Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.4: About the Quantization Noise"

From LNTwww
 
(21 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Pulscodemodulation
+
{{quiz-Header|Buchseite=Modulation_Methods/Pulse_Code_Modulation
 
}}
 
}}
  
[[File:P_ID1616__Mod_A_4_4.png|right|]]
+
[[File:P_ID1616__Mod_A_4_4.png|right|frame|Quantization error with sawtooth input]]
Zur Berechnung der Quantisierungsrauschleistung $P_Q$ gehen wir von einem periodischen sägezahnförmigen Quellensignal q(t) mit dem Wertebereich ±qmax und der Periodendauer T0 aus.
+
To calculate the quantization noise power  $P_{\rm Q}$  we assume a periodic sawtooth-shaped source signal  q(t)  with value range  $±q_{\rm max}$  and period duration  T0 .
 +
*In the mean time domain  T0/2tT0/2  holds:   $q(t) = q_{\rm max} \cdot \left ( {2 \cdot t}/{T_0} \right ).$
 +
*We refer to the power of the signal  q(t)  here as the transmit power  $P_{\rm S}$.
  
Im mittleren Zeitbereich –T_0/2 ≤ t ≤ T_0/2 gilt:
 
q(t) = q_{\rm max} \cdot \left ( {2 \cdot t}/{T_0} \right ).
 
Dessen Leistung wird hier mit P_S bezeichnet.
 
  
Dieses Signal wird entsprechend der Grafik mit M = 6 Stufen quantisiert. Der lineare Quantisierer ist für den Amplitudenbereich ±Q_{max} ausgelegt, so dass jedes Quantisierungsintervall die Breite $Δ = 2/M · Q_{max}$ aufweist. Die Grafik zeigt diesen Sachverhalt für Q_{max} = q_{max} = 6 V. Von diesen Zahlenwerten soll bis einschließlich Teilaufgabe e) ausgegangen werden.
+
The signal  q(t)  is quantized according to the graph with  M = 6  steps.  The quantized signal is  q_{\rm Q}(t),  where:
 +
*The linear quantizer is designed for the amplitude range  $±Q_{\rm max}$  such that each quantization interval has width  ${\it Δ} = 2/M \cdot Q_{\rm max}$.  
 +
*The diagram shows this fact for  $Q_{\rm max} = q_{\rm max} = 6 \ \rm V$.  These numerical values shall be assumed up to and including the subtask  '''(5)'''.
  
Die so genannte '''Quantisierungsrauschleistung''' ist als der quadratische Mittelwert des Differenzsignals ε(t) = q_Q(t) – q(t) definiert. Es gilt
 
P_{\rm Q} = \frac{1}{T_0' } \cdot \int_{0}^{T_0'}\varepsilon(t)^2 \hspace{0.05cm}{\rm d}t \hspace{0.05cm},
 
wobei die Zeit T_0' geeignet zu wählen ist. Als Quantisierungs–SNR bezeichnet man das Verhältnis
 
\rho_{\rm Q} = \frac{P_{\rm S}}{P_{\rm Q}}\hspace{0.05cm},
 
das meist in dB angegeben wird.
 
  
'''Hinweis:''' Die Aufgabe bezieht sich auf das [http://en.lntwww.de/Modulationsverfahren/Pulscodemodulation Kapitel 4.1].  
+
The  "quantization noise power"  is defined as the second moment of the difference signal  ε(t) = q_{\rm Q}(t) - q(t).   It holds:
 +
:$$P_{\rm Q} = \frac{1}{T_0' } \cdot \int_{0}^{T_0'}\varepsilon(t)^2 \hspace{0.05cm}{\rm d}t \hspace{0.05cm},$$
 +
where the time  $T_0'$  is to be chosen appropriately.  The  "quantization SNR"  is the ratio    $\rho_{\rm Q} = {P_{\rm S}}/{P_{\rm Q}}\hspace{0.05cm}$,  which is usually given logarithmically  (in dB).
  
