Difference between revisions of "Aufgaben:Exercise 4.4Z: Signal-to-Noise Ratio with PCM"

From LNTwww
 
(21 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Pulscodemodulation
+
{{quiz-Header|Buchseite=Modulation_Methods/Pulse_Code_Modulation
 
}}
 
}}
  
[[File:P_ID1619__Mod_Z_4_4.png|right|]]
+
[[File:EN_Mod_Z_4_4.png|right|frame|Signal-to-noise ratio of PCM 30/32 compared to ZSB amplitude modulation]]
Die Grafik zeigt den Sinken–Störabstand $10 · lg ρ_υ$ bei Pulscodemodulation (PCM) im Vergleich zur analogen Zweiseitenband–Amplitudenmodulation, abgekürzt mit ZSB–AM. Für letztere gilt $ρ_υ = ξ$, wobei
+
The graph shows the signal-to-noise ratio  $10 ⋅ \lg \ ρ_v$  for pulse code modulation  $\rm (PCM)$  compared to analog double-sideband amplitude modulation, abbreviated as  "$\rm DSB-AM$". 
$$\xi = \frac{\alpha^2 \cdot P_{\rm S}}{N_0 \cdot f_{\rm N}} \hspace{0.05cm}.$$
 
folgende Systemparameter zusammenfasst:
 
:* den frequenzunabhängigen Dämpfungsfaktor $α$ des Übertragungskanals,
 
:* die Leistung $P_S$ des Sendsignals $s(t)$, auch kurz Sendeleistung genannt,
 
:* die Nachrichtenfrequenz $f_N$ (Bandbreite) des cosinusförmigen Quellensignals $q(t)$,
 
:* die Rauschleistungsdichte $N_0$ des AWGN–Rauschens.
 
  
 +
For the latter,   $ρ_v = ξ$,  where the persormanc parameter
 +
:$$\xi = \frac{\alpha^2 \cdot P_{\rm S}}{N_0 \cdot f_{\rm N}} $$
 +
summarizes the following system parameters:
 +
:* the frequency-independent attenuation factor  $α$  of the transmission channel,
 +
:* the power  $P_{\rm S}$  of the transmitted signal  $s(t)$,&nbsp, also called  "transmit power"  for short,
 +
:* the message frequency  $f_{\rm N}$  (bandwidth)  of the cosine source signal  $q(t)$,
 +
:* the noise power density  $N_0$  of the AWGN noise.
  
  
Für das PCM–System wurde auf der Seite [http://en.lntwww.de/Modulationsverfahren/Pulscodemodulation#Einfluss_von_.C3.9Cbertragungsfehlern_.284.29 Einfluss von Übertragungsfehlern (4)] folgende Näherung für das Sinken–SNR angegeben, die auch Bitfehler aufgrund des AWGN–Rauschens berücksichtigt:
+
For the PCM system,  the following approximation for the sink SNR was given in the section  [[Modulation_Methods/Pulse_Code_Modulation#Estimation_of_SNR_degradation_due_to_transmission_errors|"Estimation of SNR degradation due to bit errors"]],  which also takes into account transmission errors due to AWGN noise:
$$ \rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \hspace{0.05cm}.$$
+
:$$ \rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \hspace{0.05cm}.$$
Hierbei bezeichnet $N$ die Anzahl der Bit pro Abtastwert und pB die Bitfehlerwahrscheinlichkeit. Da $ξ$ bei digitaler Modulation auch als die Signalenergie pro Bit bezogen auf die Rauschleistungsdichte ($E_B/N_0$) interpretiert werden kann, gilt mit dem komplementären Gaußschen Fehlersignal $Q(x)$ näherungsweise:
+
*Here  $N$  denotes the number of bits per sample and  $p_{\rm B}$  the bit error probability.
$$ p_{\rm B}= {\rm Q} \left ( \sqrt{2 \xi }\right ) \hspace{0.05cm}.$$
+
* Since  $ξ$  can in digital modulation also be interpreted as the  "signal energy per bit"  related to the  "noise power density"  $(E_{\rm B}/N_0)$,  with the complementary Gaussian error signal  ${\rm Q}(x)$  approximately:
'''Hinweis:'''  Die Aufgabe bezieht sich auf das [http://en.lntwww.de/Modulationsverfahren/Pulscodemodulation Kapitel 4.1] Bei der hier betrachteten PCM handelt es sich um die PCM 30/32, deren Systemparameter zum Beispiel in der [http://en.lntwww.de/Aufgaben:4.1_PCM%E2%80%93System_30/32 Aufgabe A4.1] angegeben sind.
+
:$$ p_{\rm B}= {\rm Q} \left ( \sqrt{2 \xi }\right ) \hspace{0.05cm}.$$
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
Hints:
 +
*The exercise belongs to the chapter  [[Modulation_Methods/Pulse_Code_Modulation|"Pulse Code Modulation"]].
 +
*Reference is made in particular to the sections  [[Modulation_Methods/Pulse_Code_Modulation#Influence_of_transmission_errors|"Influence of transmission errors"]]   and   [[Modulation_Methods/Pulse_Code_Modulation#Estimation_of_SNR_degradation_due_to_transmission_errors|"Estimation of SNR degradation due to transmission errors"]].
 +
*The PCM considered here is the  '''PCM 30/32''',  whose system parameters are given,  e.g. in  [[Aufgaben:Exercise_4.1:_PCM_System_30/32 |Exercise 4.1]] .
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wieviele Bit pro Abtastwert verwendet das betrachtete PCM–System?
+
{How many bits per sample &nbsp; &rArr; &nbsp; $N = N_1$&nbsp; does the PCM system under consideration use?
 
