Difference between revisions of "Aufgaben:Exercise 3.6Z: Complex Exponential Function"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Signaldarstellung/Gesetzmäßigkeiten der Fouriertransformation }} right| In Zusammenhang mit Ba…“)
 
m (Text replacement - "bandpass" to "band-pass")
 
(31 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Gesetzmäßigkeiten der Fouriertransformation
+
{{quiz-Header|Buchseite=Signal_Representation/Fourier_Transform_Laws
 
}}
 
}}
  
[[File:P_ID518__Sig_Z_3_6_neu.png|right|]]
+
[[File:P_ID518__Sig_Z_3_6_neu.png|right|frame|Splitting the complex exponential function  in the spectral domain]]
In Zusammenhang mit Bandpass-Systemen (Kapitel 4) wird oft mit einseitigen Spektren gearbeitet. In der Abbildung sehen Sie eine solche einseitige Spektralfunktion $\text{X(f)}$, die ein komplexes Zeitsignal $\text{x(t)}$ zur Folge hat.
+
In connection with  [[Signal_Representation/Differences_and_Similarities_of_LP_and_BP_Signals|"band-pass systems"]] , one-sided spectra are often used.  In the graphic you see such a one-sided spectral function  ${X(f)}$, which results in a complex time signal  ${x(t)}$.
  
In der unteren Skizze ist $\text{X(f)}$ in einen – bezüglich der Frequenz – geraden Anteil $\text{G(f)}$ sowie einen ungeraden Anteil $\text{U(f)}$ aufgespaltet.
+
In the sketch below,  ${X(f)}$  is split into an even component  ${G(f)}$  – with respect to the frequency – and an odd component  ${U(f)}$.
  
Verwenden Sie für die Aufgabe die Parameterwerte
 
  
:* $A = 1 \text{V}$,
 
  
:* $f_0 = 125 \text{kHz}.$
 
  
<br><br><b>Hinweis:</b> Diese Aufgabe bezieht sich auf den Zuordnungssatz und den Verschiebungssatz im [http://en.lntwww.de/Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation Kapitel 3.3]. Alle im Kapitel 3.3 dargelegten Gesetzmäßigkeiten - unter Anderem auch der Verschiebungssatz und der Integrationssatz - werden in einem Lernvideo an Beispielen verdeutlicht:
 
  
Gesetzmäßigkeiten der Fouriertransformation
 
  
  
===Fragebogen===
+
 
 +
 
 +
''Hints:''
 +
*This exercise belongs to the chapter&nbsp; [[Signal_Representation/Fourier_Transform_Theorems|Fourier Transform Theorems]].
 +
*For the first two sub-tasks use the signal parameters&nbsp; $A = 1\, \text{V}$&nbsp; and&nbsp; $f_0 = 125 \,\text{kHz}$.
 +
*The&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|Shifting Theorem]]&nbsp; and the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Assignment_Theorem|Assignment Theorem]]&nbsp; – are illustrated with examples in the (German language) learning video<br> &nbsp; &nbsp; &nbsp;[[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|Gesetzmäßigkeiten der Fouriertransformation]] &nbsp; &rArr; &nbsp;  "Regularities to the Fourier transform".
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lautet die zu $\text{G(f)}$ passende Zeitfunktion $\text{g(t)}$? Wie groß ist $g(t = 1 \mu s)$?
+
{What is the time function&nbsp; $g(t)$&nbsp; that fits&nbsp; $G(f)$?&nbsp; How large is &nbsp; $g(t = 1 \, &micro; \text {s})$?
 
|type="{}"}
 
|type="{}"}
$\text{Re}[g(t = 1 \mu s)]$ = { 0.707 3% } $\text{V}$
+
$\text{Re}\big[g(t = 1 \, &micro; \text {s})\big] \ =  \ $ { 0.707 3% } &nbsp;$\text{V}$
$\text{Im}[g(t = 1 \mu s)]$ = { 0 3% } $\text{V}$
+
$\text{Im}\big[g(t = 1 \, &micro; \text {s})\big]\ =  \ $ { 0. } &nbsp;$\text{V}$
  
  
{Wie lautet die zu $\text{U(f)}$ passende Zeitfunktion $\text{u(t)}$? Wie groß ist $u(t = 1 \mu s)$?
+
{What is the time function&nbsp; $u(t)$&nbsp; that fits&nbsp; $U(f)$?&nbsp; What is the value of&nbsp; $u(t = 1 \, &micro; \text {s})$?
 
|type="{}"}
 
|type="{}"}
$\text{Re}[u(t = 1 \mu s)]$ = { 0 3% } $\text{V}$
+
$\text{Re}\big[u(t = 1 \, &micro; \text {s})\big]\ = \ $ { 0. } &nbsp;$\text{V}$
$\text{Im}[u(t = 1 \mu s)]$ = { 0.707 3% } $\text{V}$
+
$\text{Im}\big[u(t = 1 \, &micro; \text {s})\big]\ = \ $ { 0.707 3% } &nbsp;$\text{V}$
  
