Difference between revisions of "Signal Representation/The Fourier Transform Theorems"

From LNTwww
 
(92 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Aperiodische Signale - Impulse
+
|Untermenü=Aperiodic Signals - Impulses
|Vorherige Seite=Einige Sonderfälle impulsartiger Signale
+
|Vorherige Seite=Special Cases of Impulse Signals
|Nächste Seite=Faltungssatz und Faltungsoperation
+
|Nächste Seite=The Convolution Theorem and Operation
 
}}
 
}}
  
==Multiplikation mit Faktor - Additionssatz==
+
==Multiplication with a factor - Addition Theorem==
 
+
<br>
In diesem Abschnitt sind die '''Gesetzmäßigkeiten der Fouriertransformation''' zusammengestellt. Diese können beispielsweise dazu genutzt werden, um mit möglichst geringem Rechenaufwand aus bereits bekannten Transformationen
+
In this section the&nbsp; &raquo;'''Fourier Transform Theorems'''&laquo;&nbsp; are assembled.&nbsp; These can be used,&nbsp; for examle,&nbsp;  to derive from already known transformations
 
   
 
   
$$x( t )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,X( f ),\quad x_1 ( t )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,X_1 ( f ),\quad x_2 ( t )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,X_2 ( f )$$
+
:$$x( t )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,X( f ),\quad x_1 ( t )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,X_1 ( f ),\quad x_2 ( t )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,X_2 ( f )$$
  
neue Funktionszusammenhänge abzuleiten. Wir beschränken uns hier auf reelle Zeitfunktionen.
+
new functional relationships.&nbsp; Here we restrict ourselves to real time functions.
  
{{Satz}}
+
{{BlaueBox|TEXT= 
Ein '''konstanter Faktor''' $k$ wirkt sich auf die Zeit– und die Spektralfunktion in gleicher Weise aus:
+
$\text{Theorem:}$&nbsp; A&nbsp; $\text{constant factor}$&nbsp; $k$&nbsp; affects the time and spectral function in the same way:
 
   
 
   
$$k \cdot x(t)\;\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,k \cdot X(f).$$
+
:$$k \cdot x(t)\ \;\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ k \cdot X(f).$$}}
{{end}}
 
  
  
Diesen Zusammenhang kann man zum Beispiel zur Vereinfachung nutzen, indem man die Konstante $k$ (die sowohl ein Verstärkungs–, ein Dämpfungs- oder ein Einheitenfaktor sein kann) zunächst weglässt und erst später dem Ergebnis wieder hinzufügt.
+
:This relation can be used for simplification by omitting the constant&nbsp; $k$&nbsp; $($which can be a gain,&nbsp; an attenuation  or a unit factor$)$&nbsp; and adding it to the result later.
  
Obiger Satz folgt unmittelbar aus der Definition des [[Signaldarstellung/Fouriertransformation_und_-r%C3%BCcktransformation#Das_erste_Fourierintegral|ersten Fourierintegrals]], ebenso wie der Additionssatz, der die Grundlage für das so genannte '''Superpositionsprinzip''' darstellt.
+
:The above sentence follows directly from the definition of the&nbsp; [[Signal_Representation/The_Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|&raquo;first Fourier integral&laquo;]],&nbsp; as well as from the&nbsp; &raquo;addition theorem&laquo;,&nbsp; which formulates the foundation of the&nbsp; &raquo;superposition principle&laquo;.
  
{{Satz}}
+
{{BlaueBox|TEXT= 
Kann man eine Zeitfunktion als Summe von Einzelfunktionen schreiben, so ist die resultierende Spektralfunktion die Summe der resultierenden Einzelspektren &nbsp; &nbsp; &rArr; &nbsp; &nbsp; '''Additionssatz''':
+
$\text{Addition Theorem:}$&nbsp; If a time function can be written as a sum of single functions, the resulting spectral function is the sum of the resulting single spectra:
 
   
 
   
$$x( t ) = x_1 ( t ) + x_2 ( t )\quad\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\quad X( f ) = X_1 (f) + X_2 ( f ).$$  
+
:$$x( t ) = x_1 ( t ) + x_2 ( t )\quad\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\quad X( f ) = X_1 (f) + X_2 ( f ).$$ }}
  
{{end}}
 
  
 +
{{GraueBox|TEXT=
 +
[[File:P_ID2722__Sig_T_3_3_S1.png|right|frame|Rectangular pulse,&nbsp; triangular pulse and their combination]]
 +
$\text{Example 1:}$&nbsp; The following Fourier correspondences are known:
  
{{Beispiel}}
+
*The rectangular pulse:
 +
:$$x_1 ( t )\hspace{0.15cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm} X_1 ( f )=T \cdot {\rm sinc}(f T),$$
 +
*the triangle pulse:
 +
:$$ x_2 ( t )\hspace{0.15cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm} X_2 ( f )=T /2\cdot {\rm sinc}^2(f T/2).$$
  
[[File:P_ID2722__Sig_T_3_3_S1.png|right|Beispiel zum Additionssatz]]
+
These two pulses are sketched on the right as red and blue curve respectively.
Bekannt sind die beiden Fourierkorrespondenzen
+
 
 +
&rArr; &nbsp; Then for the Fourier correspondences of  the green drawn&nbsp; $($weighted$)$&nbsp; sum signal&nbsp; $x(t)$&nbsp; holds:
 +
 +
:$$x(t) = {1}/{3} \cdot x_1 ( t ) + {2}/{3} \cdot x_2 ( t )\hspace{0.15cm}  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm}  X(f) =  {1}/{3} \cdot X_1 ( f ) + {2}/{3} \cdot X_2 ( f ).$$}}
  
*des Rechtecksignals:
 
:$$x_1 ( t )\hspace{0.1cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.1cm} X_1 ( f )=T \cdot {\rm si}(\pi f T),$$
 
*des Dreiecksignals:
 
:$$ x_2 ( t )\hspace{0.1cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.1cm} X_2 ( f )=T /2\cdot {\rm si}(\pi f T/2).$$
 
  
Dann gilt für das (gewichtete) Summensignal:
+
All theorems presented in this chapter can be found at the following&nbsp; $($German language$)$&nbsp; learning video with illustrated examples<br> &nbsp; &nbsp; &nbsp; &nbsp; [[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|&raquo;Gesetzmäßigkeiten der Fouriertransformation&laquo;]] &nbsp; &rArr; &nbsp; "Regularities to the Fourier transform".  
 
:$$x(t) = {1}/{3} \cdot x_1 ( t ) + {2}/{3} \cdot x_2 ( t )\hspace{0.1cm}  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.1cm}  = X(f)  {1}/{3} \cdot X_1 ( f ) + {2}/{3} \cdot X_2 ( f ).$$
 
  
{{end}}
 
  
 +
==Assignment Theorem==
 +
<br>
 +
With the&nbsp; [[Signal_Representation/Fourier_Series#Complex_Fourier_series|&raquo;complex Fourier series&laquo;]]&nbsp; for describing periodic signals,&nbsp; we have found
 +
#that an even function always leads to real Fourier coefficients,&nbsp; and
 +
#an odd function exclusively to imaginary Fourier coefficients.&nbsp;
  
==Zuordnungssatz==
 
  
Bereits bei der [[Signaldarstellung/Fourierreihe#Komplexe_Fourierreihe|komplexen Fourierreihe]] zur Beschreibung periodischer Signale haben wir festgestellt, dass eine gerade Funktion stets zu reellen und eine ungerade Funktion ausschließlich zu imaginären Fourierkoeffizienten führt. Die Fouriertransformation zeigt ähnliche Eigenschaften.
+
The Fourier transform shows similar properties.
  
{{Satz}}
+
{{BlaueBox|TEXT= 
Besteht eine reelle Zeitfunktion additiv aus einem geraden und einem ungeraden Anteil,
+
$\text{Assignment Theorem:}$&nbsp; If a real time function consists additively of an even&nbsp; $($German:&nbsp; "gerade" &nbsp; &rArr; &nbsp; $\text{"g"})$&nbsp; and an odd&nbsp; $($German:&nbsp; "ungerade" &nbsp; &rArr; &nbsp; $\text{"u"})$&nbsp; part,
 
   
 
   
$$x( t ) = x_{\rm g} ( t ) + x_{\rm u} ( t ),$$
+
:$$x( t ) = x_{\rm g} ( t ) + x_{\rm u} ( t ),$$
  
so gilt für die dazugehörige Spektralfunktion &nbsp; &nbsp; &rArr; &nbsp; &nbsp; '''Zuordnungssatz''':
+
then the following applies for its spectral function:  
+
:$$X(f) = X_{\rm R}(f)  + {\rm j}\cdot X_{\rm I}(f), \hspace{0.5cm}\text{with}$$
$$X(f) = X_{\rm R}(f)  + {\rm j}\cdot X_{\rm I}(f), \hspace{0.5cm}\text{mit}\hspace{0.2cm} x_{\rm g} (t) \hspace{0.1cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.1cm}X_{\rm R}(f)\hspace{0.2cm}\text{und}\hspace{0.2cm} x_{\rm u} (t) \hspace{0.1cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.1cm} {\rm j} \cdot X_{\rm I} (f).$$
+
::$$ x_{\rm g} (t) \hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm}X_{\rm R}(f),$$
 +
::$$x_{\rm u} (t) \hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm} {\rm j} \cdot X_{\rm I} (f).$$
  
Der Realteil$X_{\rm R}(f)$ des Spektrums ist dann ebenfalls gerade, während $X_{\rm I}(f)$ eine ungerade Funktion der Frequenz beschreibt.
+
The real part&nbsp; $X_{\rm R}(f)$&nbsp; of the spectrum is then also even,&nbsp; while &nbsp;$X_{\rm I}(f)$&nbsp; describes an odd function of frequency.}}
  
{{end}}
 
  
 +
*The assignment theorem can be easily proved by considering the theorem of&nbsp; [https://en.wikipedia.org/wiki/Leonhard_Euler &raquo;$\text{Leonhard Euler}$&laquo;]:&nbsp;
 +
:$${\rm e}^{ - {\rm j}\omega _0 t}  = \cos ( {\omega _0 t} ) - {\rm j}\cdot \sin ( {\omega _0 t} ).$$
  
Der Zuordnungssatz lässt sich einfach beweisen, wenn man den Satz von Leonhard Euler &nbsp;&rArr;&nbsp; ${\rm e}^{ - {\rm j}\omega _0 t}  = \cos ( {\omega _0 t} ) - {\rm j}\cdot \sin ( {\omega _0 t} )$ berücksichtigt. Den geraden und ungeraden Anteil einer Funktion $x(t)$ kann man mit folgenden Gleichungen berechnen:
+
*The even and odd part of each function&nbsp; $x(t)$&nbsp; can be calculated with the following equations:
 
   
 
   
$$x_{\rm g} (t) = {1}/{2}\left[ {x(t) + x(-t)} \right], \hspace{0.5cm}x_{\rm u} (t) = {1}/{2}\left[ {x(t) - x(-t)} \right].$$
+
:$$x_{\rm g} (t) = {1}/{2}\big[ {x(t) + x(-t)} \big],$$
 +
:$$x_{\rm u} (t) = {1}/{2}\big[ {x(t) - x(-t)} \big].$$
  
{{Beispiel}}
+
{{GraueBox|TEXT= 
 +
[[File:P_ID472__Sig_T_3_3_S2.png|right|frame|Spectrum of the jump function]]
 +
$\text{Example 2:}$&nbsp;
 +
We consider the&nbsp; &raquo;jump function&laquo;
 +
:$$x(t) = \gamma (t) = \bigg\{ \begin{array}{l} 0\quad \quad {\rm for}\;t < 0 \\ 1\quad \quad{\rm for}\; t > 0 \\  \end{array} ,$$
  