|type="{}"}
 
|type="{}"}
$N_a$ = { 8 3% }  
+
$N_1 \ = \ $ { 8 3% }  
  
{Wieviele Bit pro Abtastwert müsste man verwenden, damit $10 · lg ρ_υ > 64 dB$ (Musikqualität) erreicht wird?
+
{How many bits per sample &nbsp; &rArr; &nbsp; $N = N_2$&nbsp; would have to be used to achieve &nbsp;$10 ⋅ \lg \ ρ_v > 64 \ \rm dB$&nbsp; ("music quality")?
 
|type="{}"}
 
|type="{}"}
$N_b$= { 11 3% }  
+
$N_2 \ = \ $ { 11 3% }  
  
{Welche (logarithmierte) Leistungskenngröße $ξ_{40dB}$ ist erforderlich, damit bei 8–Bit–PCM der Sinkenstörabstand gleich 40 dB ist?
+
{What&nbsp; (logarithmized)&nbsp; performance parameter &nbsp;$ξ_{40\ \rm dB}$&nbsp; is required for 8-bit PCM to have a signal-to-noise ratio of &nbsp;$40\ \rm dB$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$10 · lg ξ_{40 dB}$= { 10 3% } $dB$  
+
$10 ⋅ \lg \ ξ_{40\ \rm dB} \ = \ $ { 10 3% } $\ \rm dB$  
  
{Um welchen Faktor könnte man bei PCM die Sendeleistung gegenüber der AM reduzieren, um trotzdem $10 · lg ρ_υ = 40 dB$ zu erreichen?
+
{By what factor could the transmit power be reduced for PCM compared to&nbsp; "DSB-AM"&nbsp; to still achieve &nbsp;$10 ⋅ \lg \ ρ_v = 40\ \rm dB$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$K_{AM → PCM}$ = { 1000 3% }  
+
$K_\text{AM → PCM} \ = \ $ { 1000 3% }  
  
{Welche Bitfehlerwahrscheinlichkeit ergibt sich für $10 · lg ξ = 6 dB$?
+
{What is the bit error probability &nbsp;$p_{\rm B}$&nbsp; for &nbsp;$10 ⋅ \lg \ ξ = 6\ \rm dB$&nbsp; and &nbsp;$N = N_1$ &nbsp; &rArr; &nbsp; result of the subtask&nbsp; '''(1)'''?
 
|type="{}"}
 
|type="{}"}
$N = N_a:  p_B$ = { 0.025 3% }  
+
$p_{\rm B} \ = \ $ { 2.5 3% } $\ \%$
  
