Difference between revisions of "Aufgaben:Exercise 2.6Z: Signal-to-Noise Ratio"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modulationsverfahren/Synchrondemodulation }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice Frage |type…“)
 
 
(30 intermediate revisions by 6 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:|right|]]
+
[[File:P_ID1017__Mod_Z_2_6.png|right|frame|Spectra and power density spectra]]
 +
In the following exercise,&nbsp; we assume:
 +
*a cosine source signal:
 +
:$$ q(t) = 4 \,{\rm V} \cdot \cos(2 \pi \cdot 5\,{\rm kHz} \cdot t )\hspace{0.05cm},$$
 +
* DSB–AM by multiplication with
 +
:$$z(t) = 1 \cdot \cos(2 \pi \cdot 20\,{\rm kHz} \cdot t )\hspace{0.05cm},$$
 +
* a frequency-independent attenuation on the channel corresponding to &nbsp;$α_{\rm K} = 10^{–4}$,
 +
* additive white input noise with power density &nbsp;$N_0 = 4 · 10^{–19} \ \rm W/Hz$,
 +
* phase-synchronous and frequency-synchronous demodulation by multiplication the same &nbsp;$z(t)$&nbsp; as at the transmitter,
 +
* a rectangular low-pass at the synchronous demodulator with cutoff frequency &nbsp;$f_{\rm E} = 5 \ \rm kHz$.
  
  
===Fragebogen===
+
In the graph,&nbsp; these specifications are shown in the spectral domain.&nbsp;  It should be explicitly mentioned that the power-spectral density &nbsp;${\it Φ}_z(f)$&nbsp; of the cosine oscillation &nbsp;$z(t)$&nbsp;  is composed of two Dirac delta lines at &nbsp;$±f_{\rm T}$,&nbsp; as in the amplitude spectrum &nbsp; $Z(f)$,&nbsp; but with weight &nbsp;$A^2/4$&nbsp; instead of &nbsp;$A/2$.&nbsp; The amplitude should always be set to &nbsp;$A=1$&nbsp; in this exercise.
 +
 
 +
The sink signal &nbsp;$v(t)$&nbsp; is composed of the useful component &nbsp;$α · q(t)$&nbsp; and the noise component &nbsp;$ε(t)$&nbsp;.&nbsp;  Thus, the general rule for the signal-to-noise power ratio to be determined is:
 +
:$$ \rho_{v } = \frac{\alpha^2 \cdot P_q}{P_\varepsilon}\hspace{0.05cm}.$$
 +
This important quality criterion is often abbreviated to&nbsp; $\rm SNR$&nbsp; ("signal–to–noise power ratio").
 +
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Synchronous_Demodulation|Synchronous Demodulation]].
 +
*Particular reference is made to the pages &nbsp;[[Modulation_Methods/Synchronous_Demodulation#Calculating_noise_power|Calculating noise power]]&nbsp; and &nbsp;[[Modulation_Methods/Synchronous_Demodulation#Relationship_between_the_powers_from_source_signal_and_transmitted signal|Relationship between the powers from source and_transmitted signal]].
 +
*Please note that the variables &nbsp;$α$&nbsp; and &nbsp;$α_{\rm K}$&nbsp; need not be the same.
 +
*All powers refer to a resistance of &nbsp;$R = 50 \ \rm Ω$&nbsp; with the exception of subtask &nbsp; '''(1)'''.
 +
*For DSB-AM without carrier,&nbsp; $P_q$&nbsp; also represents the transmit power &nbsp;$P_{\rm S}$.
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
 
|type="[]"}
+
{Calculate the transmit power with respect to the unit resistance &nbsp;$R = 1 \ \rm Ω$.
- Falsch
+
|type="{}"}
+ Richtig
+
$P_q \ = \ $ { 8 3% } $\ \rm V^2$
  
  
{Input-Box Frage
+
{What is the power &nbsp;$P_q$&nbsp; in watts for the resistor &nbsp;$R = 50  \ \rm  Ω$?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$P_q \ = \ $ { 0.16 3% } $\ \rm W$
  