[[File:P_ID472__Sig_T_3_3_S2.png|right|Beispiel zum Zuordnungssatz]]
+
which can be split as follows: &nbsp;  
Wir betrachten die ''Sprungfunktion''
 
 
$$x(t) = \gamma (t) = \left\{ \begin{array}{l} 0\quad \quad {\rm f\ddot{u} r}\;t < 0 \\ 1\quad \quad{\rm f\ddot{u} r}\; t > 0 \\  \end{array} \right \},$$
 
  
die wie folgt aufgeteilt werden kann: $\gamma (t) =  {1}/{2} +{1}/{2} \cdot {\rm  sign}(t).$
+
:$$\gamma (t) =  {1}/{2} +{1}/{2} \cdot {\rm  sign}(t).$$  
  
$$\gamma (t) =  {1}/{2} +{1}/{2} \cdot {\rm  sign}(t).$$ Hierbei wurde die ''Signum-Funktion'' verwendet:
+
The&nbsp; &raquo;signum function&laquo;&nbsp; was used here:
 
   
 
   
$${\rm sign} (t) = \bigg\{ \begin{array}{l} -1\quad \quad {\rm f\ddot{u} r}\;t < 0, \\ +1\quad \quad{\rm f\ddot{u} r}\; t > 0. \\  \end{array} $$
+
:$${\rm sign} (t) = \bigg\{ \begin{array}{l} -1\quad \quad {\rm for}\;t < 0, \\ +1\quad \quad{\rm for}\; t > 0. \\  \end{array} $$
  
Somit gilt:
+
Therefore the following applies:
*Der gerade (blaue) Signalanteil $x_{\rm g} (t) = {1}/{2}$ ist eine Konstante mit der reellen Spektralfunktion $X_{\rm R}(f) = {1}/{2} \cdot \delta(f)$.  
+
#The even&nbsp; $($blue$)$&nbsp; signal part&nbsp; $x_{\rm g} (t) = {1}/{2}$&nbsp; is a constant with the real spectral function&nbsp; $X_{\rm R}(f) = {1}/{2} \cdot \delta(f)$.  
*Das Spektrum ${\rm j} \cdot X_{\rm I}(f)$ der ungeraden (grünen) Signumfunktion $x_{\rm u} (t)$ wurde bereits im Beispiel auf der Seite [[Signaldarstellung/Fouriertransformation_und_-r%C3%BCcktransformation#Fouriertransformation|Fouriertransformation]] berechnet.  
+
#The spectrum&nbsp; ${\rm j} \cdot X_{\rm I}(f)$&nbsp; of the odd&nbsp; $($green$)$&nbsp; signum function&nbsp; $x_{\rm u} (t)$&nbsp; was already calculated in the earlier&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#Fourier_transform|$\text{Example 3}$]]&nbsp; in the section&nbsp; &raquo;Fourier transform&laquo;.  
*Damit erhält man für das resultierende Spektrum von $x(t)$:
+
#This results for the spectrum of the&nbsp; $($red$)$&nbsp; sketched&nbsp; jump function:   
   
+
::$$X(f) =  X_{\rm R}(f)  + {\rm j}\cdot X_{\rm I}(f)= {1}/{2} \cdot \delta (f) - {\rm j}\cdot \frac{1}{2\pi f}.$$}}
$$X(f) =  X_{\rm R}(f)  + {\rm j}\cdot X_{\rm I}(f)= {1}/{2} \cdot \delta (f) - {\rm j}\cdot \frac{1}{2\pi f}.$$
 
  
{{end}}
 
  
 +
==Similarity Theorem==
 +
<br>
 +
The similarity theorem shows the relation between the spectral functions of two time signals of the same shape,&nbsp; stretched or compressed.
  
==Ähnlichkeitssatz==
+
{{BlaueBox|TEXT=
 +
$\text{Similarity Theorem:}$&nbsp; If&nbsp; $X(f)$&nbsp; is the Fourier transform of&nbsp; $x(t)$,&nbsp; then with the real constant&nbsp; $k$&nbsp; the following relation applies:
 +
 +
:$$x( {k \cdot t} )\hspace{0.15cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm} \frac{1}{\left  \vert \hspace{0.05cm} k\hspace{0.05cm}  \right \vert} \cdot X( {f}/{k} ).$$}}
  
Der Ähnlichkeitssatz zeigt den Zusammenhang zwischen den Spektralfunktionen zweier zwar formgleicher, aber gestreckter oder gestauchter Zeitsignale auf.
 
  
{{Satz}}
+
{{BlaueBox|TEXT= 
Ist $X(f)$ die Fouriertransformierte von $x(t)$, so gilt mit der reellen Konstanten $k$ auch folgenderZusammenhang &nbsp; &nbsp; &rArr; &nbsp; &nbsp; '''Ähnlichkeitssatz''':
+
$\text{Proof:}$&nbsp; For positive&nbsp; $k$&nbsp; follows from the Fourier integral with the substitution&nbsp; $\tau = k \cdot t$:
 
   
 
   
$$x( {k \cdot t} )\hspace{0.1cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.1cm} \frac{1}{\left| k \right|} \cdot X( {f}/{k} ).$$
+
:$$\int_{ - \infty }^{ + \infty } {x( {k \cdot t})}  \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}ft} \hspace{0.1cm}{\rm d}t = \frac{1}{k} \cdot \int_{ - \infty }^{ + \infty } {x( \tau  )}  \cdot {\rm e}^{ - {\rm j}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}  f/k \hspace{0.05cm}\cdot \hspace{0.05cm}\tau } \hspace{0.1cm}{\rm d} \tau = \frac{1}{k}\cdot X( {{f}/{k}}).$$
  
{{end}}
+
*For negative&nbsp; $k$&nbsp; the integration limits would be mixed up and you get&nbsp; $-1/k \cdot X(f/k)$.
 
 
 
 
{{Beweis}}
 
Für positives $k$ folgt aus dem Fourierintegral mit der Substitution $\tau = k \cdot t$:
 
 
   
 
   
$$\int_{ - \infty }^{ + \infty } {x( {k \cdot t})}  \cdot {\rm e}^{ - {\rm j}2\pi ft} \hspace{0.1cm}{\rm d}t = \frac{1}{k} \cdot \int_{ - \infty }^{ + \infty } {x( \tau  )}  \cdot {\rm e}^{ - {\rm j}2\pi \cdot  f/k \hspace{0.03cm}\cdot \tau } \hspace{0.1cm}{\rm d} \tau = \frac{1}{k}\cdot X( {{f}/{k}}).$$
+
*Since in the equation&nbsp; $\vert \hspace{0.05cm} k \hspace{0.05cm} \vert$&nbsp; is used,&nbsp; the result is valid for both signs.     
 
+
<div align="right">q.e.d.</div>}}
Für negatives $k$ würden sich die Integrationsgrenzen vertauschen und man erhält $-1/k \cdot X(f/k)$. Da in der Gleichung $|k|$ verwendet wird, gilt das Ergebnis für beide Vorzeichen.     
 
<div align="right">q.e.d.</div>
 
  
{{end}}
 
  
 +
The effects of the similarity theorem can be illustrated,&nbsp;  for example,&nbsp;  with an audio  tape.&nbsp;
 +
*If such a tape is played with double speed,&nbsp; this corresponds to a compression of the time signal&nbsp; $(k = 2)$.&nbsp;
  
Die Auswirkungen des Ähnlichkeitssatzes kann man sich zum Beispiel mit einem Tonband verdeutlichen. Spielt man ein solches Band mit doppelter Geschwindigkeit ab, so entspricht dies einer Stauchung des Zeitsignals ($k = 2$). Dadurch erscheinen die Frequenzen doppelt so hoch.
+
*Thus the frequencies appear twice as high.
  
  
{{Beispiel}}
+
{{GraueBox|TEXT=
 +
[[File:P_ID473__Sig_T_3_3_S3_neu.png|right|frame|Two rectangles of different width]]
 +
$\text{Example 3:}$&nbsp;
 +
We consider two rectangles of equal height, where&nbsp; $T_2 = T_1/2$&nbsp; holds.
  
[[File:P_ID473__Sig_T_3_3_S3_neu.png|right|Beispiel zum Ähnlichkeitssatz]]
+
*The spectral function of&nbsp; $x_1(t)$&nbsp; results after the&nbsp; [[Signal_Representation/The_Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|&raquo;first Fourier Integral&laquo;]]&nbsp; to
Wir betrachten zwei Rechtecke gleicher Höhe, wobei $T_2 = T_1/2$ gilt.
 
Die Spektralfunktion von $x_1(t)$ ergibt sich nach dem [[Signaldarstellung/Fouriertransformation_und_-r%C3%BCcktransformation#Das_erste_Fourierintegral|ersten Fourierintegral]] zu
 
 
   
 
   
$$X_1 (f) = A  \cdot \frac{{1 - {\rm e}^{ - {\rm j}2\pi fT_1 } }}{{{\rm j}2\pi f}} .$$
+
:$$X_1 (f) = A  \cdot \frac{ {1 - {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}fT_1 } } }{ { {\rm j}2\pi f} } .$$
  
Dafür kann auch geschrieben werden:
+
*For this can also be written:  
 
$$X_1 (f)  = A  \cdot T_1  \cdot \frac{{{\rm e}^{{\rm j}\pi fT_1 }  - {\rm e}^{ - {\rm j}\pi fT_1 } }}{{{\rm j}2\pi fT_1 }} \cdot {\rm e}^{ - {\rm j}\pi fT_1 } = A  \cdot T_1  \cdot {\rm si}( {\pi f T_1 } ) \cdot {\rm e}^{ - {\rm j}\pi fT_1 }.$$
 
  
Für die Spektralfunktion von $x_2(t)$ folgt aus dem Ähnlichkeitssatz mit $k = –2$:
+
:$$X_1 (f) = A  \cdot T_1  \cdot \frac{{{\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}\pi \hspace{0.05cm}\cdot \hspace{0.05cm}fT_1 }  - {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}\pi \hspace{0.05cm}\cdot \hspace{0.05cm}fT_1 } }}{{{\rm j}2\pi fT_1 }} \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}\pi \hspace{0.05cm}\cdot \hspace{0.05cm}fT_1 } = A  \cdot T_1 \cdot {\rm sinc}( {f T_1 } ) \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}\pi \hspace{0.05cm}\cdot \hspace{0.05cm}fT_1 }.$$
 
$$X_2 (f) = \frac{1}{2} \cdot X_1 ( { - {f}/{2}} ) = \frac{A \cdot T_1 }{2} \cdot {\rm si}( { - \pi f {T_1 }/{2}} ) \cdot {\rm e}^{{\rm j}\pi fT_1 /2} .$$
 
  
Die si-Funktion ist gerade: $\text{si}(–x) = \text{si}(x)$. Deshalb kann man auf das Vorzeichen im Argument der si-Funktion verzichten. Mit $T_2 = T_1/2$ erhält man schließlich:
+
*For the spectral function of&nbsp; $x_2(t)$&nbsp; follows from the similarity theorem with&nbsp; $k = -2$:
 
   
 
   
$$X_2 (f) = A \cdot T_2  \cdot {\rm si}( {\pi fT_2 } ) \cdot {\rm e}^{ {\rm j}\pi fT_2 } .$$
+
:$$X_2 (f) = \frac{1}{2} \cdot X_1 ( { - {f}/{2}} ) = \frac{A \cdot T_1 }{2} \cdot {\rm sinc}( { - f {T_1 }/{2} } ) \cdot {\rm e}^{ {\rm j}\pi fT_1 /2} .$$
  
{{end}}
+
* The function&nbsp; $\text{sinc}(x) = \sin(x)/x$&nbsp; is even:&nbsp; $\text{sinc}(-x) = \text{sinc}(x)$.&nbsp; Therefore you can omit the sign in the argument of the&nbsp; $\text{sinc}$&ndash;function.
  
