Difference between revisions of "Aufgaben:Exercise 2.2Z: Discrete Random Variables"

From LNTwww
 
(23 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Momente einer diskreten Zufallsgröße
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Moments_of_a_Discrete_Random_Variable
 
}}
 
}}
  
[[File:P_ID84__Sto_Z_2_2.png|right|]]
 
:Gegeben seien drei diskrete Zufallsgr&ouml;&szlig;en <i>a</i>, <i>b</i> und <i>c</i>, die als die Momentanwerte der dargestellten Signale definiert seien. Diese besitzen folgende Eigenschaften:
 
  
:Die Zufallsgr&ouml;&szlig;e $a$ kann die Werte +1 und -1 mit gleicher Wahrscheinlichkeit annehmen.
+
[[File:P_ID84__Sto_Z_2_2.png|right|frame|Different rectangular signals]]
 +
Let be given three discrete random variables&nbsp; $a$,&nbsp; $b$&nbsp; and&nbsp; $c$,&nbsp; which are defined as the instantaneous  values of the represented signals.&nbsp; These have the following properties:
  
:Auch die Zufallsgr&ouml;&szlig;e $b$ ist zweipunktverteilt, aber mit $Pr(b = 1) = p$ und $Pr(b = 0) = 1 - p$.
+
*The random variable&nbsp; $a$&nbsp; can take the two values&nbsp; $+1$&nbsp; and&nbsp; $-1$&nbsp; with equal probability.
 +
*The random variable&nbsp; $b$&nbsp; is also two-point distributed,&nbsp; but with&nbsp; ${\rm Pr}(b = 1) = p$ &nbsp;and&nbsp; ${\rm Pr}(b = 0) = 1 - p$.
 +
*The probabilities of the random variable&nbsp; $c$&nbsp; be&nbsp; ${\rm Pr}(c = 0) = 1/2$ &nbsp;and&nbsp; ${\rm Pr}(c = +1) = Pr(c = -1) =1/4$.
 +
*There are no statistical dependencies between the three random variables&nbsp; $a$,&nbsp; $b$&nbsp; and&nbsp; $c$.
 +
*Another random variable&nbsp; $d$&nbsp; is formed from the random variables&nbsp; $a$,&nbsp; $b$&nbsp; and&nbsp; $c$:
 +
:$$d=a-2 b+c.$$
  
:Die Wahrscheinlichkeiten der Gr&ouml;&szlig;e $c$ seien $Pr(c = 0) = 1/2$, $Pr(c = +1) = Pr(c = -1) =1/4$.
+
The graph shows sections of these random variables.&nbsp; It can be seen that&nbsp; $d$&nbsp; can take all integer values between&nbsp; $-4$&nbsp; and&nbsp; $+2$&nbsp;.
  
:Zwischen diesen drei Zufallsgr&ouml;&szlig;en bestehen keine statistischen Abhängigkeiten.
 
  
:Aus den Zufallsgr&ouml;&szlig;en $a$, $b$ und $c$ wird eine weitere Zufallsvariable $d$  gebildet:
 
:$$d=a-\rm 2\it b+c.$$
 
  
:Die Grafik zeigt Ausschnitte dieser vier Zufallsgr&ouml;&szlig;en. Es ist zu erkennen, dass $d$ alle ganzzahligen Werte zwischen -4 und +2 annehmen kann.
 
  
:<br><br><br><b>Hinweis</b>: Die Aufgabe bezieht sich auf Kapitel 2.2. Eine Zusammenfassung bietet das folgende Lernvideo:<br>
 
  
  
===Fragebogen===
+
 
 +
Hints:
 +
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Momente_einer_diskreten_Zufallsgröße|Moments of a Discrete Random Variable]].
 +
*The topic of this chapter is illustrated with examples in the&nbsp;  (German language)&nbsp;  learning video<br> &nbsp; &nbsp; [[Momentenberechnung_bei_diskreten_Zufallsgrößen_(Lernvideo)|"Momentenberechnung bei diskreten Zufallsgrößen"]] &nbsp; &rArr; &nbsp; "Calculating Moments for Discrete-Valued Random Variables"
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie gro&szlig; ist die Streuung der Zufallsgr&ouml;&szlig;e <i>a</i>?
+
 
