Difference between revisions of "Aufgaben:Exercise 3.2Z: Bessel Spectrum"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modulationsverfahren/Phasenmodulation (PM) }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice Frage |typ…“)
 
m
 
(26 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Phasenmodulation (PM)
+
{{quiz-Header|Buchseite=Modulation_Methods/Phase_Modulation_(PM)
 
}}
 
}}
  
[[File:|right|]]
+
[[File:P_ID1083__Mod_Z_3_2.png|right|frame|Progression of Bessel functions]]
 +
Consider the complex signal
 +
:$$x(t) = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t) }\hspace{0.05cm}.$$
 +
For example, the equivalent low-pass signal at the output of an angle modulator (PM, FM) can be represented in this form if appropriate normalizations are made.
  
 +
*When &nbsp;$T_0 = 2π/ω_0$, the Fourier series representation is:
 +
:$$x(t)  =  \sum_{n = - \infty}^{+\infty}D_n \cdot{\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t }\hspace{0.05cm},$$
 +
:$$ D_n  =  \frac{1}{T_0}\cdot \int_{- T_0/2}^{+T_0/2}x(t) \cdot{\rm e}^{\hspace{0.05cm}{-\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm 0} \hspace{0.05cm} \cdot \hspace{0.05cm} t }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
 +
*These complex Fourier coefficients can be expressed using $n$–th order Bessel functions of the first kind:
 +
:$${\rm J}_n (\eta) = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {{\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin(\alpha) -\hspace{0.05cm} n \hspace{0.05cm}\cdot \hspace{0.05cm}\alpha)}}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm}.$$
 +
*These are shown on the graph in the range &nbsp;$0 ≤ η ≤ 5$&nbsp;.&nbsp;For negative values of&nbsp;$n$&nbsp; one obtains:
 +
:$${\rm J}_{-n} (\eta) = (-1)^n \cdot {\rm J}_{n} (\eta)\hspace{0.05cm}.$$
 +
*The series representation of the Bessel functions is:
 +
:$${\rm J}_n (\eta) = \sum\limits_{k=0}^{\infty}\frac{(-1)^k \cdot (\eta/2)^{n \hspace{0.05cm} + \hspace{0.05cm} 2 \hspace{0.02cm}\cdot \hspace{0.05cm}k}}{k! \cdot (n+k)!} \hspace{0.05cm}.$$
 +
*If the function values for &nbsp;$n = 0$&nbsp; and &nbsp;$n = 1$&nbsp; are known, the Bessel functions for &nbsp;$n ≥ 2$&nbsp; can be determined from them by iteration:
 +
:$${\rm J}_n (\eta) = \frac{2 \cdot (n-1)}{\eta} \cdot {\rm J}_{n-1} (\eta) - {\rm J}_{n-2} (\eta) \hspace{0.05cm}.$$
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Phase_Modulation_(PM)|Phase Modulation]].
 +
*Particular reference is made to the page&nbsp;  [[Modulation_Methods/Phase_Modulation_(PM)#Equivalent_low-pass_signal_in_phase_modulation|Equivalent low-pass signal in phase modulation]].
 +
*The values of the Bessel functions can be found in collections of formulae in table form.
 +
*You can also use the interactive applet &nbsp; [[Applets:Bessel_functions_of_the_first_kind| Bessel functions of the first kind]]&nbsp; to solve this task.
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
 
 +
{What are the properties of the signal &nbsp;$x(t)$?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
- $x(t)$&nbsp; is imaginary for all times &nbsp;$t$&nbsp;.
+ Richtig
+
+ $x(t)$&nbsp; is periodic.
 +
- The spectral function&nbsp;$X(f)$&nbsp; is obtained via the Fourier integral.
  
 +
{Write the Fourier coefficients &nbsp;$D_n$&nbsp; together with the Bessel functions of the first kind &nbsp; &rArr; &nbsp; ${\rm J}_n(η)$.&nbsp; What relationships can be seen?
 +
|type="[]"}
 +
- All &nbsp;$D_n$&nbsp; are equal to &nbsp;${\rm J}_η(0)$.
 +
+ &nbsp;$D_n = {\rm J}_n(η)$ holds.
 +
- &nbsp;$D_n = -{\rm J}_η(n)$ holds.
  
