a value smaller by a factor $\pi$ compared to $X(f)$:
- $$|Y( {f = 1\;{\rm{kHz}}} )| = \frac{4 \cdot A \cdot T}{\rm{\pi }} \hspace{0.15 cm}\underline{= {\rm{0}}{\rm{.636}} \;{\rm{mV/Hz}}}{\rm{.}}$$