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*The exercise belongs to the chapter  [[Modulation_Methods/Pulse_Code_Modulation|"Pulse Code Modulation"]].
 +
*Reference is made in particular to the page  [[Modulation_Methods/Pulse_Code_Modulation#Quantization_and_quantization_noise|"Quantization and quantization Noise"]].
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die Signalleistung $P_S$ (auf 1 Ω bezogen):
+
{Calculate the signal power &nbsp;$P_{\rm S}$&nbsp; $(referred to the resistor 1 \ \rm Ω)$.
 
|type="{}"}
 
|type="{}"}
$P_S$ = { 12 3% } V^2  
+
$P_{\rm S} \ = \ { 12 3% } \ \rm V^2$  
 
 
{Welche Aussagen treffen für das Fehlersignal ε(t) zu?
 
|type="{}"}
 
+ ε(t) hat einen sägezahnförmigen Verlauf.
 
- ε(t) hat einen stufenförmigen Verlauf.
 
+ ε(t) ist auf den Bereich ±Δ/2 = ±1V beschränkt.
 
+ ε(t) besitzt die Periodendauer T_0' = T_0/M.
 
  
 +
{Which statements are true for the error signal &nbsp;ε(t)= q_{\rm Q}(t)-q(t)&nbsp;?
 +
|type="[]"}
 +
+ ε(t)&nbsp; has a sawtooth shape.
 +
- ε(t)&nbsp; has a step-like progression.
 +
+ ε(t)&nbsp; is restricted to the range &nbsp;±{\it Δ}/2 = ±1 \ \rm V.
 +
+ ε(t)&nbsp; has period &nbsp;T_0' = T_0/M.
  
{Wie groß ist die Quantisierungsrauschleistung?
+
{What is the quantization noise power &nbsp;P_{\rm Q}&nbsp; for &nbsp;M=6?
 
|type="{}"}
 
|type="{}"}
$M=6  P_Q$ = { 0.333 3% } V^2
+
$P_{\rm Q} \ = \ { 0.333 3% } \ \rm V^2$  
  
{Berechnen Sie den Quantisierungsrauschabstand für M = 6.
+
{Calculate the quantization noise ratio for &nbsp;M = 6.
 
|type="{}"}
 
|type="{}"}
$M = 6:  10 · lg ρ_Q$ = { 15.56 3% } dB  
+
$10 \cdot \lg \ ρ_{\rm Q} \ = \ { 15.56 3% } \ \rm dB$  
  
{Welche Werte ergeben sich bei Quantisierung mit N = 8 bzw. $N = 16 Bit$?   
+
{What values result from quantization with &nbsp;N = 8&nbsp; or &nbsp;N = 16 bits?   
 
|type="{}"}
 
|type="{}"}
$ N = 8:   10 · lg ρ_Q$ = { 48.16 3% } dB
+
$N = 8\text{:}\hspace{0.35cm}10 ⋅ \lg \ ρ_{\rm Q} \ = \ { 48.16 3% } \ \rm dB$
$ N = 16:   10 · lg ρ_Q$ = { 96.32 3% } dB
+
$N = 16\text{:}\hspace{0.15cm}10 ⋅ \lg \ ρ_{\rm Q} \ = \ { 96.32 3% } \ \rm dB$
  
{Welche Voraussetzungen müssen erfüllt sein, damit die abgeleitete Gleichung für $ρ_Q$ angewandt werden kann?
+
{What conditions must be met for the derived equation to apply to &nbsp;$ρ_{\rm Q}$?
 