{Input-Box Frage
+
{ What are the properties of the Fourier coefficients?
 +
|type="()"}
 +
+  All&nbsp; $D_n$&nbsp; are purely real.
 +
- All&nbsp; $D_n$&nbsp; are purely imaginary.
 +
 
 +
{For &nbsp;$η = 2$&nbsp;, the coefficients are &nbsp;$D_0 = 0.224$&nbsp; and &nbsp;$D_1 = 0.577$.&nbsp; From this, calculate the coefficients &nbsp;$D_2$&nbsp; and &nbsp;$D_3$.
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$D_2 \ = \ $ { 0.353 3% }
 +
$D_3 \ = \ $ { 0.129 3% }  
  
 +
{What are the Fourier coefficients &nbsp;$D_{-2}$&nbsp; and &nbsp;$D_{-3}$ ?
 +
|type="{}"}
 +
$D_{-2} \ = \ $ { 0.353 3% }
 +
$D_{-3} \ = \ $ { -0.133--0.125 }
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; Only the <u>second answer</u> is correct:
'''2.'''
+
*$x(t)$&nbsp; is a complex signal that only becomes real in exceptional cases, for example at time &nbsp; $t = 0$.
'''3.'''
+
*A purely imaginary value (at certain times) can only result when $η ≥ π/2$&nbsp; &nbsp; &rArr; &nbsp;  Answer 1 is incorrect.
'''4.'''
+
*For example, when&nbsp; $T_0 = 2π/ω_0$&nbsp;:
'''5.'''
+
:$$ x(t + k \cdot T_0)  =  {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} (t \hspace{0.05cm}+ \hspace{0.05cm} k \hspace{0.05cm}\cdot \hspace{0.05cm}T_0)) } =
'''6.'''
+
  {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t \hspace{0.05cm} + \hspace{0.05cm} k \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi) } ={\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t \hspace{0.05cm} ) } = x(t)\hspace{0.05cm}.$$
'''7.'''
+
*This signal is periodic.&nbsp; The Fourier series, not the Fourier integral, must be used to calculate the spectral function.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; The Fourier coefficients are:
 +
:$$ D_n = \frac{1}{T_0}\cdot \int_{- T_0/2}^{+T_0/2}{\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm} \cdot \hspace{0.05cm} t) }\cdot{\rm e}^{\hspace{0.05cm}{-\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm 0} \hspace{0.05cm} \cdot \hspace{0.05cm} t }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
 +
*Combining the two terms and after substituting &nbsp; $α = ω_0 · t$&nbsp;, we get:
 +
:$$D_n = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {{\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin(\alpha) -\hspace{0.05cm} n \hspace{0.05cm}\cdot \hspace{0.05cm}\alpha)}}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm} = {\rm J}_n (\eta) .$$
 +
*Thus, the <u>second answer</u> is correct.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Using Euler's theorem, the Fourier coefficients can be represented as follows:
 +
:$$D_n  =  \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {\cos( \eta \cdot \sin(\alpha) - n \cdot \alpha)}\hspace{0.1cm}{\rm d}\alpha +
 +
\frac{\rm  j}{2\pi}\cdot \int_{-\pi}^{+\pi} {\sin( \eta \cdot \sin(\alpha) - n \cdot \alpha)}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm}.$$
 +
*The integrand of the first integral is an even function of&nbsp; $\alpha$:
 +
:$$I_1 (-\alpha)  =  {\cos( \eta \cdot \sin(-\alpha) + n \cdot \alpha)} = {\cos( -\eta \cdot \sin(\alpha) + n \cdot \alpha)}=
 +
  {\cos( \eta \cdot \sin(\alpha) - n \cdot \alpha)} = I_1 (\alpha) \hspace{0.05cm}.$$
 +
*In contrast, the second integrand is an odd function:
 +
:$$I_2 (-\alpha)  =  {\sin( \eta \cdot \sin(-\alpha) + n \cdot \alpha)} = {\sin( -\eta \cdot \sin(\alpha) + n \cdot \alpha)}=
 +
  -{\sin( \eta \cdot \sin(\alpha) - n \cdot \alpha)} = -I_2 (\alpha) \hspace{0.05cm}.$$
 +
*Thus, the second integral vanishes and, taking symmetry into account, we obtain:
 +
:$$D_n = \frac{1}{\pi}\cdot \int_{0}^{\pi} {\cos( \eta \cdot \sin(\alpha) - n \cdot \alpha)}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm}.$$
 +
*Thus, the correct solution is <u>Answer 1</u>.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; According to the formula for iterative calculation, when&nbsp; $η = 2$:
 +
:$$ D_2  =  D_1 - D_0 = 0.577 - 0.224 \hspace{0.15cm}\underline {= 0.353} \hspace{0.05cm},$$ 
 +
:$$D_3  =  2 \cdot D_2 - D_1 = 2 \cdot 0.353 - 0.577 \hspace{0.15cm}\underline {= 0.129} \hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(5)'''&nbsp; Due to the given symmetry relation, it further holds that:
 +
:$$ D_{–2} = D_2\hspace{0.15cm}\underline {= 0.353} \hspace{0.05cm},$$ 
 +
:$$D_{–3} = -D_3  \hspace{0.15cm}\underline {= -0.129} \hspace{0.05cm}.$$
 +
 
