Difference between revisions of "Aufgaben:Exercise 1.1: ISDN Supply Lines"

From LNTwww
 
(22 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Allgemeine Beschreibung von ISDN
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/General_Description_of_ISDN
 
}}
 
}}
 +
[[File:EN_Bei_A_1_1.png|right|frame|Main bundle, basic bundle, and star quad]]
 +
In ISDN  ("Integrated Services Digital Network")  the final branch  (near the subscriber)  is connected to a  "local exchange"  $\rm (LE)$  by a copper twisted pair,  whereby two twisted pairs are twisted into a so-called  "star quad".  Several such star quads are then combined to form a  "basic bundle",  and several basic bundles are combined to form a  "main bundle"  (see graphic).
 +
 +
In the network of  "Deutsche Telekom"  (formerly:  "Deutsche Bundespost"),  mostly copper lines with  $0.4$  mm core diameter are found,  for whose attenuation and phase function the following equations are given in  '''[PW95]''': 
 +
:$$\frac{a_{\rm K}(f)}{\rm dB} = \left [ 5.1 + 14.3 \cdot \left (\frac{f}{\rm MHz}\right )^{0.59}\right ]\cdot\frac{l}{\rm km}
 +
    \hspace{0.05cm},$$
 +
:$$\frac{b_{\rm K}(f)}{\rm rad} = \left [ 32.9 \cdot \frac{f}{\rm MHz} + 2.26 \cdot \left (\frac{f}{\rm MHz}\right )^{0.5}\right ]\cdot\frac{l}{\rm km}    \hspace{0.05cm}.$$
 +
Here  $l$  denotes the cable length.
 +
  
[[File:P_ID1577__Bei_A_1_1.png|right|]]
 
Bei ISDN ist der Endverzweiger (in der Nähe des Teilnehmers) mit einer Ortsvermittlungsstelle (OVSt) durch eine Kupfer–Doppelader verbunden, wobei jeweils zwei Doppeladern zu einem so genannten Sternvierer verdrillt sind. Mehrere solcher Sternvierer sind dann zu einem Grundbündel zusammengefasst, und mehrere Grundbündel zu einem Hauptbündel (siehe Grafik). $\alpha$
 
  
$x_max(t)$
 
  
:$$\frac{a_{\rm K}(f)}{\rm dB}  =  \left [ 5.1 + 14.3 \cdot \left (\frac{f}{\rm MHz}\right )^{0.59}\right ]\cdot\frac{l}{\rm km}
 
    \hspace{0.05cm},$$
 
  
===Fragebogen===
+
<u>Notes:</u>
 +
*The exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/General_Description_of_ISDN|"General Description of ISDN"]].
 +
 
 +
*In particular,&nbsp; reference is made to the section&nbsp; [[Examples_of_Communication_Systems/General_Description_of_ISDN#Network_infrastructure_for_ISDN|"Network infrastructure for ISDN"]].
 +
 
 +
*Further information on the attenuation of copper lines can be found in the chapter&nbsp; "Properties of Electrical Cables"&nbsp; of the book&nbsp; [[Lineare zeitinvariante Systeme|"Linear and Time Invariant Systems"]].
 +
 
 +
*'''[PW95]'''&nbsp; refers to the following&nbsp; (German language)&nbsp;  publication:&nbsp; Pollakowski, P.; Wellhausen, H.-W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Deutsche Telekom AG, Forschungs- und Technologiezentrum Darmstadt, 1995.
 +
  
<quiz display=simple>
 
{Multiple-Choice Frage
 
|type="[]"}
 
- Falsch
 
+ Richtig
 
  
  
{Multiple-Choice Frage
 
|type="[]"}
 
- Falsch
 
+ Richtig
 
  
 +
===Questions===
 +
<quiz display=simple>
  
 +
{How many subscribers&nbsp; $(N)$&nbsp; can be connected to an ISDN local exchange through the main cable shown?
 +
|type="{}"}
 +
$N \ = \ $ { 50 3% }
  
{Multiple-Choice Frage
+
{What are the consequences of two-wire transmission?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ The two transmission directions interfere with each other.
+ Richtig
+
+ Crosstalk noise may occur.
 +
- Intersymbol interference occurs.
  