 +
 +
{Which attenuation factor &nbsp;$α$&nbsp; results for the whole system?
 +
|type="{}"}
 +
$α  \ = \ $ { 0.5 3% } $\ \cdot 10^{-4}$
 +
 +
 +
{Calculate the power density of the noise component &nbsp;$ε(t)$&nbsp; at the output.&nbsp; What is the value when &nbsp;$f = 0$?&nbsp; Let &nbsp;$H_{\rm E}(f = 0) = 1$.
 +
|type="{}"}
 +
${\it Φ}_ε(f = 0) \ = \ $ { 4 3% } $\ \cdot 10^{-19} \ \rm  W/Hz$
 +
 +
{What is the noise power of the sink signal?
 +
|type="{}"}
 +
$P_ε \ = \ $ { 4 3% } $\ \cdot 10^{-15} \ \rm  W$
  
  
 +
{What is the signal-to-noise power ratio (SNR) at the sink?  What is the resulting dB value?
 +
|type="{}"}
 +
$ρ_v \ = \ $ { 100000 3% }
 +
$10 · \lg ρ_v \ = \ $ { 50 3% } $\ \rm dB$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; The power-spectral density of a cosine signal with amplitude &nbsp; $A$&nbsp; consists of two Dirac delta lines,&nbsp; each with weight &nbsp; $A^2/4$.
'''2.'''
+
*The power is obtained from the integral over the PDS and is thus equal to the sum of the two Dirac weights.&nbsp; 
'''3.'''
+
*Thus,&nbsp; when &nbsp; $A = 4 \ \rm V$,&nbsp; we obtain the power of the source signal:
'''4.'''
+
:$$ P_q = \frac{A^2}{2} \hspace{0.15cm}\underline {= 8\,{\rm V^2}} \hspace{0.05cm}.$$
'''5.'''
+
*For the modulation method&nbsp; "DSB-AM without a carrier",&nbsp; this is also the transmit power $P_{\rm S}$ in reference to the unit resistance&nbsp; $1\ \rm  Ω$.
'''6.'''
+
 
'''7.'''
+
 
 +
 
 +
'''(2)'''&nbsp; According to the elementary laws of Electrical Engineering:
 +
:$$P_q = \frac{8\,{\rm V^2}}{50\,{\Omega}} \hspace{0.15cm}\underline {= 0.16\,{\rm W}} \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; In the theory section,&nbsp; it is shown that&nbsp; $v(t) = q(t)$&nbsp; holds under ideal conditions.&nbsp; However,&nbsp; the following should be taken into account:
 +
*From the graph,&nbsp; it can be seen that&nbsp; $Z_{\rm E}(f) = Z(f)$&nbsp; holds.&nbsp; Thus,&nbsp; the receiver-side carrier signal &nbsp; $z_{\rm E}(t)$&nbsp; has like &nbsp; $z(t)$&nbsp; the amplitude &nbsp; $1$.
 +
*Ideally,&nbsp; however,&nbsp; the receiver-side carrier signal &nbsp; $z_{\rm E}(t)$&nbsp; should have amplitude &nbsp;  $2$.
 +
*Therefore,&nbsp; $υ(t) = q(t)/2$&nbsp; applies here.
 +
*If we further consider the channel attenuation &nbsp; $α_{\rm K} = 10^{–4}$,&nbsp; we obtain the final result:&nbsp; $α\hspace{0.15cm}\underline { = 0.5 · 10^{–4}}.$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; The power-spectral density of the product &nbsp; $n(t) · z(t)$&nbsp; is obtained by convolving the two power density spectra of &nbsp; $n(t)$&nbsp; and&nbsp; $z(t)$:
 +
:$$ {\it \Phi}_\varepsilon \hspace{0.01cm} '(f) = {\it \Phi}_n (f) \star {\it \Phi}_{z }(f)= \frac{N_0}{2} \star \left[\delta(f - f_{\rm T}) + \delta(f + f_{\rm T}) \right]= N_0 \hspace{0.05cm}.$$
 +
*For the power-spectral density of the signal &nbsp; $ε(t)$&nbsp; after the low-pass filter,&nbsp; we obtain a rectangular shape with the same value at &nbsp; $f = 0$:
 +
:$${\it \Phi}_\varepsilon (f) = {\it \Phi}_\varepsilon \hspace{0.01cm} '(f) \cdot |H_{\rm E}(f)|^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\it \Phi}_\varepsilon (f=0)= N_0\hspace{0.15cm}\underline {= 4 \cdot 10^{-19}\,{\rm W/Hz}} \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; The noise power is the integral over the noise power density:
 +
:$$ P_{\varepsilon} = \int_{-f_{\rm E}}^{ + f_{\rm E}} {{\it \Phi}_\varepsilon (f)}\hspace{0.1cm}{\rm d}f = N_0 \cdot 2 f_{\rm E} = 4 \cdot 10^{-19}\,\frac{ \rm W}{\rm  Hz} \cdot 10^{4}\,{\rm Hz} \hspace{0.15cm}\underline {= 4 \cdot 10^{-15}\,{\rm W}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(6)'''&nbsp; From the results of subtasks&nbsp; '''(2)''',&nbsp; '''(3)'''&nbsp; and&nbsp; '''(5)'''&nbsp; it follows that:
 +
:$$\rho_{v } = \frac{\alpha^2 \cdot P_q}{P_\varepsilon} = \frac{(0.5 \cdot 10^{-4})^2 \cdot 0.16\,{\rm W}}{4 \cdot 10^{-15}\,{\rm W}} \hspace{0.15cm}\underline {= 100000} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg }\hspace{0.1cm}\rho_{v } \hspace{0.15cm}\underline {= 50\,{\rm dB}}\hspace{0.05cm}.$$
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Modulationsverfahren|^2.2 Synchrondemodulation^]]
+
[[Category:Modulation Methods: Exercises|^2.2 Synchronous Demodulation^]]