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Modulationsverfahren|^3.1 Phasenmodulation (PM)^]]
+
[[Category:Modulation Methods: Exercises|^3.1 Phase Modulation^]]

Latest revision as of 15:51, 9 April 2022

Progression of Bessel functions

Consider the complex signal

$$x(t) = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t) }\hspace{0.05cm}.$$

For example, the equivalent low-pass signal at the output of an angle modulator (PM, FM) can be represented in this form if appropriate normalizations are made.

  • When  $T_0 = 2π/ω_0$, the Fourier series representation is:
$$x(t) = \sum_{n = - \infty}^{+\infty}D_n \cdot{\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t }\hspace{0.05cm},$$
$$ D_n = \frac{1}{T_0}\cdot \int_{- T_0/2}^{+T_0/2}x(t) \cdot{\rm e}^{\hspace{0.05cm}{-\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm 0} \hspace{0.05cm} \cdot \hspace{0.05cm} t }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
  • These complex Fourier coefficients can be expressed using $n$–th order Bessel functions of the first kind:
$${\rm J}_n (\eta) = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {{\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin(\alpha) -\hspace{0.05cm} n \hspace{0.05cm}\cdot \hspace{0.05cm}\alpha)}}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm}.$$
  • These are shown on the graph in the range  $0 ≤ η ≤ 5$ . For negative values of $n$  one obtains:
$${\rm J}_{-n} (\eta) = (-1)^n \cdot {\rm J}_{n} (\eta)\hspace{0.05cm}.$$
  • The series representation of the Bessel functions is:
$${\rm J}_n (\eta) = \sum\limits_{k=0}^{\infty}\frac{(-1)^k \cdot (\eta/2)^{n \hspace{0.05cm} + \hspace{0.05cm} 2 \hspace{0.02cm}\cdot \hspace{0.05cm}k}}{k! \cdot (n+k)!} \hspace{0.05cm}.$$
  • If the function values for  $n = 0$  and  $n = 1$  are known, the Bessel functions for  $n ≥ 2$  can be determined from them by iteration:
$${\rm J}_n (\eta) = \frac{2 \cdot (n-1)}{\eta} \cdot {\rm J}_{n-1} (\eta) - {\rm J}_{n-2} (\eta) \hspace{0.05cm}.$$





Hints:


Questions

1

What are the properties of the signal  $x(t)$?

$x(t)$  is imaginary for all times  $t$ .
$x(t)$  is periodic.
The spectral function $X(f)$  is obtained via the Fourier integral.

2

Write the Fourier coefficients  $D_n$  together with the Bessel functions of the first kind   ⇒   ${\rm J}_n(η)$.  What relationships can be seen?

All  $D_n$  are equal to  ${\rm J}_η(0)$.
 $D_n = {\rm J}_n(η)$ holds.
 $D_n = -{\rm J}_η(n)$ holds.

3

What are the properties of the Fourier coefficients?

All  $D_n$  are purely real.
All  $D_n$  are purely imaginary.