 +
{What is the standard deviation of the random variable&nbsp; $a$?
 
|type="{}"}
 
|type="{}"}
$\sigma_a$ = { 1 3% }
+
$\sigma_a \ = \ $ { 1 3% }
  
  
{Wie gro&szlig; ist die Streuung der Zufallsgr&ouml;&szlig;e <i>b</i>? Setzen Sie <i>p</i> = 0.25.
+
{What is the standard deviation of the random variable&nbsp; $b$?&nbsp; Set&nbsp; $p = 0.25$.
 
|type="{}"}
 
|type="{}"}
$p\ =\ 0.25:\ \ \sigma_b$ = { 0.433 3% }
+
$\sigma_b \ = \ $ { 0.433 3% }
  
  
{Wie gro&szlig; ist die Streuung der Zufallsgr&ouml;&szlig;e <i>c</i>?
+
{What is the standard deviation of the random variable&nbsp; $c$?
 
|type="{}"}
 
|type="{}"}
$\sigma_c$ = { 0.707 3% }
+
$\sigma_c \ = \ $ { 0.707 3% }
  
  
{Berechnen Sie den Mittelwert <i>m<sub>d</sub></i> der Zufallsgr&ouml;&szlig;e  f&uuml;r <i>p</i> = 0.25.
+
{Calculate the mean&nbsp; $m_d$&nbsp; of the random variable&nbsp; $d$&nbsp; for $p = 0.25$.
 
|type="{}"}
 
|type="{}"}
$p\ =\ 0.25:\ \ \ m_d$ = - { 0.5 3% }
+
$m_d\ = \ $ { -0.515--0.485 }
  
  
{Wie groß ist der quadratische Mittelwert <i>m</i><sub>2<i>d</i></sub> dieser Zufallsgr&ouml;&szlig;e.
+
{What is the second moment value&nbsp; (second order moment)&nbsp; $m_{2d}$&nbsp; of this random variable?
 
|type="{}"}
 
|type="{}"}
$p\ =\ 0.25:\ \ \ m_\text{2d}$ = { 2.5 3% }
+
$m_{2d}\ = \ $ { 2.5 3% }
  
  
{Wie gro&szlig; ist die Streuung <i>&sigma;<sub>d</sub></i>?
+
{What is the standard deviation&nbsp; $\sigma_d$?
 
|type="{}"}
 
|type="{}"}
$p\ =\ 0.25:\ \ \ \sigma_d$ = { 1.5 3% }
+
$\sigma_d\ = \ $ { 1.5 3% }
  
 +
</quiz>
  
</quiz>
 
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Aufgrund der Symmetrie gilt:
+
'''(1)'''&nbsp; Due to the symmetry holds:
 
:$$\rm \it m_{\it a}=\rm 0; \hspace{0.5cm}\it m_{\rm 2\it a}=\rm 0.5\cdot (-1)^2 + 0.5\cdot (1)^2{ = 1}.$$
 
:$$\rm \it m_{\it a}=\rm 0; \hspace{0.5cm}\it m_{\rm 2\it a}=\rm 0.5\cdot (-1)^2 + 0.5\cdot (1)^2{ = 1}.$$
  
:Daraus erh&auml;lt man mit dem Satz von Steiner:
+
*From this one obtains with Steiner's theorem:
:$$\it\sigma_a^{\rm 2} = \rm\sqrt{1-0^2}=1 \hspace{0.5cm}bzw. \hspace{0.5cm}\it\sigma_a\hspace{0.15cm} \underline{=\rm 1}.$$
+
:$$\it\sigma_a^{\rm 2} = \rm\sqrt{1-0^2}=1 \hspace{0.5cm}or \hspace{0.5cm}\it\sigma_a\hspace{0.15cm} \underline{=\rm 1}.$$
 +
 