 +
{A DC signal is attenuated by a factor of&nbsp; $4$.&nbsp; What is the cable length&nbsp; $l$&nbsp;?
 +
|type="{}"}
 +
$l \ = \ $ { 2.36 3% } $\ \rm km$
  
 +
{Which attenuation and phase value results from this for the frequency&nbsp; $f = 120 \ \rm kHz$&nbsp;?
 +
|type="{}"}
 +
$a_{\rm K}(f = 120 \ \rm kHz) \ = \ $ { 21.7 3% } $\ \rm dB$
 +
$b_{\rm K}(f = 120 \ \rm kHz) \ = \ $ { 11.2 3% } $\ \rm rad$
  
{Wieviele Teilnehmer (N) können durch das dargestellte Hauptkabel an eine ISDN–Ortsvermittlungsstelle angeschlossen werden?
 
|type="{}"}
 
$N$ = { 50 3% }
 
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; Two-wire transmission is used in the connection area.&nbsp; The possible connections are equal to the number of pairs in the main cable: &nbsp;
'''2.'''
+
:$$\underline{N = 50}.$$
'''3.'''
+
 
'''4.'''
+
 
'''5.'''
+
'''(2)'''&nbsp; <u>Solutions 1 and 2</u>&nbsp; are correct:
'''6.'''
+
*Two-wire transmission requires a directional separation method,&nbsp; namely the so-called&nbsp; "fork circuit".&nbsp; This has the task that at receiver &nbsp;$\rm A$&nbsp; only the transmitted signal of subscriber &nbsp;$\rm B$&nbsp; arrives,&nbsp; but not the own transmitted signal.&nbsp; This is generally quite successful with narrowband signals – for example,&nbsp; speech – but not completely.
'''7.'''
+
 
 +
*Due to inductive and capacitive couplings,&nbsp; crosstalk can occur from the twin wire located in the same star quad,&nbsp; whereby&nbsp; "near-end crosstalk"&nbsp;&nbsp; $($i.e. the interfering transmitter and the interfered receiver are located together$)$&nbsp; leads to greater impairments than&nbsp; "far-end crosstalk".
 +
 
 +
*On the other hand,&nbsp; the last solution is not applicable.&nbsp; Intersymbol interference – i.e. the mutual interference of neighboring symbols – can certainly occur,&nbsp; but it is not related to two-wire transmission.&nbsp; The reason for this are rather&nbsp; (linear)&nbsp; distortions due to the specific attenuation and phase curves.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; The DC signal attenuation by a factor of&nbsp; $4$&nbsp; can be expressed as follows:
 +
:$$a_{\rm K}(f = 0) = 20 \cdot {\rm lg}\,\,(4) = 12.04\,{\rm dB}\hspace{0.05cm}.$$
 +
*With the given coefficient&nbsp; $\text{5.1 dB/km}$,&nbsp; this gives the cable length&nbsp; $l = 12.04/5.1\hspace{0.15cm}\underline{ = 2.36 \ \rm km}$.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Using the given equations and&nbsp; $ l = 2.36 \ \rm km$,&nbsp; we obtain:
 +
:$$a_{\rm K}(f = 120\,{\rm kHz})= (5.1 + 14.3 \cdot 0.12^{\hspace{0.05cm}0.59}) \cdot 2.36\,{\rm dB} \hspace{0.15cm}\underline{\approx 21.7\,{\rm dB}}\hspace{0.05cm},$$
 +
:$$b_{\rm K}(f = 120\,{\rm kHz}) = (32.9 \cdot 0.12 + 2.26 \cdot 0.12^{\hspace{0.05cm}0.5}) \cdot 2.36\,{\rm rad}\hspace{0.15cm}\underline{ \approx 11.2\,{\rm rad}}\hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
+
[[Category:Examples of Communication Systems: Exercises|^1.1 General Description of ISDN^]]
[[Category:Aufgaben zu Beispiele von Nachrichtensystemen|^1.1 Allgemeine Beschreibung von ISDN^]]
 

Latest revision as of 15:18, 26 October 2022

Main bundle, basic bundle, and star quad

In ISDN  ("Integrated Services Digital Network")  the final branch  (near the subscriber)  is connected to a  "local exchange"  $\rm (LE)$  by a copper twisted pair,  whereby two twisted pairs are twisted into a so-called  "star quad".  Several such star quads are then combined to form a  "basic bundle",  and several basic bundles are combined to form a  "main bundle"  (see graphic).