 +
*With&nbsp; $T_2 = T_1/2$&nbsp; one gets:
 +
 +
:$$X_2 (f) = A \cdot T_2  \cdot {\rm sinc}( {fT_2 } ) \cdot {\rm e}^{  {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f\hspace{0.05cm}\cdot \hspace{0.05cm}T_2 } .$$}}
  
==Reziprozitätsgesetz von Zeitdauer und Bandbreite==
 
  
[[File:P_ID474__Sig_T_3_3_S4_neu.png|right|Beispiel zum Reziprozitätsgesetz]]
+
==Reciprocity Theorem of time duration and bandwidth==
Dieses Gesetz folgt direkt aus dem [[Signaldarstellung/Gesetzm%C3%A4%C3%9Figkeiten_der_Fouriertransformation#.C3.84hnlichkeitssatz|Ähnlichkeitssatz]]: Je breiter ein Impuls in seiner zeitlichen Ausdehnung ist, desto schmäler und höher ist das zugehörige Spektrum und umgekehrt. Um quantitative Aussagen treffen zu können, definieren wir zwei Kenngrößen für energiebegrenzte Signale  ⇒  Impulse:
+
<br>
 +
This law follows directly from the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Similarity_Theorem|&raquo;similarity theorem&laquo;]]: &nbsp; The wider a pulse is in its extension,&nbsp; the narrower and higher is the corresponding spectrum and vice versa.  
  
*Die '''äquivalente Impulsdauer''' wird aus dem Zeitverlauf abgeleitet. Sie ist gleich der Breite eines flächengleichen Rechtecks mit gleicher Höhe wie $x(t)$:
+
:To be able to make quantitative statements,&nbsp; we define two parameters for energy-limited signals.&nbsp; Both quantities are shown in the diagram in&nbsp; $\text{Example 4}$&nbsp; for a Gaussian pulse and its likewise Gaussian spectrum.
 
:$$\Delta t = \frac{1}{{x( {t = 0} )}} \cdot \int_{ - \infty }^{ + \infty } {x( t)} \hspace{0.1cm}{\rm d}t.$$
 
  
*Die '''äquivalente Bandbreite''' kennzeichnet den Impuls im $f$–Bereich. Sie gibt die Breite des flächengleichen Rechtecks mit gleicher Höhe wie das Spektrum $X(f)$ an:
+
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
The&nbsp; &raquo;'''equivalent pulse duration'''&laquo;&nbsp; is derived from the time course.&nbsp; It is equal to the width of an area&ndash;equal rectangle with same height as&nbsp; $x(t)$:
 
   
 
   
:$$\Delta f = \frac{1}{{X( {f = 0} )}}\cdot \int_{ - \infty }^{ + \infty } {X( f )} \hspace{0.1cm} {\rm d}f.$$
+
:$$\Delta t = \frac{1}{{x( {t = 0} )}} \cdot \int_{ - \infty }^{ + \infty } {x( t)} \hspace{0.1cm}{\rm d}t.$$}}
  
Beide Größen sind nebenstehend für einen Gaußimpuls und dessen ebenfalls gaußförmiges Spektrum dargestellt.
 
  
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
The&nbsp; &raquo;'''equivalent bandwidth'''&laquo;&nbsp;&nbsp; is defined in the frequency domain.&nbsp; It gives the width of the area&ndash;equal rectangle with same height as spectrum&nbsp; $X(f)$:
 +
 +
:$$\Delta f = \frac{1}{{X( {f = 0} )}}\cdot \int_{ - \infty }^{ + \infty } {X( f )} \hspace{0.1cm} {\rm d}f.$$}}
  
  
{{Satz}}
+
{{BlaueBox|TEXT= 
Das Produkt aus äquivalenter Impulsdauer und äquivalenter Bandbreite ist stets gleich 1:
+
$\text{Reciprocity Theorem:}$&nbsp; The product of the equivalent pulse duration and the equivalent bandwidth is always the same&nbsp; $1$:
 
    
 
    
$$\Delta t \cdot \Delta f = 1$$
+
:$$\Delta t \cdot \Delta f = 1.$$}}
  
Man bezeichnet diesen Zusammenhang als '''Reziprozitätsgesetz'''.
 
  
{{end}}
+
{{BlaueBox|TEXT= 
 
+
$\text{Proof:}$&nbsp;
 
+
Based on the two Fourier integrals,&nbsp; for&nbsp; $f = 0$&nbsp; resp.&nbsp; $t = 0$:
{{Beweis}}
 
Ausgehend von den beiden Fourierintegralen erhält man für $f = 0$ bzw. $t = 0$:
 
 
   
 
   
$$X( {f = 0} ) = \int_{ - \infty }^{ + \infty } {x(t)\hspace{0.1cm}{\rm d}t,} \hspace{0.5cm}x( {t = 0} ) = \int_{ - \infty }^{ + \infty } {X(f)\hspace{0.1cm}{\rm d}f.}$$
+
:$$X( {f = 0} ) = \int_{ - \infty }^{ + \infty } {x(t)\hspace{0.1cm}{\rm d}t,}$$
 +
:$$x( {t = 0} ) = \int_{ - \infty }^{ + \infty } {X(f)\hspace{0.1cm}{\rm d}f.}$$
  
Berücksichtigt man dieses Ergebnis bei obigen Definitionen, so erhält man:
+
If you take this result into account in the above definitions, you get
 
   
 
   
$$\Delta t = \frac{{X( {f = 0} )}}{{x( {t = 0} )}},  \hspace{0.5cm}\Delta f = \frac{{x( {t = 0} )}}{{X( {f = 0} )}}.$$
+
:$$\Delta t = \frac{{X( {f = 0} )}}{{x( {t = 0} )}},  \hspace{0.5cm}\Delta f = \frac{{x( {t = 0} )}}{{X( {f = 0} )}}.$$
  
Daraus folgt direkt $\Delta t \cdot \Delta f = 1$.                                                                                                <div align="right">q.e.d.</div>
+
From this &nbsp; $\Delta t \cdot \Delta f = 1$ &nbsp; follows directly.                                                                                                <div align="right">q.e.d.</div>}}
  
{{end}}
 
  
 +
Note that&nbsp; $\Delta f$&nbsp; is defined over the actual spectrum&nbsp; $X(f)$&nbsp; and not over&nbsp; $|X(f)|$.
 +
*For real functions the integration over the even function part is sufficient,&nbsp; since the integral over the odd part is always zero due to the&nbsp;  [[Signal_Representation/Fourier_Transform_Theorems#Assignment_Theorem|&raquo;assignment theorem&laquo;]].
  
Anzumerken ist, dass $\Delta f$ über das tatsächliche Spektrum $X(f)$ und nicht über $|X(f)|$ definiert ist.
+
*For odd time functions and thus purely imaginary spectra,&nbsp; the two definitions of&nbsp; $\Delta t$&nbsp; and&nbsp; $\Delta f$&nbsp; fail.
*Bei reellen Funktionen genügt die Integration über den geraden Funktionsanteil, da das Integral über den ungeraden Anteil wegen des Zuordnungssatzes stets 0 ist.
 
*Bei ungeraden Zeitfunktionen und damit rein imaginären Spektren versagen die beiden Definitionen von $\Delta t$ bzw. $\Delta f$.
 
  
  
{{Beispiel}}
+
{{GraueBox|TEXT= 
Ausgehend von obiger Grafik gilt:
+
$\text{Example 4:}$&nbsp;
*Verbreitert man den Gaußimpuls um den Faktor 3, so wird die äquivalente Bandbreite um den gleichen Faktor kleiner.
+
The graph illustrates the equivalent pulse duration&nbsp; $\Delta t$&nbsp; and the equivalent bandwidth&nbsp; $\Delta f$&nbsp; exemplary for the Gaussian pulse.&nbsp; 
*Da die Impulsamplitude $x(t = 0)$ nicht verändert wird, bleibt auch die Integralfläche über $X(f)$ konstant.  
+
[[File:Sig_T_3_4_S4_version2.png|right|frame|Gaussian example for the reciprocity theorem]]
*Das heißt, dass $X(f=0)$ gleichzeitig um den Faktor 3 größer wird.
 
  
 +
Furthermore,&nbsp; it is valid:
 +
*Widening the Gaussian pulse by the factor&nbsp; $3$&nbsp; will reduce the equivalent bandwidth by the same factor.
  
{{end}}
+
 +
*If the pulse amplitude&nbsp; $x(t = 0)$&nbsp; is not changed,&nbsp; the integral area above&nbsp; $X(f)$&nbsp; remains constant.
  
  
==Vertauschungssatz==
+
*This means that&nbsp; $X(f=0)$&nbsp; is simultaneously increased by the factor&nbsp; $3$&nbsp;.}}
  
Diese Gesetzmäßigkeit ist besonders nützlich, um neue Fourierkorrespondenzen zu erhalten.
+
==Duality Theorem==
 +
<br>
 +
This regularity is particularly useful for obtaining new Fourier correspondences.
  
{{Satz}}
+
{{BlaueBox|TEXT= 
Ist $X(f)$ die Fouriertransformierte von $x(t)$, dann gilt nach dem '''Vertauschungssatz''' auch:
+
$\text{Duality Theorem:}$&nbsp; If&nbsp; $X(f)$&nbsp; is the Fourier transform of&nbsp; $x(t)$,&nbsp; then:
 
   
 
   
$$X^{\star}(t)\hspace{0.1cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.1cm}x^{\star}( f ).$$
+
:$$X^{\star}(t)\hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm}x^{\star}( f ).$$
  
Beschränken wir uns auf reelle Zeitfunktionen, so können die Zeichen für „konjugiert komplex” auf beiden Seiten der Fourierkorrespondenz weggelassen werden.
+
If we restrict ourselves to real time functions,&nbsp; the signs for&nbsp; &raquo;conjugated complex&raquo;&nbsp; can be omitted on both sides of the Fourier correspondence.}}
  
{{end}}
 
  
 +
{{BlaueBox|TEXT= 
 +
$\text{Proof:}$&nbsp; The&nbsp; [[Signal_Representation/The_Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|&raquo;first Fourier integral&laquo;]]&nbsp; is after successive renaming  &nbsp;$t \to u$,&nbsp;  $f \to t$:
 +
 +
:$$X( f ) = \int_{ - \infty }^{ + \infty } {x( u )}  \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f\hspace{0.05cm}\cdot \hspace{0.05cm}u} \hspace{0.1cm}{\rm d}u, \hspace{1cm}
 +
X(t ) = \int_{ - \infty }^{ + \infty } {x( u )}  \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}t\hspace{0.05cm}\cdot \hspace{0.05cm}u}\hspace{0.1cm} {\rm d}u.$$
  
{{Beweis}}
+
*If you change the sign in the exponent,&nbsp; you have to replace&nbsp; $X(t)$&nbsp; by&nbsp; $X^*(t)$&nbsp; and&nbsp; $x(u)$&nbsp; by&nbsp; $x^*(u)$&nbsp;:
Das [[Signaldarstellung/Fouriertransformation_und_-r%C3%BCcktransformation#Das_erste_Fourierintegral|erste Fourierintegral]]  lautet nach sukzessiver Umbenennung $t \to u$ bzw. $f \to t$:
 