|type="[]"}
 
|type="[]"}
+ Alle Amplitudenwerte sind gleichwahrscheinlich.
+
+ All amplitude values are equally probable.
+ Es liegt ein linearer Quantisierer vor.
+
+ A linear quantizer is present.
+ Der Quantisierer ist genau an das Signal angepasst ($Q_{max} = q_{max}$).
+
+ The quantizer is exactly matched to the signal &nbsp;$(Q_{\rm max} = q_{\rm max})$.
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Die Signalleistung $P_S$ ist gleich dem quadratischen Mittelwert von q(t), wenn der Bezugswiderstand 1Ω verwendet und dementsprechend für die Leistung die Einheit „V^2” in Kauf genommen wird. Aufgrund der Periodizität und der Symmetrie genügt die Mittelung über T_0/2:
+
'''(1)'''&nbsp; The signal power&nbsp; $P_{\rm S} $&nbsp; is equal to the second moment of&nbsp; q(t) if the reference resistance&nbsp; 1 \rm Ω&nbsp; is used and therefore the unit&nbsp; $\rm V^2$&nbsp; is accepted for the power.  
$$P_{\rm S} = \frac{1}{T_0/2} \cdot \int\limits_{0}^{T_0/2}q^2(t) \hspace{0.05cm}{\rm d}t = \frac{2 \cdot q_{\rm max}^2}{T_0} \cdot \int\limits_{0}^{T_0/2}\left ( { 2 \cdot t}/{T_0} \right )^2 \hspace{0.05cm}{\rm d}t= \frac{2 \cdot q_{\rm max}^2}{T_0} \cdot \frac{T_0}{2} \cdot \int\limits_{0}^{1}x^2 \hspace{0.05cm}{\rm d}x = \frac{q_{\rm max}^2}{3} \hspace{0.05cm}.$$
+
*Due to periodicity and symmetry,&nbsp; averaging over the time domain&nbsp; T_0/2&nbsp; is sufficient:
Hierbei wurde die Substitution $x = 2 · t/T_0$ verwendet. Mit q_{max} = 6 V erhält man $P_S = 12 V^2$.
+
:$$P_{\rm S} = \frac{1}{T_0/2} \cdot \int_{0}^{T_0/2}q^2(t) \hspace{0.05cm}{\rm d}t = \frac{2 \cdot q_{\rm max}^2}{T_0} \cdot \int_{0}^{T_0/2}\left ( { 2 \cdot t}/{T_0} \right )^2 \hspace{0.05cm}{\rm d}t= \frac{2 \cdot q_{\rm max}^2}{T_0} \cdot \frac{T_0}{2} \cdot \int_{0}^{1}x^2 \hspace{0.05cm}{\rm d}x = \frac{q_{\rm max}^2}{3} \hspace{0.05cm}.$$
 +
*Here the substitution&nbsp; $x = 2 - t/T_0$&nbsp; was used.&nbsp; With&nbsp; $q_{\rm max} = 6 \ \rm V&nbsp; one gets&nbsp; P_\rm S\hspace{0.15cm}\underline { = 12 \ V^2}$.
 +
 
 +
 
 +
 
 +
[[File:Mod_A_4_4b_neu.png|right|frame|Error signal for&nbsp; Q_{\rm max} = q_{\rm max}]]
 +
'''(2)'''&nbsp; Correct are&nbsp; <u>suggested solutions 1, 3, and 4</u>:
 +
*We assume here&nbsp; Q_{\rm max} = q_{\rm max} = 6 \ \rm V.
 +
*This gives the sawtooth-shaped error signal&nbsp; ε(t)&nbsp; between&nbsp; ±1\ \rm V.
 +
*The period duration is&nbsp; T_0' = T_0/6.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; The error signal&nbsp; ε(t)&nbsp; proceeds in the same way as&nbsp; q(t)&nbsp; sawtooth.
 +
*Thus,&nbsp; the same equation as in subtask&nbsp; '''(1)'''&nbsp; is suitable for calculating the power.
 +
*Note,&nbsp; however,&nbsp; that the amplitude is smaller by a factor&nbsp; M&nbsp; while the different period duration does not matter for the averaging:
 +
:$$P_{\rm Q} = \frac{P_{\rm S}}{M^2} = \frac{12\,{\rm V}^2}{36}\hspace{0.15cm}\underline {= 0.333\,{\rm V}^2 }\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; The results of the subtasks&nbsp; '''(1)'''&nbsp; and&nbsp; '''(3)'''&nbsp; lead to the quantization SNR:
 +
:\rho_{\rm Q} = \frac{P_{\rm S}}{P_{\rm Q}} = M^2 = 36 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q}\hspace{0.15cm}\underline { =15.56\,{\rm dB}} \hspace{0.05cm}.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; With&nbsp; M = 2^N&nbsp; we obtain in general:
 +
: \rho_{\rm Q} = M^2 = 2^{2N} \hspace{0.3cm}\rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} =20 \cdot {\rm lg}\hspace{0.1cm}(2)\cdot N \approx 6.02\,{\rm dB} \cdot N .
 +
*This results in the special cases we are looking for:
 +
:N = 8:\hspace{0.2cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q}  \hspace{0.15cm}\underline {= 48.16\,{\rm dB}}\hspace{0.05cm},
 +
:N = 16:\hspace{0.2cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} \hspace{0.15cm}\underline { = 96.32\,{\rm dB}}\hspace{0.05cm}.
 +
 