  
{Welche der Aussagen sind bezüglich des Signals $\text{x(t)}$ zutreffend?
+
{Which of the statements are true regarding the signal&nbsp; $x(t)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ Das Signal lautet $\text{x(t)} = A \cdot exp(j2\pi f_0 t)$.
+
+ The signal is&nbsp; $x(t) = A \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi\hspace{0.05cm}\cdot \hspace{0.05cm} f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t}$.
- In der komplexen Ebene dreht $\text{x(t)}$ im Uhrzeigersinn.
+
- In the complex plane&nbsp; $x(t)$&nbsp; rotates clockwise.
+ $\text{x(t)}$ dreht stattdessen entgegen dem Uhrzeigersinn.
+
+ In the complex plane&nbsp; $x(t)$&nbsp; rotates counterclockwise.
- Für eine Umdrehung wird eine Mikrosekunde benötigt.
+
- One microsecond is needed for one rotation.
  
  
Line 45: Line 48:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  $\text{G(f)}$ ist die Spektralfunktion eines Cosinussignals mit der Periodendauer $T_0 = 1/f_0 = 8 \text{$\mu$s}$:
+
'''(1)'''&nbsp; $G(f)$&nbsp; is the spectral function of a cosine signal with period&nbsp; $T_0 = 1/f_0 = 8 \, &micro;\text {s}$:
 
:$$g( t ) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$
 
:$$g( t ) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$
Bei $t = 1 \text{$\mu$s}$ ist der Signalwert gleich $A \cdot cos(\pi /4)$, also <u>$0.707 \text{V}$ (Realteil) und $0$ (Imaginärteil)</u>.
+
At&nbsp; $t = 1 \, &micro;\text {s}$&nbsp; the signal value is equal to&nbsp; $A \cdot \cos(\pi /4)$:
 +
*The real part is&nbsp; $\text{Re}[g(t = 1 \, &micro; \text {s})] = \;\underline{0.707\, \text{V}}$,
 +
*The imaginary part is&nbsp; $\text{Im}[g(t = 1 \, &micro; \text {s})] = \;\underline{0.}$
 +
 
 +
 
  
'''2.''' Ausgehend von der Fourierkorrespondenz
+
'''(2)'''&nbsp; Starting from the Fourier correspondence
:$$A \cdot {\rm \delta} ( f )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, A$$
+
:$$A \cdot {\rm \delta} ( f )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ A$$
erhält man durch zweimalige Anwendung des Verschiebungssatzes (im Frequenzbereich):
+
is obtained by applying the shifting theorem twice (in the frequency domain):
:$$U( f ) = \frac{A}{2} \cdot \delta ( {f - f_0 } ) - \frac{A}{2} \cdot \delta ( {f + f_0 } )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, u( t ) = \frac{A}{2}\left( {{\rm{e}}^{{\rm{j}}2{\rm{\pi }}f_0 t}  - {\rm{e}}^{{\rm{ - j}}2{\rm{\pi }}f_0 t} } \right).$$
+
:$$U( f ) = {A}/{2} \cdot \delta ( {f - f_0 } ) - {A}/{2} \cdot \delta ( {f + f_0 } )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ u( t ) = {A}/{2} \cdot \left( {{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0\hspace{0.05cm}\cdot \hspace{0.05cm} t}  - {\rm{e}}^{{\rm{ - j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} } \right).$$
Nach dem Satz von Euler kann hierfür auch geschrieben werden:
+
*According to&nbsp; [[Signal_Representation/Calculating_With_Complex_Numbers#Representation_by_magnitude_and_phase|Euler's theorem]]&nbsp;, this can also be written.
 
:$$u( t ) = {\rm{j}} \cdot A \cdot \sin ( {2{\rm{\pi }}f_0 t} ).$$
 
:$$u( t ) = {\rm{j}} \cdot A \cdot \sin ( {2{\rm{\pi }}f_0 t} ).$$
Der <u>Realteil dieses Signals ist stets $0$. Der Imaginärteil hat zur Zeit $t = 1 \text{$\mu$s}$ den Wert $0.707 \text{V}$</u>.
+
:*The <u>real part of this signal is always zero</u>.  
 +
:*At&nbsp; $t = 1 \, &micro;\text {s}$&nbsp; the following applies to the imaginary part:&nbsp; $\text{Im}[g(t = 1 \, &micro; \text {s})] = \;\underline{0.707\, \text{V}}$.
 +
 
 +
 
  
'''3.'''  Wegen $\text{X(f)} = \text{G(f)} + \text{U(f)}$ gilt auch:
+
'''(3)'''&nbsp; Because&nbsp; $X(f) = G(f) + U(f)$&nbsp; also holds:
 
:$$x(t) = g(t) + u(t) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ) + {\rm{j}} \cdot A \cdot \sin( {2{\rm{\pi }}f_0 t} ).$$
 