 
   
 
   
$$X( f ) = \int_{ - \infty }^{ + \infty } {x( u )}  \cdot {\rm e}^{ - {\rm j}2\pi fu} \hspace{0.1cm}{\rm d}u, \hspace{1cm}
+
:$$X^{\star}(t ) = \int_{ - \infty }^{ + \infty } {x^{\star}( u )}  \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi\hspace{0.05cm}\cdot \hspace{0.05cm} t\hspace{0.05cm}\cdot \hspace{0.05cm}u}\hspace{0.1cm} {\rm d}u.$$
X(t ) = \int_{ - \infty }^{ + \infty } {x( u )} \cdot {\rm e}^{ - {\rm j}2\pi tu}\hspace{0.1cm} {\rm d}u.$$
 
  
Ändert man das Vorzeichen in den Exponenten, so muss man $X(t)$ durch $X^*(t)$ und $x(u)$ durch $x^*(u)$ ersetzen:
+
*With the further renaming &nbsp;$u \to f$&nbsp; one gets to the [[Signal_Representation/The_Fourier_Transform_and_its_Inverse#The_second_Fourier_integral|&raquo;second Fourier integral&laquo;]]:
 
   
 
   
$$X^{\star}(t ) = \int_{ - \infty }^{ + \infty } {x^{\star}( u )}  \cdot {\rm e}^{ {\rm j}2\pi tu}\hspace{0.1cm} {\rm d}u.$$
+
:$$X^{\star}(t ) = \int_{ - \infty }^{ + \infty } {x^{\star}( f )}  \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm} {\rm d}f.\hspace{7.9cm}$$
  
Mit der weiteren Umbennung $u \to f$ kommt man zum [[Signaldarstellung/Fouriertransformation_und_-r%C3%BCcktransformation#Das_zweite_Fourierintegral|zweiten Fourierintegral]]:
+
<div align="right">q.e.d.</div>}}
 
$$X^{\star}(t ) = \int_{ - \infty }^{ + \infty } {x^{\star}( f )}  \cdot {\rm e}^{ {\rm j}2\pi ft}\hspace{0.1cm} {\rm d}f.\hspace{7.9cm}$$
 
  
<div align="right">q.e.d.</div>
 
{{end}}
 
  
  
{{Beispiel}}
+
{{GraueBox|TEXT=
[[File:P_ID475__Sig_T_3_3_S5_neu.png|right|Beispiel zum Vertauschungssatz]]
+
[[File:P_ID475__Sig_T_3_3_S5_neu.png|right|frame|$\text{Above:&nbsp; Rectangular-in-time}$ &nbsp; &rArr;  $\text{sinc-in-frequency};$ <br>$\text{below;&nbsp; sinc-in-time}$ &nbsp; &rArr; $\text{rectangular-in-frequency}$]]
Das Spektrum $X(f) = \delta(f)$ des Gleichsignals $x(t)$ = 1 wird als bekannt vorausgesetzt. Nach dem Vertauschungssatz lautet deshalb die Spektralfunktion des Diracimpulses $x(t) = \delta(t)$:
+
$\text{Example 5:}$&nbsp;
   
 
$$ x(t) = \delta(t)\hspace{0.1cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.1cm} X(f)= 1.$$
 
  
Die Grafik zeigt eine weitere Anwendung des Vertauschungssatzes, nämlich die Funktionalzusammenhänge zwischen
+
The figure on the right shows an application of the duality theorem,&nbsp; namely the functional relations between
* einem Signal  $x_1(t)$ mit rechteckförmiger Zeitfunktion,  
+
* a signal&nbsp; $x_1(t)$&nbsp; with rectangular time function,&nbsp; and
* einem Signal  $x_2(t)$ mit rechteckförmiger Spektralfunktion.
 
  
 +
* a signal&nbsp; $x_2(t)$&nbsp; with rectangular spectral function.
  
  
{{end}}
 
  
  
==Verschiebungssatz==
 
  
Betrachten wir nun eine Verschiebung der Zeitfunktion – zum Beispiel verursacht durch eine Laufzeit – oder eine Frequenzverschiebung, wie sie beispielsweise bei der [[Modulationsverfahren/Zweiseitenband-Amplitudenmodulation#Beschreibung_im_Frequenzbereich|Amplitudenmodulation]] auftritt.
+
$\text{Another Example:}$&nbsp;
  
{{Satz}}
+
*The spectrum&nbsp; $X(f) = \delta(f)$&nbsp; of the DC signal&nbsp; $x(t) = 1$&nbsp; is assumed to be known.
Ist $X(f)$ die Fouriertransformierte (Spektralfunktion) der Zeitfunktion $x(t)$, so gelten nach dem '''Verschiebungssatz''' auch folgende Zusammenhänge:
 
 
$$x( {t - t_0 } )\hspace{0.1cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.1cm}X( f ) \cdot {\rm e}^{ - {\rm j}2\pi ft_0 },$$
 
  
$$x( t ) \cdot {\rm e}^{ {\rm j}2\pi f_0 t}\hspace{0.1cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.1cm}X( {f - f_0 } ).$$
+
*According to the&nbsp; &raquo;duality theorem&laquo;,&nbsp; the spectral function of the Dirac delta is therefore:
 
   
 
   
Hierbei sind $t_0$ und $f_0$ beliebige Zeit– bzw. Frequenzgrößen.
+
:$$ x(t) = \delta(t)\hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm} X(f)= 1.$$
  
{{end}}
 
  
  
{{Beweis}}
+
}}
Beweis der ersten Gleichung: Das  [[Signaldarstellung/Fouriertransformation_und_-r%C3%BCcktransformation#Das_erste_Fourierintegral|erste Fourierintegral]]  für das um $t_0$ nach rechts verschobene Signal $x_{\rm V}(t) = x(t-t_0)$ lautet mit der Substitution $\tau = t - t_0$:
 
 
 
$$X_{\rm V} ( f ) = \int_{ - \infty }^{ + \infty } {x( {t - t_0 } ) \cdot {\rm e}^{ - {\rm j}2\pi ft}\hspace{0.1cm}{\rm d}t}
 
= \int_{ - \infty }^{ + \infty } {x( \tau  ) \cdot {\rm e}^{ -{\rm j}2\pi f( {\tau  + t_0 } )}\hspace{0.1cm} {\rm d}\tau .}$$
 
  
Der von der Integrationsvariablen $\tau$ unabhängige Term kann vor das Integral gezogen werden. Mit der Umbennung $\tau \to t$ erhält man dann:
 
 
$$X_{\rm V}( f ) = {\rm e}^{ - {\rm j}2\pi ft_0 }  \cdot \int_{ - \infty }^{ + \infty } {x( t )}  \cdot {\rm e}^{ - {\rm j}2\pi ft}\hspace{0.1cm} {\rm d}t  = {\rm e}^{ - {\rm j}2 \pi ft_0 }  \cdot X( f).$$
 
<div align="right">q.e.d.</div>
 
  
{{end}}
+
==Shifting Theorem==
 +
<br>
 +
We now consider
 +
*a shift of the time function,&nbsp;  e.g. caused by a delay;
  
 +
* or a frequency shift,&nbsp; as it occurs for example with&nbsp;  [[Modulation_Methods/Double-Sideband_Amplitude_Modulation#Description_in_the_frequency_domain|&raquo;analog double-sideband amplitude modulation&laquo;]].
  
{{Beispiel}}
 
  
[[File:P_ID478__Sig_T_3_3_S6_neu.png|right|Beispiel zum Verschiebungssatz]]
+
{{BlaueBox|TEXT= 
Wie bereits erwähnt, besitzt der symmetrische Rechteckimpuls $x_1(t)$ das folgende Spektrum:
+
$\text{Shifting Theorem:}$&nbsp; If&nbsp; $X(f)$&nbsp; is the Fourier transform of&nbsp; $x(t)$,&nbsp; the following correspondences also apply:
 
   
 
   
$$X_1 ( f ) = A  \cdot T \cdot {\rm si}( {\pi fT} ).$$
+
$$\mathbf{(1)}\hspace{0.5cm}x( {t - t_0 } )\hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm}X( f ) \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm} f\hspace{0.05cm}\cdot \hspace{0.05cm}t_0 },$$
  
Der unten dargestellte Rechteckimpuls $x_2(t)$ ist gegenüber $x_1(t)$ um $T/2$ nach rechts verschoben: $x_2(t) = x_1(t-T/2)$. Somit lautet sein Spektrum:
+
$$\mathbf{(2)}\hspace{0.5cm}x( t ) \cdot {\rm e}^{  {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm}X( {f - f_0 } ).$$
 
   
 
   
$$X_2( f ) = A  \cdot T \cdot {\rm si}( {\pi fT} ) \cdot {\rm e}^{ - {\rm j}\pi fT} .$$
+
Here,&nbsp; $t_0$&nbsp; and&nbsp; $f_0$&nbsp; are any time or frequency values.}}
  
Diese Spektralfunktion kann mit dem [[Signaldarstellung/Zum_Rechnen_mit_komplexen_Zahlen#Darstellung_nach_Betrag_und_Phase|Satz von Euler]] und einiger einfacher trigonometrischer Umformungen auch wie folgt geschrieben werden:
 
 
$$X_2( f ) =  \frac{A }{2\pi f} \cdot \sin ( 2\pi fT) +  {\rm j}\cdot  \frac{A }{2\pi f} \cdot \left[ {\cos ( {2\pi fT} ) - 1} \right] .$$
 
  
Das gleiche Ergebnis erhält man auch mit dem [[Signaldarstellung/Gesetzm%C3%A4%C3%9Figkeiten_der_Fouriertransformation#Zuordnungssatz|Zuordnungssatz]]: Der Realteil des Spektrums gehört zum geraden Signalanteil $x_{\rm g}(t)$, der Imaginärteil zum ungeraden Anteil $x_{\rm u}(t)$.
+
{{BlaueBox|TEXT= 
 +
$\text{Proof of Equation (1):}$&nbsp;
 +
The&nbsp;  [[Signal_Representation/The_Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|&raquo;first Fourier integral&laquo;]]&nbsp;  for signal &nbsp; $x_{\rm V}(t) = x(t-t_0)$&nbsp; shifted to the right by&nbsp; $t_0$&nbsp; is defined with the substitution&nbsp; $\tau = t - t_0$:
  
{{end}}
+
:$$X_{\rm V} ( f ) = \int_{ - \infty }^{ + \infty } {x( {t - t_0 } ) \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm}{\rm d}t}
 +
= \int_{ - \infty }^{ + \infty } {x( \tau  ) \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f\hspace{0.05cm}\cdot \hspace{0.05cm}( {\tau  + t_0 } )}\hspace{0.1cm} {\rm d}\tau .}$$
  
 +
*The term independent from the integration variable&nbsp; $\tau$&nbsp; can be dragged in front of the integral.&nbsp;
  
==Differentiationssatz==
+
*With the renaming&nbsp; $\tau \to t$&nbsp; one then obtains
 +
 +
:$$X_{\rm V}( f ) = {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f\hspace{0.05cm}\cdot \hspace{0.05cm}t_0 }  \cdot \int_{ - \infty }^{ + \infty } {x( t )}  \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm} {\rm d}t  = {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}f\hspace{0.05cm}\cdot \hspace{0.05cm}t_0 }  \cdot X( f).$$
 +
<div align="right">q.e.d.</div>}}
  
Dieser Satz zeigt, wie sich die Differentiation einer Funktion (im Zeit– bzw. Frequenzbereich) in der korrespondierenden Fouriertransformierten auswirkt; er ist auch mehrfach anwendbar. Ein einfaches Beispiel für die Anwendung dieses Satzes ist der Zusammenhang zwischen dem Strom $i(t)$ und der Spannung $u(t)$ einer Kapazität $C$ entsprechend der Gleichung  $i(t) = C \cdot \text{d}u(t)/\text{d}t$.
 