 +
 
 +
'''(2)'''&nbsp; In general, for the&nbsp; $k$&ndash;th order moment:
 +
:$$ m_{k}=(1-p)\cdot 0^{ k} + p\cdot 1^{k}= p.$$
 +
 
 +
*From this follows with&nbsp; $p = 1/4$&nbsp; and&nbsp; $k=2$:
 +
:$$m_{b}= m_{2b}= p, \hspace{0.5cm} \sigma_{\it b}=\sqrt{p\cdot (1- p)}\hspace{0.15cm} \underline{=\rm 0.433} .$$
 +
 
 +
 
 +
'''(3)'''&nbsp; For the random variable&nbsp; $c$&nbsp; holds:
 +
:$$m_{\it c} = 0\hspace{0.3cm} ({\rm symmetric\hspace{0.1cm}um\hspace{0.1cm}0)},$$
 +
:$$ m_{2\it c}= {1}/{4}\cdot(-1)^2+{1}/{2}\cdot 0^2+{1}/{4}\cdot (1)^2={1}/{2} \hspace{0.5cm}$$
 +
:$$\Rightarrow \hspace{0.5cm}\sigma_{\it c}=\rm \sqrt{1/2}\hspace{0.15cm} \underline{=0.707}.$$
 +
 
  
:<b>2.</b>&nbsp;&nbsp;Allgemein gilt f&uuml;r das Moment <i>k</i>-ter Ordnung:
+
'''(4)'''&nbsp; According to the general rules for expected values, with&nbsp; $p = 0.25$:
:$$ \it m_{\it k}=(\rm 1-\it p)\rm \cdot 0^{\it k} + \it p\cdot \rm 1^{\it k}=\it p.$$
+
:$$m_{\it d} = {\rm E}\big[a-2 b+c\big]= {\rm E}\big[a\big] \hspace{0.1cm} -\hspace{0.1cm}\rm 2 \hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[ b\big]\hspace{0.1cm}+\hspace{0.1cm} {\rm E}\big[ c\big] =  m_{ a}\hspace{0.1cm}-\hspace{0.1cm}2\hspace{0.05cm}\cdot\hspace{0.05cm} m_{\it b}\hspace{0.1cm}+\hspace{0.1cm} m_{\it c} =   0-2\hspace{0.05cm}\cdot\hspace{0.05cm} p + 0 \hspace{0.15cm} \underline{= -0.5}.$$
  
:Daraus folgt mit <i>p</i> = 1/4:
 
:$$\it m_{\it b}= \it m_{\rm 2\it b}= \it p, \hspace{0.5cm} \it \sigma_{\it b}=\sqrt{\it p\cdot (\rm 1- p)}\hspace{0.15cm} \underline{=\rm 0.433} .$$
 
  
:<b>3.</b>&nbsp;&nbsp;F&uuml;r die Zufallsgr&ouml;&szlig;e <i>c</i> gilt:
+
'''(5)'''&nbsp; Analogous to the subtask&nbsp; '''(4)'''&nbsp; we obtain for the second order moment:
:$$\rm \it m_{\it c} =  \rm 0\hspace{0.1cm} (symmetrisch\hspace{0.1cm}um\hspace{0.1cm}0), \hspace{0.5cm}\it m_{\rm 2\it c}= \rm \frac{1}{4}\cdot(-1)^2+\frac{1}{2}\cdot 0^2+\frac{1}{4}\cdot (1)^2=\frac{1}{2}.$$
+
:$$m_{2d}= {\rm E}\big[( a-2b+c)^{\rm 2}\big] {\rm E}\big[a^{\rm 2}\big]\hspace{0.1cm}+\hspace{0.1cm}4\hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[ b^{\rm 2}\big]\hspace{0.1cm}+\hspace{0.1cm} {\rm E}\big[c^{\rm 2}\big]\hspace{0.1cm} -  \hspace{0.1cm}4\hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[a\hspace{0.05cm}\cdot \hspace{0.05cm}b\big]\hspace{0.1cm}+\hspace{0.1cm} 2\hspace{0.05cm}\cdot\hspace{0.05cm}{\rm E}\big[ a\hspace{0.05cm}\cdot \hspace{0.05cm}c\big]\hspace{0.1cm}-\hspace{0.1cm} 4\hspace{0.05cm}\cdot\hspace{0.05cm}{\rm E}\big[ b\hspace{0.05cm}\cdot \hspace{0.05cm}c\big].$$
:$$ \Rightarrow \hspace{0.5cm}\sigma_{\it c}=\rm \sqrt{1/2}\hspace{0.15cm} \underline{=0.707}.$$
 