 +
 
 +
[[File:P_ID1618__Mod_A_4_4f.png|right|frame|Quantization with&nbsp; Q_{\rm max} \ne q_{\rm max}]]
 +
'''(6)'''&nbsp; <u>All of the above preconditions</u>&nbsp; must be satisfied:
 +
*For non-linear quantization,&nbsp; the simple relation&nbsp; $ρ_{\rm Q} = M^2$&nbsp; does not hold.  
 +
*For an PDF other than the uniform distribution&nbsp; ρ_{\rm Q} = M^2&nbsp; is also only an approximation,&nbsp; but this is usually accepted.
 +
*If &nbsp;Q_{\rm max} < q_{\rm max},&nbsp; truncation of the peaks occurs,&nbsp; while with &nbsp;Q_{\rm max} > q_{\rm max}&nbsp; the quantization intervals are larger than required.
 +
 
 +
 
 +
The graph shows the error signals &nbsp;ε(t)&nbsp;
 +
#for &nbsp;Q_{\rm max} > q_{\rm max}&nbsp; (left)
 +
#and &nbsp;Q_{\rm max} < q_{\rm max}&nbsp; (right):
 +
 
 +
 
 +
:In both cases,&nbsp; the quantization noise power is significantly larger than calculated in sub-task&nbsp; '''(3)'''.
 +
 
 +
 
 +
 
  
'''2.''' Wir gehen hier von Q_{max} = q_{max} = 6 V aus. Damit ergibt sich das sägezahnförmige Fehlersignal ε(t) zwischen ±1V und der Periodendauer T0' = T_0/6.
 
[[File:P_ID1616__Mod_A_4_4.png]]
 
  
Richtig sind also die Lösungsvorschläge 1, 3 und.4.
 
'''3.'''
 
'''4.'''
 
'''5.'''
 
'''6.'''
 
'''7.'''
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Modulationsverfahren|^4.1 Pulscodemodulation^]]
+
[[Category:Modulation Methods: Exercises|^4.1 Pulse Code Modulation^]]

Latest revision as of 15:57, 11 April 2022

Quantization error with sawtooth input

To calculate the quantization noise power  P_{\rm Q}  we assume a periodic sawtooth-shaped source signal  q(t)  with value range  ±q_{\rm max}  and period duration  T_0 .

  • In the mean time domain  -T_0/2 ≤ t ≤ T_0/2  holds:   q(t) = q_{\rm max} \cdot \left ( {2 \cdot t}/{T_0} \right ).
  • We refer to the power of the signal  q(t)  here as the transmit power  P_{\rm S}.


The signal  q(t)  is quantized according to the graph with  M = 6  steps.  The quantized signal is  q_{\rm Q}(t),  where:

  • The linear quantizer is designed for the amplitude range  ±Q_{\rm max}  such that each quantization interval has width  {\it Δ} = 2/M \cdot Q_{\rm max}.
  • The diagram shows this fact for  Q_{\rm max} = q_{\rm max} = 6 \ \rm V.  These numerical values shall be assumed up to and including the subtask  (5).


The  "quantization noise power"  is defined as the second moment of the difference signal  ε(t) = q_{\rm Q}(t) - q(t).  It holds:

P_{\rm Q} = \frac{1}{T_0' } \cdot \int_{0}^{T_0'}\varepsilon(t)^2 \hspace{0.05cm}{\rm d}t \hspace{0.05cm},

where the time  T_0'  is to be chosen appropriately.  The  "quantization SNR"  is the ratio    \rho_{\rm Q} = {P_{\rm S}}/{P_{\rm Q}}\hspace{0.05cm},  which is usually given logarithmically  (in dB).





Hints:



Questions

1

Calculate the signal power  P_{\rm S}  (referred to the resistor 1 \ \rm Ω).

P_{\rm S} \ = \

\ \rm V^2

2

Which statements are true for the error signal  ε(t)= q_{\rm Q}(t)-q(t) ?

ε(t)  has a sawtooth shape.
ε(t)  has a step-like progression.
ε(t)  is restricted to the range  ±{\it Δ}/2 = ±1 \ \rm V.
ε(t)  has period  T_0' = T_0/M.

3

What is the quantization noise power  P_{\rm Q}  for  M=6?

P_{\rm Q} \ = \

\ \rm V^2

4

Calculate the quantization noise ratio for  M = 6.

10 \cdot \lg \ ρ_{\rm Q} \ = \

\ \rm dB

5

What values result from quantization with  N = 8  or  N = 16 bits?