Latest revision as of 15:19, 18 January 2023

Spectra and power density spectra

In the following exercise,  we assume:

  • a cosine source signal:
$$ q(t) = 4 \,{\rm V} \cdot \cos(2 \pi \cdot 5\,{\rm kHz} \cdot t )\hspace{0.05cm},$$
  • DSB–AM by multiplication with
$$z(t) = 1 \cdot \cos(2 \pi \cdot 20\,{\rm kHz} \cdot t )\hspace{0.05cm},$$
  • a frequency-independent attenuation on the channel corresponding to  $α_{\rm K} = 10^{–4}$,
  • additive white input noise with power density  $N_0 = 4 · 10^{–19} \ \rm W/Hz$,
  • phase-synchronous and frequency-synchronous demodulation by multiplication the same  $z(t)$  as at the transmitter,
  • a rectangular low-pass at the synchronous demodulator with cutoff frequency  $f_{\rm E} = 5 \ \rm kHz$.


In the graph,  these specifications are shown in the spectral domain.  It should be explicitly mentioned that the power-spectral density  ${\it Φ}_z(f)$  of the cosine oscillation  $z(t)$  is composed of two Dirac delta lines at  $±f_{\rm T}$,  as in the amplitude spectrum   $Z(f)$,  but with weight  $A^2/4$  instead of  $A/2$.  The amplitude should always be set to  $A=1$  in this exercise.

The sink signal  $v(t)$  is composed of the useful component  $α · q(t)$  and the noise component  $ε(t)$ .  Thus, the general rule for the signal-to-noise power ratio to be determined is:

$$ \rho_{v } = \frac{\alpha^2 \cdot P_q}{P_\varepsilon}\hspace{0.05cm}.$$

This important quality criterion is often abbreviated to  $\rm SNR$  ("signal–to–noise power ratio").



Hints:


Questions

1

Calculate the transmit power with respect to the unit resistance  $R = 1 \ \rm Ω$.

$P_q \ = \ $

$\ \rm V^2$

2

What is the power  $P_q$  in watts for the resistor  $R = 50 \ \rm Ω$?

$P_q \ = \ $

$\ \rm W$

3

Which attenuation factor  $α$  results for the whole system?

$α \ = \ $

$\ \cdot 10^{-4}$

4

Calculate the power density of the noise component  $ε(t)$  at the output.  What is the value when  $f = 0$?  Let  $H_{\rm E}(f = 0) = 1$.

${\it Φ}_ε(f = 0) \ = \ $

$\ \cdot 10^{-19} \ \rm W/Hz$

5

What is the noise power of the sink signal?