In the network of  "Deutsche Telekom"  (formerly:  "Deutsche Bundespost"),  mostly copper lines with  $0.4$  mm core diameter are found,  for whose attenuation and phase function the following equations are given in  [PW95]

$$\frac{a_{\rm K}(f)}{\rm dB} = \left [ 5.1 + 14.3 \cdot \left (\frac{f}{\rm MHz}\right )^{0.59}\right ]\cdot\frac{l}{\rm km} \hspace{0.05cm},$$
$$\frac{b_{\rm K}(f)}{\rm rad} = \left [ 32.9 \cdot \frac{f}{\rm MHz} + 2.26 \cdot \left (\frac{f}{\rm MHz}\right )^{0.5}\right ]\cdot\frac{l}{\rm km} \hspace{0.05cm}.$$

Here  $l$  denotes the cable length.



Notes:

  • [PW95]  refers to the following  (German language)  publication:  Pollakowski, P.; Wellhausen, H.-W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Deutsche Telekom AG, Forschungs- und Technologiezentrum Darmstadt, 1995.



Questions

1

How many subscribers  $(N)$  can be connected to an ISDN local exchange through the main cable shown?

$N \ = \ $

2

What are the consequences of two-wire transmission?

The two transmission directions interfere with each other.
Crosstalk noise may occur.
Intersymbol interference occurs.

3

A DC signal is attenuated by a factor of  $4$.  What is the cable length  $l$ ?

$l \ = \ $

$\ \rm km$

4

Which attenuation and phase value results from this for the frequency  $f = 120 \ \rm kHz$ ?

$a_{\rm K}(f = 120 \ \rm kHz) \ = \ $

$\ \rm dB$
$b_{\rm K}(f = 120 \ \rm kHz) \ = \ $

$\ \rm rad$


Solution

(1)  Two-wire transmission is used in the connection area.  The possible connections are equal to the number of pairs in the main cable:  

$$\underline{N = 50}.$$


(2)  Solutions 1 and 2  are correct:

  • Two-wire transmission requires a directional separation method,  namely the so-called  "fork circuit".  This has the task that at receiver  $\rm A$  only the transmitted signal of subscriber  $\rm B$  arrives,  but not the own transmitted signal.  This is generally quite successful with narrowband signals – for example,  speech – but not completely.
  • Due to inductive and capacitive couplings,  crosstalk can occur from the twin wire located in the same star quad,  whereby  "near-end crosstalk"   $($i.e. the interfering transmitter and the interfered receiver are located together$)$  leads to greater impairments than  "far-end crosstalk".
  • On the other hand,  the last solution is not applicable.  Intersymbol interference – i.e. the mutual interference of neighboring symbols – can certainly occur,  but it is not related to two-wire transmission.  The reason for this are rather  (linear)  distortions due to the specific attenuation and phase curves.


(3)  The DC signal attenuation by a factor of  $4$  can be expressed as follows:

$$a_{\rm K}(f = 0) = 20 \cdot {\rm lg}\,\,(4) = 12.04\,{\rm dB}\hspace{0.05cm}.$$
  • With the given coefficient  $\text{5.1 dB/km}$,  this gives the cable length  $l = 12.04/5.1\hspace{0.15cm}\underline{ = 2.36 \ \rm km}$.


(4)  Using the given equations and  $ l = 2.36 \ \rm km$,  we obtain:

$$a_{\rm K}(f = 120\,{\rm kHz})= (5.1 + 14.3 \cdot 0.12^{\hspace{0.05cm}0.59}) \cdot 2.36\,{\rm dB} \hspace{0.15cm}\underline{\approx 21.7\,{\rm dB}}\hspace{0.05cm},$$
$$b_{\rm K}(f = 120\,{\rm kHz}) = (32.9 \cdot 0.12 + 2.26 \cdot 0.12^{\hspace{0.05cm}0.5}) \cdot 2.36\,{\rm rad}\hspace{0.15cm}\underline{ \approx 11.2\,{\rm rad}}\hspace{0.05cm}.$$