  
{{Satz}}
+
{{GraueBox|TEXT=
Ist $X(f)$ die Fouriertransformierte von $x(t)$, so gelten auch folgende Korrespondenzen:
+
[[File:P_ID478__Sig_T_3_3_S6_neu.png|right|frame|Shifting theorem example]]
 +
$\text{Example 6:}$&nbsp; As already mentioned, the symmetrical rectangular pulse&nbsp; $x_1(t)$&nbsp; has the spectrum
 
   
 
   
$$\frac{{{\rm d}x( t )}}{{{\rm d}t}}\hspace{0.1cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.1cm}{\rm j}2\pi f \cdot X( f ),$$
+
:$$X_1 ( f ) = A  \cdot T \cdot {\rm si}( {\pi fT} )= A  \cdot T \cdot {\rm sinc}( {fT} )$$
 +
:$$\hspace{0.9cm} \text{with} \hspace{0.5cm} {\rm si}(x)= \sin(x)/x,\hspace{0.5cm}{\rm sinc}(x)= \sin(\pi x)/(\pi x)={\rm si}(x/\pi).$$
  
$$- t \cdot x( t )\hspace{0.1cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.1cm}\frac{1}{{{\rm j}2\pi }} \cdot \frac{{{\rm d}X( f )}}{{{\rm d}f}}.$$  
+
*The rectangular pulse&nbsp; $x_2(t)$&nbsp; displayed below is shifted to the right with respect to&nbsp; $x_1(t)$&nbsp; by&nbsp; $T/2$: &nbsp;
 +
:$$x_2(t) = x_1(t-T/2).$$
 +
*Thus its spectrum is:
 +
 +
:$$X_2( f ) = A  \cdot T \cdot {\rm sinc}( {fT} ) \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f\hspace{0.05cm}\cdot \hspace{0.05cm}T} .$$
  
Dies sind die beiden Varianten des '''Differentiationsssatzes'''.
+
*This spectral function can also be written as follows with the&nbsp; [[Signal_Representation/Calculating_with_Complex_Numbers#Representation_by_magnitude_and_phase|&raquo;theorem of Euler&laquo;]]&nbsp; and some trigonometric conversions:
{{end}}
+
 +
:$$X_2( f ) =  \frac{A }{2\pi f} \cdot \sin ( 2\pi fT) +  {\rm j}\cdot  \frac{A }{2\pi f} \cdot \big[ {\cos ( {2\pi fT} ) - 1} \big] .$$
  
 +
*The same result can be obtained with the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Assignment_Theorem|&raquo;assignment theorem&laquo;]]; &nbsp; <br>&rArr; &nbsp; The real part of the spectrum belongs to the even signal part&nbsp; $x_{\rm g}(t)$,&nbsp; the imaginary part to the odd signal part&nbsp; $x_{\rm u}(t)$.}}
  
{{Beweis}}
 
Die erste Gleichung ergibt sich durch Differentiation des [[Signaldarstellung/Fouriertransformation_und_-r%C3%BCcktransformation#Das_zweite_Fourierintegral|zweiten Fourierintegrals]]:
 
 
$$y(t) = \frac{\text{d}x(t)}{\text{d}t} = \frac{\text{d}}{\text{d}t}\int_{ - \infty }^{ + \infty } X( f )  \cdot {\rm e}^{{\rm j}2\pi ft}\hspace{0.1cm} {\rm d}f = \int_{ - \infty }^{ + \infty } {X( f )}  \cdot {\rm j}2\pi f \cdot {\rm e}^{{\rm j}2\pi ft} {\rm d}f.$$
 
  
Gleichzeitig gilt aber auch:
+
==Differentiation Theorem==
+
<br>
$$y( t ) = \int_{ - \infty }^{ + \infty } {Y( f )}  \cdot {\rm e}^{{\rm j}2\pi ft}\hspace{0.1cm} {\rm d}f.$$
+
This theorem shows,&nbsp; how the differentiation of a function&nbsp; $x(t)$&nbsp; resp.&nbsp; $X(f)$&nbsp; affects the corresponding Fourier transform;&nbsp; it is also applicable several times.&nbsp;
  
Durch Vergleich der Integranden erhält man die obere Variante des Differentiationssatzes. Zur Herleitung der zweiten Variante geht man ausgehend vom [[Signaldarstellung/Fouriertransformation_und_-r%C3%BCcktransformation#Das_erste_Fourierintegral|ersten Fourierintegral]] in analoger Weise vor. Der negative Exponent im ersten Fourierintegral führt zum Minuszeichen in der Zeitfunktion.                                                                                                                        <div align="right">q.e.d.</div>
+
A simple example for the application of this theorem is the relation between current &nbsp;$i(t)$&nbsp; and voltage &nbsp;$u(t)$&nbsp; of a capacitance&nbsp; $C$&nbsp; according to the equation &nbsp;
 +
:$$i(t) = C \cdot \text{d}u(t)/\text{d}t.$$
  
{{end}}
+
{{BlaueBox|TEXT= 
 +
$\text{Differentiation Theorem:}$&nbsp; If&nbsp; $X(f)$&nbsp;is the Fourier transform of&nbsp; $x(t)$,&nbsp; the following two correspondences are also valid:
 
   
 
   
 +
$$\mathbf{(1)}\hspace{0.5cm}\frac{{{\rm d}x( t )}}{{{\rm d}t}}\hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi f \cdot X( f ),$$
 +
 +
$$\mathbf{(2)}\hspace{0.5cm}- t \cdot x( t )\hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm}\frac{1}{{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi }} \cdot \frac{{{\rm d}X( f )}}{{{\rm d}f}}.$$}}
  
{{Beispiel}}
 
  
[[File:P_ID484__Sig_T_3_3_S7_neu.png|right|Beispiel zum Differentiationssatz]]
+
{{BlaueBox|TEXT= 
Die Spektren der skizzierten Signale $x_1(t)$ und $x_2(t)$ wurden bereits in früheren Beispielen wie folgt berechnet:
+
$\text{Proof of Equation (1):}$&nbsp;This equation results from differentiation of the&nbsp; [[Signal_Representation/The_Fourier_Transform_and_its_Inverse#The_second_Fourier_integral|&raquo;second Fourier integral&laquo;]]:
 
   
 
   
$$\begin{align*} X_1( f ) & =   \frac{1 }{{\rm j\pi} f}, \\
+
:$$y(t) = \frac{\text{d}x(t)}{\text{d}t} = \frac{\text{d} }{\text{d}t}\int_{ - \infty }^{ + \infty } X( f )  \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\hspace{0.03cm}\pi\hspace{0.05cm}\cdot \hspace{0.05cm} f\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm} {\rm d}f = \int_{ - \infty }^{ + \infty } {X( f )} \cdot {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi f \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm} f\hspace{0.05cm}\cdot \hspace{0.05cm}t} {\rm d}f.$$
X_2( f )  & =  2 = {\rm const.}\end{align*} $$
 
  
Offensichtlich gilt $X_2(f) = X_1(f) \cdot {\rm j}2\pi f$.
+
At the same time is:
*Aus dem Differentiationssatz folgt somit, dass $x_2(t)$ gleich der Ableitung von $x_1(t)$ nach der Zeit ist. Dies stimmt tatsächlich: Für $t \neq 0$ ist $x_1(t)$ konstant, also die Ableitung 0.
+
*Bei $t=0$ ist die Steigung unendlich groß, was sich auch in der Gleichung $x_2(t) = 2 \cdot \delta(t)$ ausdrückt. Das Impulsgewicht „2” der Diracfunktion berücksichtigt, dass der Sprung innerhalb der Funktion $x_1(t)$ bei $t = 0$ die Höhe $2$ hat.
+
:$$y( t ) = \int_{ - \infty }^{ + \infty } {Y( f )\cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\hspace{0.03cm}\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm} {\rm d}f.$$
  
 +
#By comparing the integrands,&nbsp; the variation&nbsp; $\mathbf{(1)}$&nbsp; of the differentiation theorem is obtained.
 +
#To derive the second variant one proceeds from the &nbsp;[[Signal_Representation/The_Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|&raquo;first Fourier integral&laquo;]]&nbsp; in an analogous manner.
 +
#The negative exponent in the first Fourier integral leads to the minus sign in the time function.                                                                                                                      <div align="right">q.e.d.</div>}}
 +
  
{{end}}
+
{{GraueBox|TEXT= 
 
+
[[File:P_ID484__Sig_T_3_3_S7_neu.png|right|frame|Correlation between&nbsp; &raquo;jump&laquo;&nbsp; and&nbsp; &raquo;Dirac delta&laquo;]]
 +
$\text{Example 7:}$&nbsp;
 +
The spectra of the signals&nbsp; $x_1(t)$&nbsp; and&nbsp; $x_2(t)$&nbsp; were already calculated in the previous examples:
 +
 +
:$$X_1( f ) =  \frac{1 }{ {\rm j\cdot \pi} f}, $$
 +
:$$X_2( f )  =  2 = {\rm const.}\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} X_2(f) = X_1(f) \cdot {\rm j}\cdot 2\pi f.$$
 +
#From the differentiation theorem it follows that&nbsp; $x_2(t)$&nbsp; is equal to the time-derivative of&nbsp; $x_1(t)$&nbsp;.
 +
#This is actually correct:&nbsp; For&nbsp; $t \neq 0$&nbsp; &rArr; &nbsp; $x_1(t)$&nbsp; is constant, i.e. the derivative is zero.
 +
#For&nbsp; $t=0$&nbsp; the gradient is infinitely large,&nbsp; which is also expressed in the equation&nbsp; $x_2(t) = 2 \cdot \delta(t)$.
 +
#The impulse weight&nbsp; "$2$"&nbsp; of&nbsp; $x_2(t)$&nbsp;  considers that the jump within&nbsp; $x_1(t)$&nbsp; at&nbsp; $t = 0$&nbsp; has the height&nbsp; "$2$". }}
  
==Integrationssatz==
 
  
Die Integration ist ebenso wie die Differentiation eine lineare Operation. Daraus ergibt sich:
+
==Integration Theorem==
 +
<br>
 +
Integration is just like differentiation  a linear operation.&nbsp; This results in the following theorem:
  
{{Satz}}
+
{{BlaueBox|TEXT= 
Ist $X(f)$ die Fouriertransformierte (Spektralfunktion) von $x(t)$, so gelten auch die folgenden Fourierkorrespondenzen:
+
$\text{Integration Theorem:}$&nbsp; If&nbsp; $X(f)$&nbsp;is the Fourier transform&nbsp; $($spectral function$)$&nbsp; of&nbsp; $x(t)$,&nbsp; then the following Fourier correspondences also apply:
 
   
 
   
$$\int_{ - \infty }^{\hspace{0.05cm}t} {x( \tau  )} \hspace{0.1cm}{\rm d}\tau\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,X( f )\left( {\frac{1}{{{\rm j}2\pi f}} + \frac{1}{2}\cdot \delta ( f )} \right),$$  
+
$$\mathbf{(1)}\hspace{0.5cm}\int_{ - \infty }^{\hspace{0.05cm}t} {x( \tau  )} \hspace{0.1cm}{\rm d}\tau \ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ X( f )\left( {\frac{1}{{{\rm j}\cdot 2\pi f}} + \frac{1}{2}\cdot \delta ( f )} \right),$$  
  
$$x( t )\left( { - \frac{1}{{{\rm j}2\pi t}} + \frac{1}{2}\cdot \delta ( t )} \right)\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\int_{ - \infty }^f {X( \nu  ) \hspace{0.1cm}{\rm d}\nu .}$$
+
$$\mathbf{(2)}\hspace{0.5cm}x( t )\left( { - \frac{1}{{{\rm j}\cdot 2\pi t}} + \frac{1}{2}\cdot \delta ( t )} \right)\ \  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ \int_{ - \infty }^f {X( \nu  ) \hspace{0.1cm}{\rm d}\nu .}$$}}
  
Dies sind die beiden Varianten des '''Integrationssatzes'''.
 