$P_ε \ = \ $

$\ \cdot 10^{-15} \ \rm W$

6

What is the signal-to-noise power ratio (SNR) at the sink? What is the resulting dB value?

$ρ_v \ = \ $

$10 · \lg ρ_v \ = \ $

$\ \rm dB$


Solution

(1)  The power-spectral density of a cosine signal with amplitude   $A$  consists of two Dirac delta lines,  each with weight   $A^2/4$.

  • The power is obtained from the integral over the PDS and is thus equal to the sum of the two Dirac weights. 
  • Thus,  when   $A = 4 \ \rm V$,  we obtain the power of the source signal:
$$ P_q = \frac{A^2}{2} \hspace{0.15cm}\underline {= 8\,{\rm V^2}} \hspace{0.05cm}.$$
  • For the modulation method  "DSB-AM without a carrier",  this is also the transmit power $P_{\rm S}$ in reference to the unit resistance  $1\ \rm Ω$.


(2)  According to the elementary laws of Electrical Engineering:

$$P_q = \frac{8\,{\rm V^2}}{50\,{\Omega}} \hspace{0.15cm}\underline {= 0.16\,{\rm W}} \hspace{0.05cm}.$$


(3)  In the theory section,  it is shown that  $v(t) = q(t)$  holds under ideal conditions.  However,  the following should be taken into account:

  • From the graph,  it can be seen that  $Z_{\rm E}(f) = Z(f)$  holds.  Thus,  the receiver-side carrier signal   $z_{\rm E}(t)$  has like   $z(t)$  the amplitude   $1$.
  • Ideally,  however,  the receiver-side carrier signal   $z_{\rm E}(t)$  should have amplitude   $2$.
  • Therefore,  $υ(t) = q(t)/2$  applies here.
  • If we further consider the channel attenuation   $α_{\rm K} = 10^{–4}$,  we obtain the final result:  $α\hspace{0.15cm}\underline { = 0.5 · 10^{–4}}.$


(4)  The power-spectral density of the product   $n(t) · z(t)$  is obtained by convolving the two power density spectra of   $n(t)$  and  $z(t)$:

$$ {\it \Phi}_\varepsilon \hspace{0.01cm} '(f) = {\it \Phi}_n (f) \star {\it \Phi}_{z }(f)= \frac{N_0}{2} \star \left[\delta(f - f_{\rm T}) + \delta(f + f_{\rm T}) \right]= N_0 \hspace{0.05cm}.$$
  • For the power-spectral density of the signal   $ε(t)$  after the low-pass filter,  we obtain a rectangular shape with the same value at   $f = 0$:
$${\it \Phi}_\varepsilon (f) = {\it \Phi}_\varepsilon \hspace{0.01cm} '(f) \cdot |H_{\rm E}(f)|^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\it \Phi}_\varepsilon (f=0)= N_0\hspace{0.15cm}\underline {= 4 \cdot 10^{-19}\,{\rm W/Hz}} \hspace{0.05cm}.$$


(5)  The noise power is the integral over the noise power density:

$$ P_{\varepsilon} = \int_{-f_{\rm E}}^{ + f_{\rm E}} {{\it \Phi}_\varepsilon (f)}\hspace{0.1cm}{\rm d}f = N_0 \cdot 2 f_{\rm E} = 4 \cdot 10^{-19}\,\frac{ \rm W}{\rm Hz} \cdot 10^{4}\,{\rm Hz} \hspace{0.15cm}\underline {= 4 \cdot 10^{-15}\,{\rm W}}\hspace{0.05cm}.$$


(6)  From the results of subtasks  (2)(3)  and  (5)  it follows that:

$$\rho_{v } = \frac{\alpha^2 \cdot P_q}{P_\varepsilon} = \frac{(0.5 \cdot 10^{-4})^2 \cdot 0.16\,{\rm W}}{4 \cdot 10^{-15}\,{\rm W}} \hspace{0.15cm}\underline {= 100000} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg }\hspace{0.1cm}\rho_{v } \hspace{0.15cm}\underline {= 50\,{\rm dB}}\hspace{0.05cm}.$$