4

For  $η = 2$ , the coefficients are  $D_0 = 0.224$  and  $D_1 = 0.577$.  From this, calculate the coefficients  $D_2$  and  $D_3$.

$D_2 \ = \ $

$D_3 \ = \ $

5

What are the Fourier coefficients  $D_{-2}$  and  $D_{-3}$ ?

$D_{-2} \ = \ $

$D_{-3} \ = \ $


Solution

(1)  Only the second answer is correct:

  • $x(t)$  is a complex signal that only becomes real in exceptional cases, for example at time   $t = 0$.
  • A purely imaginary value (at certain times) can only result when $η ≥ π/2$    ⇒   Answer 1 is incorrect.
  • For example, when  $T_0 = 2π/ω_0$ :
$$ x(t + k \cdot T_0) = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} (t \hspace{0.05cm}+ \hspace{0.05cm} k \hspace{0.05cm}\cdot \hspace{0.05cm}T_0)) } = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t \hspace{0.05cm} + \hspace{0.05cm} k \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi) } ={\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm}\cdot \hspace{0.05cm} t \hspace{0.05cm} ) } = x(t)\hspace{0.05cm}.$$
  • This signal is periodic.  The Fourier series, not the Fourier integral, must be used to calculate the spectral function.


(2)  The Fourier coefficients are:

$$ D_n = \frac{1}{T_0}\cdot \int_{- T_0/2}^{+T_0/2}{\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm 0} \hspace{0.05cm} \cdot \hspace{0.05cm} t) }\cdot{\rm e}^{\hspace{0.05cm}{-\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm 0} \hspace{0.05cm} \cdot \hspace{0.05cm} t }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
  • Combining the two terms and after substituting   $α = ω_0 · t$ , we get:
$$D_n = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {{\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin(\alpha) -\hspace{0.05cm} n \hspace{0.05cm}\cdot \hspace{0.05cm}\alpha)}}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm} = {\rm J}_n (\eta) .$$
  • Thus, the second answer is correct.


(3)  Using Euler's theorem, the Fourier coefficients can be represented as follows:

$$D_n = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {\cos( \eta \cdot \sin(\alpha) - n \cdot \alpha)}\hspace{0.1cm}{\rm d}\alpha + \frac{\rm j}{2\pi}\cdot \int_{-\pi}^{+\pi} {\sin( \eta \cdot \sin(\alpha) - n \cdot \alpha)}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm}.$$
  • The integrand of the first integral is an even function of  $\alpha$:
$$I_1 (-\alpha) = {\cos( \eta \cdot \sin(-\alpha) + n \cdot \alpha)} = {\cos( -\eta \cdot \sin(\alpha) + n \cdot \alpha)}= {\cos( \eta \cdot \sin(\alpha) - n \cdot \alpha)} = I_1 (\alpha) \hspace{0.05cm}.$$
  • In contrast, the second integrand is an odd function:
$$I_2 (-\alpha) = {\sin( \eta \cdot \sin(-\alpha) + n \cdot \alpha)} = {\sin( -\eta \cdot \sin(\alpha) + n \cdot \alpha)}= -{\sin( \eta \cdot \sin(\alpha) - n \cdot \alpha)} = -I_2 (\alpha) \hspace{0.05cm}.$$
  • Thus, the second integral vanishes and, taking symmetry into account, we obtain:
$$D_n = \frac{1}{\pi}\cdot \int_{0}^{\pi} {\cos( \eta \cdot \sin(\alpha) - n \cdot \alpha)}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm}.$$
  • Thus, the correct solution is Answer 1.


(4)  According to the formula for iterative calculation, when  $η = 2$:

$$ D_2 = D_1 - D_0 = 0.577 - 0.224 \hspace{0.15cm}\underline {= 0.353} \hspace{0.05cm},$$
$$D_3 = 2 \cdot D_2 - D_1 = 2 \cdot 0.353 - 0.577 \hspace{0.15cm}\underline {= 0.129} \hspace{0.05cm}.$$


(5)  Due to the given symmetry relation, it further holds that:

$$ D_{–2} = D_2\hspace{0.15cm}\underline {= 0.353} \hspace{0.05cm},$$
$$D_{–3} = -D_3 \hspace{0.15cm}\underline {= -0.129} \hspace{0.05cm}.$$