  
{{end}}
+
{{BlaueBox|TEXT= 
 +
$\text{Illustration &ndash; not an exact proof:}$&nbsp;
  
 
+
The integration theorem represents exactly the inversion of the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Differentiation_Theorem|&raquo;differentiation theorem&laquo;]].&nbsp; If one applies the differentiation theorem to the equation&nbsp; $\mathbf{(1)}$&nbsp; one obtains
Da der Integrationssatz genau die Umkehrung des [[Signaldarstellung/Gesetzm%C3%A4%C3%9Figkeiten_der_Fouriertransformation#Differentiationssatz|Differentiationssatzes]] darstellt, soll hier auf den Beweis verzichtet  werden. Wendet man auf die obere Gleichung den Differentiationssatz an, so erhält man:
 
 
   
 
   
$$\frac{ {\rm d}}{ {\rm d}t} \int_{ - \infty }^{\hspace{0.05cm}t} {x( \tau  )} \hspace{0.1cm}{\rm d}\tau\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,X( f )\left( {\frac{1}{{{\rm j}2\pi f}} + \frac{1}{2}\cdot \delta ( f )} \right) \cdot {\rm j}2\pi f.$$
+
:$$\frac{ {\rm d} }{ {\rm d}t} \int_{ - \infty }^{\hspace{0.05cm}t} {x( \tau  )} \hspace{0.1cm}{\rm d}\tau\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ \ X( f )\cdot \left( {\frac{1}{ { {\rm j}\cdot 2\pi f} } + \frac{1}{2}\cdot \delta ( f )} \right) \cdot {\rm j}\cdot 2\pi f.$$
  
An diesem Beispiel zeigt sich die Gültigkeit des Integrationssatzes:
+
This example shows the validity of the integration theorem:
*Die Differentiation nach der oberen Grenze auf der linken Seite liefert genau den Integranden $x(t)$.  
+
#The differentiation according to the upper limit on the left side yields exactly the integrand&nbsp; $x(t)$.  
*Auf der rechten Seite der Korrespondenz ergibt sich richtigerweise $X(f)$, da die Diracfunktion bei $f=0$ wegen der Multiplikation mit $\text{j}2\pi f$ ausgeblendet wird.
+
#The right side of the correspondence correctly results in&nbsp; $X(f)$,&nbsp; since the Dirac delta function is hidden with&nbsp; $f=0$&nbsp; because of the multiplication with&nbsp; $\text{j}\cdot 2\pi f$.}}
  
  
Alle im Kapitel 3.3 dargelegten Gesetzmäßigkeiten – unter Anderem auch der Differentiations– und der Integrationssatz – werden im Lernvideo [[Gesetzmäßigkeiten der Fouriertransformation]] an Beispielen verdeutlicht.
+
<u>Notes:</u> &nbsp; All theorems shown in this chapter &ndash; such as the integration and differentiation theorem &ndash; will be elucidated with examples in the&nbsp; $($German language$)$&nbsp; learning video <br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; [[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|&raquo;Gesetzmäßigkeiten der Fouriertransformation&laquo;]] &nbsp; &rArr; &nbsp;  "Regularities to the Fourier transform".
  
 
+
{{GraueBox|TEXT= 
{{Beispiel}}
+
[[File:P_ID2725__Sig_T_3_3_S8_neu.png|right|frame|Correlation between&nbsp; "rectangle"&nbsp; and&nbsp; "ramp"]]
 
+
$\text{Example 8:}$&nbsp;
[[File:P_ID2725__Sig_T_3_3_S8_neu.png|right|Zum Integrationssatz]]
+
The sketched signals&nbsp; $x_1(t)$&nbsp; and&nbsp; $x_2(t)$&nbsp; are related as follows:
Die skizzierten Signale $x_1(t)$ und $x_2(t)$ hängen wie folgt zusammen:
 
 
   
 
   
$$x_2( t ) = \frac{1}{T}\cdot \int_{ - \infty }^{\hspace{0.05cm}t} {x_1 } ( \tau )\hspace{0.1cm}{\rm d}\tau .$$
+
:$$x_2( t ) = \frac{1}{T}\cdot \int_{ - \infty }^{\hspace{0.05cm}t} {x_1 } ( \tau )\hspace{0.1cm}{\rm d}\tau .$$
  
Aufgrund des Integrationssatzes gilt der Zusammenhang zwischen den Spektren:
+
*Due to the integration theorem the following relation between the spectra applies:
 
   
 
   
$$X_2 ( f ) = \frac{1}{T}\cdot X_1 ( f ) \cdot \left( {\frac{1}{{{\rm j}2\pi f}} + \frac{1}{2}\cdot \delta ( f )} \right).$$
+
:$$X_2 ( f ) = \frac{1}{T}\cdot X_1 ( f ) \cdot \left( {\frac{1}{{{\rm j}\cdot 2\pi f}} + \frac{1}{2}\cdot \delta ( f )} \right).$$
  
Mit der Spektralfunktion
+
*With the spectral function
 
   
 
   
$$X_1 ( f ) = A  \cdot T \cdot {\rm si}( {\pi fT} ) \cdot {\rm e}^{ - {\rm j}\pi fT}$$
+
:$$X_1 ( f ) = A  \cdot T \cdot {\rm sinc}( {fT} ) \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}\pi fT}$$
  
erhält man somit
+
:one gets
 
   
 
   
$$X_2 ( f ) = \frac{ {A }}{2}\cdot \delta ( f ) + \frac{ {A  \cdot T}}{{2{\rm j}}} \cdot \frac{ {\sin( {\pi fT})}}{{\left( {\pi fT} \right)^2 }} \cdot {\rm e}^{ - {\rm j}\pi fT},$$
+
:$$X_2 ( f ) = \frac{ {A } }{2}\cdot \delta ( f ) + \frac{ {A  \cdot T} }{ {2{\rm j} } } \cdot \frac{ {\sin( {\pi fT}) } }{ {\left( {\pi fT} \right)^2 } } \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}\pi fT}.$$
  
bzw. nach trigonometrischen Umformungen:
+
*Or after trigonometric transformations:
 
   
 
   
$$X_2 ( f ) = \frac{ {A}}{2}\cdot \delta ( f ) + \frac{ {A  \cdot T}}{{( {2\pi fT} )^2 }}\cdot \left[ {\cos( {2\pi fT} ) - 1 - {\rm j}\cdot \sin ( {2\pi ft} )} \right].$$
+
:$$X_2 ( f ) = \frac{ {A} }{2}\cdot \delta ( f ) + \frac{ {A  \cdot T} }{ { ( {2\pi fT} )^2 } }\cdot \big[ {\cos( {2\pi fT} ) - 1 - {\rm j}\cdot \sin ( {2\pi ft} )} \big].$$
 
 
Hierzu ist anzumerken:
 
*Die Diracfunktion bei $f = 0$ mit dem Gewicht $A/2$ berücksichtigt den Gleichanteil der Rampenfunktion $x_2(t)$. Das bedeutet auch: Der Gleichanteil der Rampenfunktion ist genau so groß wie der Gleichanteil der Sprungfunktion.
 
*Das fehlende Dreieck mit den Eckpunkt–Koordinaten (0, 0), ($T$, $A$) und (0, $A$) ändert am Gleichanteil nichts; es wirkt sich gegenüber der unendlich großen Restfläche nicht aus.
 
 
 
 
 
{{end}}
 
 
 
  
==Aufgaben zum Kapitel==
+
*It should be noted:
 +
#The Dirac delta function at&nbsp; $f = 0$&nbsp; with weight&nbsp; $A/2$&nbsp; considers the DC component of the ramp function&nbsp; $x_2(t)$.
 +
#This also means: &nbsp; The DC component of the ramp function is exactly the same as the DC component of the jump function.
 +
#The missing triangle with the corner point coordinates&nbsp; $(0, 0)$, $(T, A)$&nbsp; and&nbsp; $(0, A)$&nbsp; does not change the DC component.
 +
#This triangular area has no effect compared to the infinite remaining area&nbsp $($going to infinity$)$.}}
  
[[Aufgaben:3.4 Trapezspektrum bzw. -impuls|A3.4 Trapezspektrum bzw. -impuls]]
 
  
[[Aufgaben: 3.4Z Trapez, Rechteck und Dreieck|Z3.4 Trapez, Rechteck und Dreieck]]
+
==Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise 3.4: Trapezoidal Spectrum and Pulse|Exercise 3.4: Trapezoidal Spectrum and Pulse]]
  
[[Aufgaben:3.5 Differentiation eines Dreicksignals|A3.5 Differentiation eines Dreicksignals]]
+
[[Aufgaben:Exercise 3.4Z: Trapezoid, Rectangle and Triangle|Exercise 3.4Z: Trapezoid, Rectangle and Triangle]]
  
[[Aufgaben: 3.5Z Integration von Diracfunktionen|Z3.5 Integration von Diracfunktionen]]
+
[[Aufgaben:Exercise 3.5: Differentiation of a Triangular Pulse|Exercise 3.5: Differentiation of a Triangular Pulse]]
  
[[Aufgaben:3.6 Gerades/ungerades Zeitsignal|A3.6 Gerades/ungerades Zeitsignal]]
+
[[Aufgaben:Exercise 3.5Z: Integration of Dirac Functions|Exercise 3.5Z: Integration of Dirac Functions]]
  
 +
[[Aufgaben:Exercise 3.6: Even/Odd Time Signal|Exercise 3.6: Even/Odd Time Signal]]
  
 +
[[Aufgaben:Exercise 3.6Z: Complex Exponential Function|Exercise 3.6Z: Complex Exponential Function]]
  
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 17:26, 14 June 2023

Multiplication with a factor - Addition Theorem


In this section the  »Fourier Transform Theorems«  are assembled.  These can be used,  for examle,  to derive from already known transformations

$$x( t )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,X( f ),\quad x_1 ( t )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,X_1 ( f ),\quad x_2 ( t )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,X_2 ( f )$$

new functional relationships.  Here we restrict ourselves to real time functions.

$\text{Theorem:}$  A  $\text{constant factor}$  $k$  affects the time and spectral function in the same way:

$$k \cdot x(t)\ \;\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ k \cdot X(f).$$


This relation can be used for simplification by omitting the constant  $k$  $($which can be a gain,  an attenuation or a unit factor$)$  and adding it to the result later.
The above sentence follows directly from the definition of the  »first Fourier integral«,  as well as from the  »addition theorem«,  which formulates the foundation of the  »superposition principle«.

$\text{Addition Theorem:}$  If a time function can be written as a sum of single functions, the resulting spectral function is the sum of the resulting single spectra:

$$x( t ) = x_1 ( t ) + x_2 ( t )\quad\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\quad X( f ) = X_1 (f) + X_2 ( f ).$$


Rectangular pulse,  triangular pulse and their combination

$\text{Example 1:}$  The following Fourier correspondences are known:

  • The rectangular pulse:
$$x_1 ( t )\hspace{0.15cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm} X_1 ( f )=T \cdot {\rm sinc}(f T),$$
  • the triangle pulse:
$$ x_2 ( t )\hspace{0.15cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm} X_2 ( f )=T /2\cdot {\rm sinc}^2(f T/2).$$

These two pulses are sketched on the right as red and blue curve respectively.

