Difference between revisions of "Aufgaben:Exercise 1.6Z: Ergodic Probabilities"

From LNTwww
 
(15 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Markovketten}}
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Markov_Chains}}
  
[[File:P_ID452__Sto_Z_1_6.png|right|]]
+
[[File:P_ID452__Sto_Z_1_6.png|right|frame|Markov chain with  $A$,  $B$]]
Wir betrachten eine homogene stationäre Markovkette erster Ordnung mit den Ereignissen $A$ und $B$ und den Übergangswahrscheinlichkeiten entsprechend dem nebenstehenden Markovdiagramm:
+
We consider a homogeneous stationary first-order Markov chain with events  $A$  and  $B$  and transition probabilities corresponding to the adjacent Markov diagram:
  
Für die Teilaufgaben a) bis d) wird vorausgesetzt:
+
For subtasks  '''(1)'''  to  '''(4)''',  assume:
  
*Nach dem Ereignis $A$ folgen $A$ und $B$ mit gleicher Wahrscheinlichkeit.
+
*Event  $A$  is followed by  $A$  and  $B$  with equal probability.
  
*Nach $B$ ist das Ereignis $A$ doppelt so wahrscheinlich wie $B$.
+
*After  $B$:  The event  $A$  is twice as likely as  $B$.
  
Ab Teilaufgabe e) sind p und q als freie Parameter zu verstehen, während die Ereigniswahrscheinlichkeiten $Pr(A) = 2/3$ und $Pr(B) = 1/3$ vorgegeben sind.
 
  
 +
From subtask  '''(5)'''  on,  $p$  and  $q$  are free parameters,  while the ergodic probabilities  ${\rm Pr}(A) = 2/3$  and  ${\rm Pr}(B) = 1/3$  are fixed.
  
'''Hinweis''': Diese Aufgabe bezieht sich auf den Theorieteil von Kapitel 1.4. Zur Ergebniskontrolle können Sie das folgende Berechnungstool nutzen:
 
  
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
Hints:
 +
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Markov_Chains|Markov Chains]].
 +
 +
*You can check your results with the    (German language)  interactive SWF applet
 +
: [[Applets:Markovketten|Ereigniswahrscheinlichkeiten einer Markov-Kette erster Ordnung]]   ⇒   "Event Probabilities of a First Order Markov Chain".
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß sind die Übergangswahrscheinlichkeiten $p$ und $q$?
+
{What are the transition probabilities&nbsp; $p$&nbsp; and&nbsp; $q$?
 
|type="{}"}
 
|type="{}"}
$p$ = { 0.5 3% }
+
$p \ = \ $ { 0.5 3% }
$q$ = { 0.333 3% }
+
$q \ = \ $ { 0.333 3% }
  
{Berechnen Sie die ergodischen Wahrscheinlichkeiten.
+
{Calculate the ergodic probabilities.
 
|type="{}"}
 
|type="{}"}
$Pr(A)$ = { 0.571 3% }
+
${\rm Pr}(A) \ = \ $ { 0.571 3% }
$Pr(B)$ = { 0.429 3% }
+
${\rm Pr}(B) \ = \ $ { 0.429 3% }
  
{Wie groß ist die bedingte Wahrscheinlichkeit, dass das Ereignis $B$ auftritt, wenn zwei Takte vorher das Ereignis $A$ aufgetreten ist?
+
{What is the conditional probability that event&nbsp; $B$&nbsp; occurs if event&nbsp; $A$&nbsp; occurred two steps before?
 
|type="{}"}
 
|type="{}"}
$Pr(B_v|A_\text{v-2})$ = { 0.417 3% }
+
${\rm Pr}(B_{\nu}\hspace{0.05cm}|\hspace{0.05cm}A_{\nu-2})\ = \ $ { 0.417 3% }
  
{Wie groß ist die Rückschlusswahrscheinlichkeit, dass zwei Takte vorher das Ereignis $A$ aufgetreten ist, wenn aktuell $B$ auftritt?
+
{What is the inferential probability that event&nbsp; $A$&nbsp; occurred two steps before,&nbsp; when event&nbsp; $B$&nbsp; currently occurs?
 
|type="{}"}
 
|type="{}"}
$Pr(A_\text{v-2}|B_v)$ = { 0.556 3% }
+
${\rm Pr}(A_{\nu-2}\hspace{0.05cm}|\hspace{0.05cm}B_{\nu})\ = \ $ { 0.556 3% }
  