  
:<b>4.</b>&nbsp;&nbsp;Nach den allgemeinen Regeln f&uuml;r Erwartungswerte gilt mit <i>p</i> = 0.25:
+
*But since&nbsp; $a$&nbsp; and&nbsp; $b$&nbsp; are statistically independent of each other,&nbsp; also holds:
:$$m_{\it d} = \rm E[\it a-\rm 2\it b+\it c]=\rm E[\it a] \hspace{0.1cm} -\hspace{0.1cm}\rm 2 \hspace{0.05cm}\cdot\hspace{0.05cm}\rm E[\it b]\hspace{0.1cm}+\hspace{0.1cm}\rm E[\it c] \\ = \it m_{\it a}\hspace{0.1cm}-\hspace{0.1cm}\rm 2\hspace{0.05cm}\cdot\hspace{0.05cm}\it m_{\it b}\hspace{0.1cm}+\hspace{0.1cm}\it m_{\it c} =  \rm 0-2\hspace{0.05cm}\cdot\hspace{0.05cm}\it p + \rm 0 \hspace{0.15cm} \underline{= -0.5}.$$
+
:$${\rm E}\big[a\cdot b\big] = {\rm E}\big[ a\big] \cdot {\rm E}\big[ b\big]= m_{ a}\cdot m_{ b} = 0, \hspace{0.2cm} {\rm da}\hspace{0.2cm} m_{ a}=\rm 0.$$
  
:<b>5.</b>&nbsp;&nbsp;Analog zu Punkt 4. erh&auml;lt man für den quadratischen Mittelwert:
+
*The same holds for the other mixed terms.&nbsp; Therefore, using&nbsp; $p = 0.25$, we obtain:
:$$m_{\rm 2\it d}=\rm E[( a-\rm 2\it b+\it c)^{\rm 2}] = \rm E[\it a^{\rm 2}]\hspace{0.1cm}+\hspace{0.1cm}\rm 4\hspace{0.05cm}\cdot\hspace{0.05cm}\rm E[\it b^{\rm 2}]\hspace{0.1cm}+\hspace{0.1cm}\rm E[\rm \it c^{\rm 2}]\hspace{0.1cm}\\  -  \hspace{0.1cm}\rm 4\hspace{0.05cm}\cdot\hspace{0.05cm}\rm E[\it a\hspace{0.05cm}\cdot \hspace{0.05cm}b]\hspace{0.1cm}+\hspace{0.1cm}\rm 2\hspace{0.05cm}\cdot\hspace{0.05cm}\rm E[\it a\hspace{0.05cm}\cdot \hspace{0.05cm}c]\hspace{0.1cm}-\hspace{0.1cm}\rm 4\hspace{0.05cm}\cdot\hspace{0.05cm}\rm E[\it b\hspace{0.05cm}\cdot \hspace{0.05cm}c].$$
+
:$$ m_{2 d}=m_{2 a}+4\cdot m_{ 2 b}+m_{ 2 c}=1+4\cdot p+0.5\hspace{0.15cm} \underline{=\rm 2.5}.$$
  
:Da aber <i>a</i> und <i>b</i> statistisch voneinander unabh&auml;ngig sind, gilt auch:
 
:$$\rm E[\it a\cdot b] = \rm E[\it a] \cdot \rm E[\it b]= \it m_{\it a}\cdot \it m_{\it b} = \rm 0, \hspace{0.1cm} da\hspace{0.1cm} \it m_{\it a}=\rm 0.$$
 