N = 8\text{:}\hspace{0.35cm}10 ⋅ \lg \ ρ_{\rm Q} \ = \

\ \rm dB
N = 16\text{:}\hspace{0.15cm}10 ⋅ \lg \ ρ_{\rm Q} \ = \

\ \rm dB

6

What conditions must be met for the derived equation to apply to  ρ_{\rm Q}?

All amplitude values are equally probable.
A linear quantizer is present.
The quantizer is exactly matched to the signal  (Q_{\rm max} = q_{\rm max}).


Solution

(1)  The signal power  P_{\rm S}   is equal to the second moment of  q(t) if the reference resistance  1 \rm Ω  is used and therefore the unit  \rm V^2  is accepted for the power.

  • Due to periodicity and symmetry,  averaging over the time domain  T_0/2  is sufficient:
P_{\rm S} = \frac{1}{T_0/2} \cdot \int_{0}^{T_0/2}q^2(t) \hspace{0.05cm}{\rm d}t = \frac{2 \cdot q_{\rm max}^2}{T_0} \cdot \int_{0}^{T_0/2}\left ( { 2 \cdot t}/{T_0} \right )^2 \hspace{0.05cm}{\rm d}t= \frac{2 \cdot q_{\rm max}^2}{T_0} \cdot \frac{T_0}{2} \cdot \int_{0}^{1}x^2 \hspace{0.05cm}{\rm d}x = \frac{q_{\rm max}^2}{3} \hspace{0.05cm}.
  • Here the substitution  x = 2 - t/T_0  was used.  With  q_{\rm max} = 6 \ \rm V  one gets  P_\rm S\hspace{0.15cm}\underline { = 12 \ V^2}.


Error signal for  Q_{\rm max} = q_{\rm max}

(2)  Correct are  suggested solutions 1, 3, and 4:

  • We assume here  Q_{\rm max} = q_{\rm max} = 6 \ \rm V.
  • This gives the sawtooth-shaped error signal  ε(t)  between  ±1\ \rm V.
  • The period duration is  T_0' = T_0/6.


(3)  The error signal  ε(t)  proceeds in the same way as  q(t)  sawtooth.

  • Thus,  the same equation as in subtask  (1)  is suitable for calculating the power.
  • Note,  however,  that the amplitude is smaller by a factor  M  while the different period duration does not matter for the averaging:
P_{\rm Q} = \frac{P_{\rm S}}{M^2} = \frac{12\,{\rm V}^2}{36}\hspace{0.15cm}\underline {= 0.333\,{\rm V}^2 }\hspace{0.05cm}.


(4)  The results of the subtasks  (1)  and  (3)  lead to the quantization SNR:

\rho_{\rm Q} = \frac{P_{\rm S}}{P_{\rm Q}} = M^2 = 36 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q}\hspace{0.15cm}\underline { =15.56\,{\rm dB}} \hspace{0.05cm}.


(5)  With  M = 2^N  we obtain in general:

\rho_{\rm Q} = M^2 = 2^{2N} \hspace{0.3cm}\rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} =20 \cdot {\rm lg}\hspace{0.1cm}(2)\cdot N \approx 6.02\,{\rm dB} \cdot N .
  • This results in the special cases we are looking for:
N = 8:\hspace{0.2cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} \hspace{0.15cm}\underline {= 48.16\,{\rm dB}}\hspace{0.05cm},
N = 16:\hspace{0.2cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} \hspace{0.15cm}\underline { = 96.32\,{\rm dB}}\hspace{0.05cm}.


Quantization with  Q_{\rm max} \ne q_{\rm max}

(6)  All of the above preconditions  must be satisfied:

  • For non-linear quantization,  the simple relation  ρ_{\rm Q} = M^2  does not hold.
  • For an PDF other than the uniform distribution  ρ_{\rm Q} = M^2  is also only an approximation,  but this is usually accepted.
  • If  Q_{\rm max} < q_{\rm max},  truncation of the peaks occurs,  while with  Q_{\rm max} > q_{\rm max}  the quantization intervals are larger than required.


The graph shows the error signals  ε(t) 

  1. for  Q_{\rm max} > q_{\rm max}  (left)
  2. and  Q_{\rm max} < q_{\rm max}  (right):


In both cases,  the quantization noise power is significantly larger than calculated in sub-task  (3).