{Es gelte nun $p = 1/2$ und $Pr(A) = 2/3$. Welcher Wert ergibt sich für $q$?
+
{Let now&nbsp; $p = 1/2$&nbsp; and&nbsp; ${\rm Pr}(A) = 2/3$.&nbsp; Which value results for&nbsp; $q$?
 
|type="{}"}
 
|type="{}"}
$q$ = { 0 3% }
+
$q\ = \ $ { 0. }
  
{Wie müssen die Parameter gewählt werden, damit die Folgenelemente der Markovkette statistisch unabhängig sind und zusätzlich $Pr(A) = 2/3$ gilt?
+
{How must the parameters be chosen so that the sequence elements of the Markov chain are statistically independent and additionally&nbsp; ${\rm Pr}(A) = 2/3$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$p$ = { 0.667 3% }
+
$p \ = \ $ { 0.667 3% }
$q$ = { 0.333 3% }
+
$q \ = \ $ { 0.333 3% }
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Gemäß der Angabe gilt <i>p</i> = 1 - <i>p</i>, also <u><i>p</i> = 1/2</u>, und <i>q</i> = (1 - <i>q</i>)/2. Daraus folgt <u><i>q</i> = 1/3</u>.
+
'''(1)'''&nbsp; According to the instruction, &nbsp; $p = 1 - p$ &nbsp; &rArr; &nbsp; $\underline{p =0.500}$&nbsp; and&nbsp; $q = (1 - q)/2$, &nbsp; &rArr; &nbsp; $\underline{q =0.333}$&nbsp; holds.
:<b>2.</b>&nbsp;&nbsp;F&uuml;r die Ereigniswahrscheinlichkeit von <i>A</i> gilt:
+
 
 +
 
 +
 
 +
'''(2)'''&nbsp; For the event probability of&nbsp; $A$&nbsp; holds:
 
:$${\rm Pr}(A) = \frac{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)}{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)+{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A)} = \frac{1-q}{1-q+1-p} = \frac{2/3}{2/3 + 1/2}= \frac{4}{7}  \hspace{0.15cm}\underline {\approx0.571}.$$
 
:$${\rm Pr}(A) = \frac{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)}{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)+{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A)} = \frac{1-q}{1-q+1-p} = \frac{2/3}{2/3 + 1/2}= \frac{4}{7}  \hspace{0.15cm}\underline {\approx0.571}.$$
:Damit ergibt sich Pr(<i>B</i>) = 1 - Pr(<i>A</i>) = 3/7 <u>&asymp; 0.429</u>.
+
*This gives&nbsp; ${\rm Pr}(B)= 1 - {\rm Pr}(A) = 3/7 \hspace{0.15cm}\underline {\approx 0.429}$.
:<b>3.</b>&nbsp;&nbsp;&Uuml;ber den Zeitpunkt <i>&nu;</i>-1 ist keine Aussage getroffen. Zu diesem Zeitpunkt kann das Ereignis <i>A</i> oder das Ereignis <i>B</i> aufgetreten sein. Deshalb gilt:
+
 
:$${\rm Pr}(B_{\nu} \hspace{0.05cm} | \hspace{0.05cm}A_{\nu -2}) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.05cm} \cdot \hspace{0.05cm}{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.15cm} +\hspace{0.15cm} {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.05cm} \cdot \hspace{0.05cm}{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) \\ = p \hspace{0.1cm}  \cdot \hspace{0.1cm}  (1-p) +  q \hspace{0.1cm}  \cdot \hspace{0.1cm}  (1-p)
+
 
= \frac{5}{12}  \hspace{0.15cm}\underline {\approx 0.417}.$$
+
 
:<b>4.</b>&nbsp;&nbsp;Nach dem Satz von Bayes gilt:
+
 
 +
'''(3)'''&nbsp; No statement is made about the time&nbsp; $\nu-1$&nbsp;.&nbsp;  
 +
*At this time&nbsp; $A$&nbsp; or&nbsp; $B$&nbsp; may have occurred. Therefore holds:
 +
:$${\rm Pr}(B_{\nu} \hspace{0.05cm} | \hspace{0.05cm}A_{\nu -2}) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.05cm} \cdot \hspace{0.05cm}{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.15cm} +\hspace{0.15cm} {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.05cm} \cdot \hspace{0.05cm}{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) = p \hspace{0.1cm}  \cdot \hspace{0.1cm}  (1-p) +  q \hspace{0.1cm}  \cdot \hspace{0.1cm}  (1-p)
 +
= {5}/{12}  \hspace{0.15cm}\underline {\approx 0.417}.$$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; According to Bayes' theorem:
 