  
:Gleiches gilt f&uuml;r die anderen gemischten Terme. Daher erh&auml;lt man mit <i>p</i> = 0.25:
+
'''(6)'''&nbsp; For general&nbsp; $p$ &nbsp;resp.&nbsp; for&nbsp; $p = 0.25$&nbsp; results:
:$$ \it m_{\rm 2\it d}=\it m_{\rm 2\it a}+\rm 4\cdot\it m_{\rm 2\it b}+\it m_{\rm 2\it c}=\rm 1+4\cdot \it p+\rm 0.5\hspace{0.15cm} \underline{=\rm 2.5}.$$
+
:$$\sigma_{\it d}^{\rm 2}=1.5+4\cdot p - 4 \cdot p^{\rm 2}=2.25 \hspace{0.5cm}\Rightarrow \hspace{0.5cm}  \sigma_{d}\hspace{0.15cm} \underline{=\rm 1.5}.$$
  
:<b>6.</b>&nbsp;&nbsp;Für allgemeines <i>p</i> bzw. f&uuml;r <i>p</i> = 0.25 ergibt sich:
+
*The maximum variance for&nbsp; $p = 0.50$&nbsp;results in&nbsp; $\sigma_{\it d}^{\rm 2}=2.50$.
:$$\it \sigma_{\it d}^{\rm 2}=\rm1.5+4\cdot \it p - \rm 4 \cdot \it p^{\rm 2}=\rm 2.25 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} \it \sigma_{\it d}\hspace{0.15cm} \underline{=\rm 1.5}.$$
 
  
:Die maximale Varianz erg&auml;be sich f&uuml;r <i>p</i> = 0.5 zu <i>&sigma;</i><sub><i>d</i></sub><sup>2</sup> = 2.5.
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^2.2 Momente einer diskreten Zufallsgröße^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^2.2 Moments of Discrete Random Variables^]]

Latest revision as of 13:20, 18 January 2023


Different rectangular signals

Let be given three discrete random variables  $a$,  $b$  and  $c$,  which are defined as the instantaneous values of the represented signals.  These have the following properties:

  • The random variable  $a$  can take the two values  $+1$  and  $-1$  with equal probability.
  • The random variable  $b$  is also two-point distributed,  but with  ${\rm Pr}(b = 1) = p$  and  ${\rm Pr}(b = 0) = 1 - p$.
  • The probabilities of the random variable  $c$  be  ${\rm Pr}(c = 0) = 1/2$  and  ${\rm Pr}(c = +1) = Pr(c = -1) =1/4$.
  • There are no statistical dependencies between the three random variables  $a$,  $b$  and  $c$.
  • Another random variable  $d$  is formed from the random variables  $a$,  $b$  and  $c$:
$$d=a-2 b+c.$$

The graph shows sections of these random variables.  It can be seen that  $d$  can take all integer values between  $-4$  and  $+2$ .




Hints:


Questions

1

What is the standard deviation of the random variable  $a$?

$\sigma_a \ = \ $

2

What is the standard deviation of the random variable  $b$?  Set  $p = 0.25$.

$\sigma_b \ = \ $

3

What is the standard deviation of the random variable  $c$?

$\sigma_c \ = \ $

4

Calculate the mean  $m_d$  of the random variable  $d$  for $p = 0.25$.

$m_d\ = \ $

5

What is the second moment value  (second order moment)  $m_{2d}$  of this random variable?

$m_{2d}\ = \ $

6

What is the standard deviation  $\sigma_d$?