⇒   Then for the Fourier correspondences of the green drawn  $($weighted$)$  sum signal  $x(t)$  holds:

$$x(t) = {1}/{3} \cdot x_1 ( t ) + {2}/{3} \cdot x_2 ( t )\hspace{0.15cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm} X(f) = {1}/{3} \cdot X_1 ( f ) + {2}/{3} \cdot X_2 ( f ).$$


All theorems presented in this chapter can be found at the following  $($German language$)$  learning video with illustrated examples
        »Gesetzmäßigkeiten der Fouriertransformation«   ⇒   "Regularities to the Fourier transform".


Assignment Theorem


With the  »complex Fourier series«  for describing periodic signals,  we have found

  1. that an even function always leads to real Fourier coefficients,  and
  2. an odd function exclusively to imaginary Fourier coefficients. 


The Fourier transform shows similar properties.

$\text{Assignment Theorem:}$  If a real time function consists additively of an even  $($German:  "gerade"   ⇒   $\text{"g"})$  and an odd  $($German:  "ungerade"   ⇒   $\text{"u"})$  part,

$$x( t ) = x_{\rm g} ( t ) + x_{\rm u} ( t ),$$

then the following applies for its spectral function:

$$X(f) = X_{\rm R}(f) + {\rm j}\cdot X_{\rm I}(f), \hspace{0.5cm}\text{with}$$
$$ x_{\rm g} (t) \hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm}X_{\rm R}(f),$$
$$x_{\rm u} (t) \hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm} {\rm j} \cdot X_{\rm I} (f).$$

The real part  $X_{\rm R}(f)$  of the spectrum is then also even,  while  $X_{\rm I}(f)$  describes an odd function of frequency.


$${\rm e}^{ - {\rm j}\omega _0 t} = \cos ( {\omega _0 t} ) - {\rm j}\cdot \sin ( {\omega _0 t} ).$$
  • The even and odd part of each function  $x(t)$  can be calculated with the following equations:
$$x_{\rm g} (t) = {1}/{2}\big[ {x(t) + x(-t)} \big],$$
$$x_{\rm u} (t) = {1}/{2}\big[ {x(t) - x(-t)} \big].$$
Spectrum of the jump function

$\text{Example 2:}$  We consider the  »jump function«

$$x(t) = \gamma (t) = \bigg\{ \begin{array}{l} 0\quad \quad {\rm for}\;t < 0 \\ 1\quad \quad{\rm for}\; t > 0 \\ \end{array} ,$$

which can be split as follows:  

$$\gamma (t) = {1}/{2} +{1}/{2} \cdot {\rm sign}(t).$$

The  »signum function«  was used here:

$${\rm sign} (t) = \bigg\{ \begin{array}{l} -1\quad \quad {\rm for}\;t < 0, \\ +1\quad \quad{\rm for}\; t > 0. \\ \end{array} $$

Therefore the following applies:

  1. The even  $($blue$)$  signal part  $x_{\rm g} (t) = {1}/{2}$  is a constant with the real spectral function  $X_{\rm R}(f) = {1}/{2} \cdot \delta(f)$.
  2. The spectrum  ${\rm j} \cdot X_{\rm I}(f)$  of the odd  $($green$)$  signum function  $x_{\rm u} (t)$  was already calculated in the earlier  $\text{Example 3}$  in the section  »Fourier transform«.
  3. This results for the spectrum of the  $($red$)$  sketched  jump function:
$$X(f) = X_{\rm R}(f) + {\rm j}\cdot X_{\rm I}(f)= {1}/{2} \cdot \delta (f) - {\rm j}\cdot \frac{1}{2\pi f}.$$


Similarity Theorem


The similarity theorem shows the relation between the spectral functions of two time signals of the same shape,  stretched or compressed.

$\text{Similarity Theorem:}$  If  $X(f)$  is the Fourier transform of  $x(t)$,  then with the real constant  $k$  the following relation applies:

$$x( {k \cdot t} )\hspace{0.15cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm} \frac{1}{\left \vert \hspace{0.05cm} k\hspace{0.05cm} \right \vert} \cdot X( {f}/{k} ).$$


$\text{Proof:}$  For positive  $k$  follows from the Fourier integral with the substitution  $\tau = k \cdot t$:

$$\int_{ - \infty }^{ + \infty } {x( {k \cdot t})} \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}ft} \hspace{0.1cm}{\rm d}t = \frac{1}{k} \cdot \int_{ - \infty }^{ + \infty } {x( \tau )} \cdot {\rm e}^{ - {\rm j}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm} f/k \hspace{0.05cm}\cdot \hspace{0.05cm}\tau } \hspace{0.1cm}{\rm d} \tau = \frac{1}{k}\cdot X( {{f}/{k}}).$$
  • For negative  $k$  the integration limits would be mixed up and you get  $-1/k \cdot X(f/k)$.
  • Since in the equation  $\vert \hspace{0.05cm} k \hspace{0.05cm} \vert$  is used,  the result is valid for both signs.
q.e.d.


The effects of the similarity theorem can be illustrated,  for example,  with an audio tape. 

  • If such a tape is played with double speed,  this corresponds to a compression of the time signal  $(k = 2)$. 
  • Thus the frequencies appear twice as high.


Two rectangles of different width

$\text{Example 3:}$  We consider two rectangles of equal height, where  $T_2 = T_1/2$  holds.

$$X_1 (f) = A \cdot \frac{ {1 - {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}fT_1 } } }{ { {\rm j}2\pi f} } .$$
  • For this can also be written:
$$X_1 (f) = A \cdot T_1 \cdot \frac{{{\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}\pi \hspace{0.05cm}\cdot \hspace{0.05cm}fT_1 } - {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}\pi \hspace{0.05cm}\cdot \hspace{0.05cm}fT_1 } }}{{{\rm j}2\pi fT_1 }} \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}\pi \hspace{0.05cm}\cdot \hspace{0.05cm}fT_1 } = A \cdot T_1 \cdot {\rm sinc}( {f T_1 } ) \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}\pi \hspace{0.05cm}\cdot \hspace{0.05cm}fT_1 }.$$
  • For the spectral function of  $x_2(t)$  follows from the similarity theorem with  $k = -2$:
$$X_2 (f) = \frac{1}{2} \cdot X_1 ( { - {f}/{2}} ) = \frac{A \cdot T_1 }{2} \cdot {\rm sinc}( { - f {T_1 }/{2} } ) \cdot {\rm e}^{ {\rm j}\pi fT_1 /2} .$$
  • The function  $\text{sinc}(x) = \sin(x)/x$  is even:  $\text{sinc}(-x) = \text{sinc}(x)$.  Therefore you can omit the sign in the argument of the  $\text{sinc}$–function.
  • With  $T_2 = T_1/2$  one gets:
$$X_2 (f) = A \cdot T_2 \cdot {\rm sinc}( {fT_2 } ) \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f\hspace{0.05cm}\cdot \hspace{0.05cm}T_2 } .$$


Reciprocity Theorem of time duration and bandwidth


This law follows directly from the  »similarity theorem«:   The wider a pulse is in its extension,  the narrower and higher is the corresponding spectrum and vice versa.

To be able to make quantitative statements,  we define two parameters for energy-limited signals.  Both quantities are shown in the diagram in  $\text{Example 4}$  for a Gaussian pulse and its likewise Gaussian spectrum.

$\text{Definition:}$  The  »equivalent pulse duration«  is derived from the time course.  It is equal to the width of an area–equal rectangle with same height as  $x(t)$:

$$\Delta t = \frac{1}{{x( {t = 0} )}} \cdot \int_{ - \infty }^{ + \infty } {x( t)} \hspace{0.1cm}{\rm d}t.$$


$\text{Definition:}$  The  »equivalent bandwidth«   is defined in the frequency domain.  It gives the width of the area–equal rectangle with same height as spectrum  $X(f)$:

$$\Delta f = \frac{1}{{X( {f = 0} )}}\cdot \int_{ - \infty }^{ + \infty } {X( f )} \hspace{0.1cm} {\rm d}f.$$


$\text{Reciprocity Theorem:}$  The product of the equivalent pulse duration and the equivalent bandwidth is always the same  $1$:

$$\Delta t \cdot \Delta f = 1.$$


$\text{Proof:}$  Based on the two Fourier integrals,  for  $f = 0$  resp.  $t = 0$:

$$X( {f = 0} ) = \int_{ - \infty }^{ + \infty } {x(t)\hspace{0.1cm}{\rm d}t,}$$
$$x( {t = 0} ) = \int_{ - \infty }^{ + \infty } {X(f)\hspace{0.1cm}{\rm d}f.}$$

If you take this result into account in the above definitions, you get

$$\Delta t = \frac{{X( {f = 0} )}}{{x( {t = 0} )}}, \hspace{0.5cm}\Delta f = \frac{{x( {t = 0} )}}{{X( {f = 0} )}}.$$
From this   $\Delta t \cdot \Delta f = 1$   follows directly.
q.e.d.


Note that  $\Delta f$  is defined over the actual spectrum  $X(f)$  and not over  $|X(f)|$.

  • For real functions the integration over the even function part is sufficient,  since the integral over the odd part is always zero due to the  »assignment theorem«.
  • For odd time functions and thus purely imaginary spectra,  the two definitions of  $\Delta t$  and  $\Delta f$  fail.


$\text{Example 4:}$  The graph illustrates the equivalent pulse duration  $\Delta t$  and the equivalent bandwidth  $\Delta f$  exemplary for the Gaussian pulse. 

Gaussian example for the reciprocity theorem

Furthermore,  it is valid:

  • Widening the Gaussian pulse by the factor  $3$  will reduce the equivalent bandwidth by the same factor.


  • If the pulse amplitude  $x(t = 0)$  is not changed,  the integral area above  $X(f)$  remains constant.


  • This means that  $X(f=0)$  is simultaneously increased by the factor  $3$ .

Duality Theorem


This regularity is particularly useful for obtaining new Fourier correspondences.

$\text{Duality Theorem:}$  If  $X(f)$  is the Fourier transform of  $x(t)$,  then:

$$X^{\star}(t)\hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm}x^{\star}( f ).$$

If we restrict ourselves to real time functions,  the signs for  »conjugated complex»  can be omitted on both sides of the Fourier correspondence.


$\text{Proof:}$  The  »first Fourier integral«  is after successive renaming  $t \to u$,  $f \to t$:

$$X( f ) = \int_{ - \infty }^{ + \infty } {x( u )} \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f\hspace{0.05cm}\cdot \hspace{0.05cm}u} \hspace{0.1cm}{\rm d}u, \hspace{1cm} X(t ) = \int_{ - \infty }^{ + \infty } {x( u )} \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}t\hspace{0.05cm}\cdot \hspace{0.05cm}u}\hspace{0.1cm} {\rm d}u.$$
  • If you change the sign in the exponent,  you have to replace  $X(t)$  by  $X^*(t)$  and  $x(u)$  by  $x^*(u)$ :
$$X^{\star}(t ) = \int_{ - \infty }^{ + \infty } {x^{\star}( u )} \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi\hspace{0.05cm}\cdot \hspace{0.05cm} t\hspace{0.05cm}\cdot \hspace{0.05cm}u}\hspace{0.1cm} {\rm d}u.$$
$$X^{\star}(t ) = \int_{ - \infty }^{ + \infty } {x^{\star}( f )} \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm} {\rm d}f.\hspace{7.9cm}$$
q.e.d.