:$${\rm Pr}(A_{\nu -2} \hspace{0.05cm} | \hspace{0.05cm}B_{\nu}) = \frac{{\rm Pr}(B_{\nu} \hspace{0.05cm} | \hspace{0.05cm}A_{\nu -2}) \cdot {\rm Pr}(A_{\nu -2} ) }{{\rm Pr}(B_{\nu}) } =  \frac{5/12 \cdot 4/7 }{3/7 }
 
:$${\rm Pr}(A_{\nu -2} \hspace{0.05cm} | \hspace{0.05cm}B_{\nu}) = \frac{{\rm Pr}(B_{\nu} \hspace{0.05cm} | \hspace{0.05cm}A_{\nu -2}) \cdot {\rm Pr}(A_{\nu -2} ) }{{\rm Pr}(B_{\nu}) } =  \frac{5/12 \cdot 4/7 }{3/7 }
= \frac{5}{9}  \hspace{0.15cm}\underline {\approx 0.556}.$$
+
= {5}/{9}  \hspace{0.15cm}\underline {\approx 0.556}.$$
:Die Wahrscheinlichkeit Pr(<i>B<sub>&nu;</sub></i> | <i>A<sub>&nu;</sub></i><sub>-2</sub>) = 5/12 wurde bereits im Unterpunkt 3) berechnet. Aufgrund der Stationarit&auml;t gilt Pr(<i>A<sub>&nu;</sub></i><sub>-2</sub>) = Pr(<i>A</i>) = 4/7 und Pr(<i>B<sub>&nu;</sub></i>) = Pr(<i>B</i>) = 3/7. Damit erh&auml;lt man f&uuml;r die gesuchte R&uuml;ckschlusswahrscheinlichkeit den Wert 5/9.
+
Reasoning:
:<b>5.</b>&nbsp;&nbsp;Entsprechend Punkt b) gilt mit <i>p</i> = 1/2 für die Wahrscheinlichkeit von <i>A</i> allgemein:
+
*The probability&nbsp; ${\rm Pr}(B_{\nu}\hspace{0.05cm}|\hspace{0.05cm}A_{\nu-2})= 5/12$&nbsp; has already been calculated in subsection&nbsp; '''(3)'''.
 +
*Due to stationarity,&nbsp; ${\rm Pr}(A_{\nu-2})= {\rm Pr}(A) = 4/7$&nbsp; and&nbsp; ${\rm Pr}(B_{\nu})= {\rm Pr}(B) = 3/7$&nbsp; holds.
 +
*Thus,&nbsp; the value of&nbsp; $5/9$ is obtained for the sought inference probability according to the above equation.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; According to subtask&nbsp; '''(2)'''&nbsp; with&nbsp; ${p =1/2}$&nbsp; for the probability of&nbsp; $A$&nbsp; in general:
 
:$${\rm Pr}(A) = \frac{1-q}{1.5 -q}.$$
 
:$${\rm Pr}(A) = \frac{1-q}{1.5 -q}.$$
:Aus Pr(<i>A</i>) = 2/3 folgt somit <u><i>q</i> = 0</u>.
+
*Thus from&nbsp; $ {\rm Pr}(A) = 2/3$&nbsp;  follows&nbsp; $\underline{q =0}$.
:<b>6.</b>&nbsp;&nbsp;Im Fall der statistischen Unabh&auml;ngigkeit muss beispielsweise gelten:
+
 
 +
 
 +
 
 +
'''(6)'''&nbsp; In the case of statistical independence,&nbsp; for example,&nbsp; it must hold:
 
:$${{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A)} = {{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)} = {{\rm Pr}(A)}.$$
 
:$${{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A)} = {{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)} = {{\rm Pr}(A)}.$$
:Daraus folgt <i>p</i> = 1 - <u><i>q</i> = 2/3</u> und dementsprechend <u><i>q</i> = 1/3</u>.
+
*From this follows &nbsp;$p = {\rm Pr}(A)  \hspace{0.15cm}\underline {= 2/3}$&nbsp; and accordingly &nbsp;$q = 1-p  \hspace{0.15cm}\underline {= 1/3}$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^1.4 Markovketten
+
[[Category:Theory of Stochastic Signals: Exercises|^1.4 Markov Chains
 
^]]
 
^]]

Latest revision as of 18:07, 1 December 2021

Markov chain with  $A$,  $B$

We consider a homogeneous stationary first-order Markov chain with events  $A$  and  $B$  and transition probabilities corresponding to the adjacent Markov diagram:

For subtasks  (1)  to  (4),  assume:

  • Event  $A$  is followed by  $A$  and  $B$  with equal probability.
  • After  $B$:  The event  $A$  is twice as likely as  $B$.