$\sigma_d\ = \ $


Solution

(1)  Due to the symmetry holds:

$$\rm \it m_{\it a}=\rm 0; \hspace{0.5cm}\it m_{\rm 2\it a}=\rm 0.5\cdot (-1)^2 + 0.5\cdot (1)^2{ = 1}.$$
  • From this one obtains with Steiner's theorem:
$$\it\sigma_a^{\rm 2} = \rm\sqrt{1-0^2}=1 \hspace{0.5cm}or \hspace{0.5cm}\it\sigma_a\hspace{0.15cm} \underline{=\rm 1}.$$


(2)  In general, for the  $k$–th order moment:

$$ m_{k}=(1-p)\cdot 0^{ k} + p\cdot 1^{k}= p.$$
  • From this follows with  $p = 1/4$  and  $k=2$:
$$m_{b}= m_{2b}= p, \hspace{0.5cm} \sigma_{\it b}=\sqrt{p\cdot (1- p)}\hspace{0.15cm} \underline{=\rm 0.433} .$$


(3)  For the random variable  $c$  holds:

$$m_{\it c} = 0\hspace{0.3cm} ({\rm symmetric\hspace{0.1cm}um\hspace{0.1cm}0)},$$
$$ m_{2\it c}= {1}/{4}\cdot(-1)^2+{1}/{2}\cdot 0^2+{1}/{4}\cdot (1)^2={1}/{2} \hspace{0.5cm}$$
$$\Rightarrow \hspace{0.5cm}\sigma_{\it c}=\rm \sqrt{1/2}\hspace{0.15cm} \underline{=0.707}.$$


(4)  According to the general rules for expected values, with  $p = 0.25$:

$$m_{\it d} = {\rm E}\big[a-2 b+c\big]= {\rm E}\big[a\big] \hspace{0.1cm} -\hspace{0.1cm}\rm 2 \hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[ b\big]\hspace{0.1cm}+\hspace{0.1cm} {\rm E}\big[ c\big] = m_{ a}\hspace{0.1cm}-\hspace{0.1cm}2\hspace{0.05cm}\cdot\hspace{0.05cm} m_{\it b}\hspace{0.1cm}+\hspace{0.1cm} m_{\it c} = 0-2\hspace{0.05cm}\cdot\hspace{0.05cm} p + 0 \hspace{0.15cm} \underline{= -0.5}.$$


(5)  Analogous to the subtask  (4)  we obtain for the second order moment:

$$m_{2d}= {\rm E}\big[( a-2b+c)^{\rm 2}\big] = {\rm E}\big[a^{\rm 2}\big]\hspace{0.1cm}+\hspace{0.1cm}4\hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[ b^{\rm 2}\big]\hspace{0.1cm}+\hspace{0.1cm} {\rm E}\big[c^{\rm 2}\big]\hspace{0.1cm} - \hspace{0.1cm}4\hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[a\hspace{0.05cm}\cdot \hspace{0.05cm}b\big]\hspace{0.1cm}+\hspace{0.1cm} 2\hspace{0.05cm}\cdot\hspace{0.05cm}{\rm E}\big[ a\hspace{0.05cm}\cdot \hspace{0.05cm}c\big]\hspace{0.1cm}-\hspace{0.1cm} 4\hspace{0.05cm}\cdot\hspace{0.05cm}{\rm E}\big[ b\hspace{0.05cm}\cdot \hspace{0.05cm}c\big].$$
  • But since  $a$  and  $b$  are statistically independent of each other,  also holds:
$${\rm E}\big[a\cdot b\big] = {\rm E}\big[ a\big] \cdot {\rm E}\big[ b\big]= m_{ a}\cdot m_{ b} = 0, \hspace{0.2cm} {\rm da}\hspace{0.2cm} m_{ a}=\rm 0.$$
  • The same holds for the other mixed terms.  Therefore, using  $p = 0.25$, we obtain:
$$ m_{2 d}=m_{2 a}+4\cdot m_{ 2 b}+m_{ 2 c}=1+4\cdot p+0.5\hspace{0.15cm} \underline{=\rm 2.5}.$$


(6)  For general  $p$  resp.  for  $p = 0.25$  results:

$$\sigma_{\it d}^{\rm 2}=1.5+4\cdot p - 4 \cdot p^{\rm 2}=2.25 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} \sigma_{d}\hspace{0.15cm} \underline{=\rm 1.5}.$$
  • The maximum variance for  $p = 0.50$ results in  $\sigma_{\it d}^{\rm 2}=2.50$.