:$$x(t) = g(t) + u(t) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ) + {\rm{j}} \cdot A \cdot \sin( {2{\rm{\pi }}f_0 t} ).$$
Dieses Ergebnis kann mit dem Satz von Euler wie folgt zusammengefasst werden:
+
This result can be summarised by&nbsp; "Euler's theorem"&nbsp; as follows:
:$$x(t) = A \cdot {\rm{e}}^{{\rm{j}}2{\rm{\pi }}f_0 t} .$$
+
:$$x(t) = A \cdot {\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} .$$
Das Signal dreht in der komplexen Ebene in mathematisch positiver Richtung, also entgegen dem Uhrzeigersinn. Für eine Umdrehung benötigt der „Zeiger” die Periodendauer $T_0 = 1/f_0 = 8 \text{$\mu$s}$. Richtig sind also die vorgegebenen <u>Alternativen 1 und 3</u>.
+
The given <u>alternatives 1 and 3</u> are correct:
 +
*The signal rotates in the complex plane in a mathematically positive direction, i.e. counterclockwise.
 +
*For one rotation, the "pointer" needs the period&nbsp; $T_0 = 1/f_0 = 8 \, &micro;\text {s}$.  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^3. Aperiodische Signale - Impulse^]]
+
[[Category:Signal Representation: Exercises|^3.3 Fourier Transform Theorems^]]

Latest revision as of 16:12, 3 May 2021

Splitting the complex exponential function in the spectral domain

In connection with  "band-pass systems" , one-sided spectra are often used.  In the graphic you see such a one-sided spectral function  ${X(f)}$, which results in a complex time signal  ${x(t)}$.

In the sketch below,  ${X(f)}$  is split into an even component  ${G(f)}$  – with respect to the frequency – and an odd component  ${U(f)}$.





Hints:


Questions

1

What is the time function  $g(t)$  that fits  $G(f)$?  How large is   $g(t = 1 \, µ \text {s})$?

$\text{Re}\big[g(t = 1 \, µ \text {s})\big] \ = \ $

 $\text{V}$
$\text{Im}\big[g(t = 1 \, µ \text {s})\big]\ = \ $

 $\text{V}$

2

What is the time function  $u(t)$  that fits  $U(f)$?  What is the value of  $u(t = 1 \, µ \text {s})$?

$\text{Re}\big[u(t = 1 \, µ \text {s})\big]\ = \ $

 $\text{V}$
$\text{Im}\big[u(t = 1 \, µ \text {s})\big]\ = \ $

 $\text{V}$

3

Which of the statements are true regarding the signal  $x(t)$ ?

The signal is  $x(t) = A \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi\hspace{0.05cm}\cdot \hspace{0.05cm} f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t}$.
In the complex plane  $x(t)$  rotates clockwise.
In the complex plane  $x(t)$  rotates counterclockwise.
One microsecond is needed for one rotation.


Solution

(1)  $G(f)$  is the spectral function of a cosine signal with period  $T_0 = 1/f_0 = 8 \, µ\text {s}$:

$$g( t ) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$

At  $t = 1 \, µ\text {s}$  the signal value is equal to  $A \cdot \cos(\pi /4)$:

  • The real part is  $\text{Re}[g(t = 1 \, µ \text {s})] = \;\underline{0.707\, \text{V}}$,
  • The imaginary part is  $\text{Im}[g(t = 1 \, µ \text {s})] = \;\underline{0.}$


(2)  Starting from the Fourier correspondence

$$A \cdot {\rm \delta} ( f )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ A$$

is obtained by applying the shifting theorem twice (in the frequency domain):

$$U( f ) = {A}/{2} \cdot \delta ( {f - f_0 } ) - {A}/{2} \cdot \delta ( {f + f_0 } )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ u( t ) = {A}/{2} \cdot \left( {{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0\hspace{0.05cm}\cdot \hspace{0.05cm} t} - {\rm{e}}^{{\rm{ - j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} } \right).$$
$$u( t ) = {\rm{j}} \cdot A \cdot \sin ( {2{\rm{\pi }}f_0 t} ).$$
  • The real part of this signal is always zero.
  • At  $t = 1 \, µ\text {s}$  the following applies to the imaginary part:  $\text{Im}[g(t = 1 \, µ \text {s})] = \;\underline{0.707\, \text{V}}$.


(3)  Because  $X(f) = G(f) + U(f)$  also holds:

$$x(t) = g(t) + u(t) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ) + {\rm{j}} \cdot A \cdot \sin( {2{\rm{\pi }}f_0 t} ).$$

This result can be summarised by  "Euler's theorem"  as follows:

$$x(t) = A \cdot {\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} .$$

The given alternatives 1 and 3 are correct:

  • The signal rotates in the complex plane in a mathematically positive direction, i.e. counterclockwise.
  • For one rotation, the "pointer" needs the period  $T_0 = 1/f_0 = 8 \, µ\text {s}$.