From subtask  (5)  on,  $p$  and  $q$  are free parameters,  while the ergodic probabilities  ${\rm Pr}(A) = 2/3$  and  ${\rm Pr}(B) = 1/3$  are fixed.




Hints:

  • You can check your results with the   (German language)  interactive SWF applet
Ereigniswahrscheinlichkeiten einer Markov-Kette erster Ordnung   ⇒   "Event Probabilities of a First Order Markov Chain".


Questions

1

What are the transition probabilities  $p$  and  $q$?

$p \ = \ $

$q \ = \ $

2

Calculate the ergodic probabilities.

${\rm Pr}(A) \ = \ $

${\rm Pr}(B) \ = \ $

3

What is the conditional probability that event  $B$  occurs if event  $A$  occurred two steps before?

${\rm Pr}(B_{\nu}\hspace{0.05cm}|\hspace{0.05cm}A_{\nu-2})\ = \ $

4

What is the inferential probability that event  $A$  occurred two steps before,  when event  $B$  currently occurs?

${\rm Pr}(A_{\nu-2}\hspace{0.05cm}|\hspace{0.05cm}B_{\nu})\ = \ $

5

Let now  $p = 1/2$  and  ${\rm Pr}(A) = 2/3$.  Which value results for  $q$?

$q\ = \ $

6

How must the parameters be chosen so that the sequence elements of the Markov chain are statistically independent and additionally  ${\rm Pr}(A) = 2/3$ ?

$p \ = \ $

$q \ = \ $


Solution

(1)  According to the instruction,   $p = 1 - p$   ⇒   $\underline{p =0.500}$  and  $q = (1 - q)/2$,   ⇒   $\underline{q =0.333}$  holds.


(2)  For the event probability of  $A$  holds:

$${\rm Pr}(A) = \frac{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)}{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)+{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A)} = \frac{1-q}{1-q+1-p} = \frac{2/3}{2/3 + 1/2}= \frac{4}{7} \hspace{0.15cm}\underline {\approx0.571}.$$
  • This gives  ${\rm Pr}(B)= 1 - {\rm Pr}(A) = 3/7 \hspace{0.15cm}\underline {\approx 0.429}$.



(3)  No statement is made about the time  $\nu-1$ . 

  • At this time  $A$  or  $B$  may have occurred. Therefore holds:
$${\rm Pr}(B_{\nu} \hspace{0.05cm} | \hspace{0.05cm}A_{\nu -2}) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.05cm} \cdot \hspace{0.05cm}{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.15cm} +\hspace{0.15cm} {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.05cm} \cdot \hspace{0.05cm}{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) = p \hspace{0.1cm} \cdot \hspace{0.1cm} (1-p) + q \hspace{0.1cm} \cdot \hspace{0.1cm} (1-p) = {5}/{12} \hspace{0.15cm}\underline {\approx 0.417}.$$


(4)  According to Bayes' theorem:

$${\rm Pr}(A_{\nu -2} \hspace{0.05cm} | \hspace{0.05cm}B_{\nu}) = \frac{{\rm Pr}(B_{\nu} \hspace{0.05cm} | \hspace{0.05cm}A_{\nu -2}) \cdot {\rm Pr}(A_{\nu -2} ) }{{\rm Pr}(B_{\nu}) } = \frac{5/12 \cdot 4/7 }{3/7 } = {5}/{9} \hspace{0.15cm}\underline {\approx 0.556}.$$

Reasoning:

  • The probability  ${\rm Pr}(B_{\nu}\hspace{0.05cm}|\hspace{0.05cm}A_{\nu-2})= 5/12$  has already been calculated in subsection  (3).
  • Due to stationarity,  ${\rm Pr}(A_{\nu-2})= {\rm Pr}(A) = 4/7$  and  ${\rm Pr}(B_{\nu})= {\rm Pr}(B) = 3/7$  holds.
  • Thus,  the value of  $5/9$ is obtained for the sought inference probability according to the above equation.


(5)  According to subtask  (2)  with  ${p =1/2}$  for the probability of  $A$  in general:

$${\rm Pr}(A) = \frac{1-q}{1.5 -q}.$$
  • Thus from  $ {\rm Pr}(A) = 2/3$  follows  $\underline{q =0}$.


(6)  In the case of statistical independence,  for example,  it must hold:

$${{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A)} = {{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)} = {{\rm Pr}(A)}.$$
  • From this follows  $p = {\rm Pr}(A) \hspace{0.15cm}\underline {= 2/3}$  and accordingly  $q = 1-p \hspace{0.15cm}\underline {= 1/3}$.