$\text{Above:  Rectangular-in-time}$   ⇒ $\text{sinc-in-frequency};$
$\text{below;  sinc-in-time}$   ⇒ $\text{rectangular-in-frequency}$

$\text{Example 5:}$ 

The figure on the right shows an application of the duality theorem,  namely the functional relations between

  • a signal  $x_1(t)$  with rectangular time function,  and
  • a signal  $x_2(t)$  with rectangular spectral function.



$\text{Another Example:}$ 

  • The spectrum  $X(f) = \delta(f)$  of the DC signal  $x(t) = 1$  is assumed to be known.
  • According to the  »duality theorem«,  the spectral function of the Dirac delta is therefore:
$$ x(t) = \delta(t)\hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm} X(f)= 1.$$


Shifting Theorem


We now consider

  • a shift of the time function,  e.g. caused by a delay;


$\text{Shifting Theorem:}$  If  $X(f)$  is the Fourier transform of  $x(t)$,  the following correspondences also apply:

$$\mathbf{(1)}\hspace{0.5cm}x( {t - t_0 } )\hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm}X( f ) \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm} f\hspace{0.05cm}\cdot \hspace{0.05cm}t_0 },$$

$$\mathbf{(2)}\hspace{0.5cm}x( t ) \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm}X( {f - f_0 } ).$$

Here,  $t_0$  and  $f_0$  are any time or frequency values.


$\text{Proof of Equation (1):}$  The  »first Fourier integral«  for signal   $x_{\rm V}(t) = x(t-t_0)$  shifted to the right by  $t_0$  is defined with the substitution  $\tau = t - t_0$:

$$X_{\rm V} ( f ) = \int_{ - \infty }^{ + \infty } {x( {t - t_0 } ) \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm}{\rm d}t} = \int_{ - \infty }^{ + \infty } {x( \tau ) \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f\hspace{0.05cm}\cdot \hspace{0.05cm}( {\tau + t_0 } )}\hspace{0.1cm} {\rm d}\tau .}$$
  • The term independent from the integration variable  $\tau$  can be dragged in front of the integral. 
  • With the renaming  $\tau \to t$  one then obtains
$$X_{\rm V}( f ) = {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f\hspace{0.05cm}\cdot \hspace{0.05cm}t_0 } \cdot \int_{ - \infty }^{ + \infty } {x( t )} \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm} {\rm d}t = {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}f\hspace{0.05cm}\cdot \hspace{0.05cm}t_0 } \cdot X( f).$$
q.e.d.


Shifting theorem example

$\text{Example 6:}$  As already mentioned, the symmetrical rectangular pulse  $x_1(t)$  has the spectrum

$$X_1 ( f ) = A \cdot T \cdot {\rm si}( {\pi fT} )= A \cdot T \cdot {\rm sinc}( {fT} )$$
$$\hspace{0.9cm} \text{with} \hspace{0.5cm} {\rm si}(x)= \sin(x)/x,\hspace{0.5cm}{\rm sinc}(x)= \sin(\pi x)/(\pi x)={\rm si}(x/\pi).$$
  • The rectangular pulse  $x_2(t)$  displayed below is shifted to the right with respect to  $x_1(t)$  by  $T/2$:  
$$x_2(t) = x_1(t-T/2).$$
  • Thus its spectrum is:
$$X_2( f ) = A \cdot T \cdot {\rm sinc}( {fT} ) \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f\hspace{0.05cm}\cdot \hspace{0.05cm}T} .$$
  • This spectral function can also be written as follows with the  »theorem of Euler«  and some trigonometric conversions:
$$X_2( f ) = \frac{A }{2\pi f} \cdot \sin ( 2\pi fT) + {\rm j}\cdot \frac{A }{2\pi f} \cdot \big[ {\cos ( {2\pi fT} ) - 1} \big] .$$
  • The same result can be obtained with the  »assignment theorem«;  
    ⇒   The real part of the spectrum belongs to the even signal part  $x_{\rm g}(t)$,  the imaginary part to the odd signal part  $x_{\rm u}(t)$.


Differentiation Theorem


This theorem shows,  how the differentiation of a function  $x(t)$  resp.  $X(f)$  affects the corresponding Fourier transform;  it is also applicable several times. 

A simple example for the application of this theorem is the relation between current  $i(t)$  and voltage  $u(t)$  of a capacitance  $C$  according to the equation  

$$i(t) = C \cdot \text{d}u(t)/\text{d}t.$$

$\text{Differentiation Theorem:}$  If  $X(f)$ is the Fourier transform of  $x(t)$,  the following two correspondences are also valid:

$$\mathbf{(1)}\hspace{0.5cm}\frac{{{\rm d}x( t )}}{{{\rm d}t}}\hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi f \cdot X( f ),$$

$$\mathbf{(2)}\hspace{0.5cm}- t \cdot x( t )\hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\hspace{0.15cm}\frac{1}{{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi }} \cdot \frac{{{\rm d}X( f )}}{{{\rm d}f}}.$$


$\text{Proof of Equation (1):}$ This equation results from differentiation of the  »second Fourier integral«:

$$y(t) = \frac{\text{d}x(t)}{\text{d}t} = \frac{\text{d} }{\text{d}t}\int_{ - \infty }^{ + \infty } X( f ) \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\hspace{0.03cm}\pi\hspace{0.05cm}\cdot \hspace{0.05cm} f\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm} {\rm d}f = \int_{ - \infty }^{ + \infty } {X( f )} \cdot {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi f \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm} f\hspace{0.05cm}\cdot \hspace{0.05cm}t} {\rm d}f.$$

At the same time is:

$$y( t ) = \int_{ - \infty }^{ + \infty } {Y( f )} \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\hspace{0.03cm}\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm} {\rm d}f.$$
  1. By comparing the integrands,  the variation  $\mathbf{(1)}$  of the differentiation theorem is obtained.
  2. To derive the second variant one proceeds from the  »first Fourier integral«  in an analogous manner.
  3. The negative exponent in the first Fourier integral leads to the minus sign in the time function.
    q.e.d.


Correlation between  »jump«  and  »Dirac delta«

$\text{Example 7:}$  The spectra of the signals  $x_1(t)$  and  $x_2(t)$  were already calculated in the previous examples:

$$X_1( f ) = \frac{1 }{ {\rm j\cdot \pi} f}, $$
$$X_2( f ) = 2 = {\rm const.}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} X_2(f) = X_1(f) \cdot {\rm j}\cdot 2\pi f.$$
  1. From the differentiation theorem it follows that  $x_2(t)$  is equal to the time-derivative of  $x_1(t)$ .
  2. This is actually correct:  For  $t \neq 0$  ⇒   $x_1(t)$  is constant, i.e. the derivative is zero.
  3. For  $t=0$  the gradient is infinitely large,  which is also expressed in the equation  $x_2(t) = 2 \cdot \delta(t)$.
  4. The impulse weight  "$2$"  of  $x_2(t)$  considers that the jump within  $x_1(t)$  at  $t = 0$  has the height  "$2$".


Integration Theorem


Integration is just like differentiation a linear operation.  This results in the following theorem:

$\text{Integration Theorem:}$  If  $X(f)$ is the Fourier transform  $($spectral function$)$  of  $x(t)$,  then the following Fourier correspondences also apply:

$$\mathbf{(1)}\hspace{0.5cm}\int_{ - \infty }^{\hspace{0.05cm}t} {x( \tau )} \hspace{0.1cm}{\rm d}\tau \ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ X( f )\left( {\frac{1}{{{\rm j}\cdot 2\pi f}} + \frac{1}{2}\cdot \delta ( f )} \right),$$

$$\mathbf{(2)}\hspace{0.5cm}x( t )\left( { - \frac{1}{{{\rm j}\cdot 2\pi t}} + \frac{1}{2}\cdot \delta ( t )} \right)\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ \int_{ - \infty }^f {X( \nu ) \hspace{0.1cm}{\rm d}\nu .}$$


$\text{Illustration – not an exact proof:}$ 

The integration theorem represents exactly the inversion of the  »differentiation theorem«.  If one applies the differentiation theorem to the equation  $\mathbf{(1)}$  one obtains

$$\frac{ {\rm d} }{ {\rm d}t} \int_{ - \infty }^{\hspace{0.05cm}t} {x( \tau )} \hspace{0.1cm}{\rm d}\tau\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ \ X( f )\cdot \left( {\frac{1}{ { {\rm j}\cdot 2\pi f} } + \frac{1}{2}\cdot \delta ( f )} \right) \cdot {\rm j}\cdot 2\pi f.$$

This example shows the validity of the integration theorem:

  1. The differentiation according to the upper limit on the left side yields exactly the integrand  $x(t)$.
  2. The right side of the correspondence correctly results in  $X(f)$,  since the Dirac delta function is hidden with  $f=0$  because of the multiplication with  $\text{j}\cdot 2\pi f$.


Notes:   All theorems shown in this chapter – such as the integration and differentiation theorem – will be elucidated with examples in the  $($German language$)$  learning video
                        »Gesetzmäßigkeiten der Fouriertransformation«   ⇒   "Regularities to the Fourier transform".

Correlation between  "rectangle"  and  "ramp"

$\text{Example 8:}$  The sketched signals  $x_1(t)$  and  $x_2(t)$  are related as follows:

$$x_2( t ) = \frac{1}{T}\cdot \int_{ - \infty }^{\hspace{0.05cm}t} {x_1 } ( \tau )\hspace{0.1cm}{\rm d}\tau .$$
  • Due to the integration theorem the following relation between the spectra applies:
$$X_2 ( f ) = \frac{1}{T}\cdot X_1 ( f ) \cdot \left( {\frac{1}{{{\rm j}\cdot 2\pi f}} + \frac{1}{2}\cdot \delta ( f )} \right).$$
  • With the spectral function
$$X_1 ( f ) = A \cdot T \cdot {\rm sinc}( {fT} ) \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}\pi fT}$$
one gets
$$X_2 ( f ) = \frac{ {A } }{2}\cdot \delta ( f ) + \frac{ {A \cdot T} }{ {2{\rm j} } } \cdot \frac{ {\sin( {\pi fT}) } }{ {\left( {\pi fT} \right)^2 } } \cdot {\rm e}^{ - {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}\pi fT}.$$
  • Or after trigonometric transformations:
$$X_2 ( f ) = \frac{ {A} }{2}\cdot \delta ( f ) + \frac{ {A \cdot T} }{ { ( {2\pi fT} )^2 } }\cdot \big[ {\cos( {2\pi fT} ) - 1 - {\rm j}\cdot \sin ( {2\pi ft} )} \big].$$
  • It should be noted:
  1. The Dirac delta function at  $f = 0$  with weight  $A/2$  considers the DC component of the ramp function  $x_2(t)$.
  2. This also means:   The DC component of the ramp function is exactly the same as the DC component of the jump function.
  3. The missing triangle with the corner point coordinates  $(0, 0)$, $(T, A)$  and  $(0, A)$  does not change the DC component.
  4. This triangular area has no effect compared to the infinite remaining area&nbsp $($going to infinity$)$.


Exercises for the chapter


Exercise 3.4: Trapezoidal Spectrum and Pulse

Exercise 3.4Z: Trapezoid, Rectangle and Triangle

Exercise 3.5: Differentiation of a Triangular Pulse

Exercise 3.5Z: Integration of Dirac Functions

Exercise 3.6: Even/Odd Time Signal

Exercise 3.6Z: Complex Exponential Function