{Welches SNR würde sich bei gleichem $ξ$ mit einer 3–Bit–PCM ergeben?
+
{What would be the SNR for the same &nbsp;$ξ$&nbsp; with a 3-bit PCM &nbsp; &rArr; &nbsp; $N = 3$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$N = 3:  10 · lg ρ_υ$ = { 15.9 3% } $dB$  
+
$10 ⋅ \lg \ ρ_v \ = \ $ { 15.9 3% } $\ \rm dB$  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Der horizontale Abschnitt der PCM–Kurve wird allein durch das Quantisierungsrauschen bestimmt. Hier gilt mit der Quantisierungsstufenzahl $M = 2^N$:
+
'''(1)'''&nbsp; The horizontal section of the PCM curve is determined by the quantization noise alone.&nbsp;
$$ \rho_{v} (\xi \rightarrow \infty) = \rho_{\rm Q} = M^2 = 2^{2N} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{v} \approx 6\,{\rm dB} \cdot N\hspace{0.05cm}.$$
+
*Here,&nbsp; with the quantization step number&nbsp; $M = 2^N$:
Aus dem ablesbaren Störabstand $10 · lg ρ_υ ≈ 48 dB$ folgt daraus $N = 8 Bit$ pro Abtastwert und für die Quantisierungsstufenzahl $M = 256$.
+
:$$ \rho_{v} (\xi \rightarrow \infty) = \rho_{\rm Q} = M^2 = 2^{2N} \hspace{0.3cm}\rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{v} \approx 6\,{\rm dB} \cdot N\hspace{0.05cm}.$$
 +
*From the readable signal-to-noise ratio&nbsp; $10 ⋅ \lg \ ρ_v ≈ 48 \ \rm dB$&nbsp; it follows:<br>&nbsp; $N_1\hspace{0.15cm}\underline { = 8}$&nbsp; bits per sample and for the quantization level number&nbsp; $M = 256$.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; From the above approximation,&nbsp; we obtain for&nbsp; $N_2\hspace{0.15cm}\underline { = 11}$&nbsp; bits per sample &nbsp; ⇒ &nbsp; $M = 2048$&nbsp; the signal-to-noise ratio&nbsp; $66 \ \rm dB$.
 +
*With&nbsp; $N = 10$ &nbsp; ⇒ &nbsp; $M = 1024$&nbsp; one reaches only approx.&nbsp; $60 \ \rm dB$.
 +
*For the compact disc&nbsp; $\rm (CD)$,&nbsp; the PCM parameters&nbsp; $N = 16$ &nbsp; ⇒ &nbsp; $M = 65536$ &nbsp; ⇒ &nbsp; $10 ⋅ \lg \ ρ_v > 96 \ \rm dB$&nbsp; are used.
 +
 
 +
 
  
 +
'''(3)'''&nbsp; For double-sideband amplitude modulation&nbsp; $\rm (DSB-AM)$,&nbsp; this would require&nbsp; $10 ⋅ \lg \ ξ = 40\ \rm dB$&nbsp;.
 +
*As can be seen from the graph in the data section,&nbsp; this abscissa value for the given PCM is lower by&nbsp; $30 \ \rm dB$&nbsp;⇒&nbsp; $10 ⋅ \lg \ ξ_{40\ \rm dB}\hspace{0.15cm}\underline { = 10 \ \rm dB}$.
  
'''2.''' Aus der obigen Näherung erhält man für $N = 11  ⇒  M = 2048$ den Störabstand $66 dB$. Mit $N = 10 ⇒ M = 1024$ erreicht man nur ca. $60 dB$. Bei der Compact Disc (CD) werden die PCM–Parameter $N = 16  ⇒  M = 65536  ⇒  10 · lg ρ_υ > 96 dB$ verwendet.
 
  
  
'''3.''' Bei Zweiseitenband–Amplitudenmodulation wären hierfür $10 · lg ξ = 40 dB$ erforderlich. Wie aus der Grafik auf der Angabenseite hervorgeht, ist dieser Abszissenwert für die vorgegebene PCM um $30 dB$ geringer  ⇒  $10 · lg ξ_·{40 dB} = 10 dB$.  
+
'''(4)'''&nbsp; The logarithmic value&nbsp; $30 \ \rm dB$&nbsp; corresponds to a power reduced by a factor&nbsp; $10^3\hspace{0.15cm}\underline { = 1000}$&nbsp; .
  
  
'''4.'''  Der logarithmische Wert $30 dB$ entspricht einer um den $Faktor 10^3 = 1000$ reduzierten Leistung.
 
  
 +
'''(5)'''&nbsp; From the graph in the information section,&nbsp; it can be seen that the abscissa value&nbsp; $10 ⋅ \lg \ ξ= 6 \ \rm dB$&nbsp; results in the signal-to-noise ratio&nbsp; $20 \ \rm dB$.
 +
*From&nbsp; $10 ⋅ \lg \ ρ_v = 20 \ \rm dB$&nbsp; follows&nbsp; $ρ_v = 100$&nbsp; and thus further&nbsp; $($with&nbsp; $N = N_1 = 8)$:
 +
:$$\rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \approx \frac{1}{ 1.5 \cdot 10^{-5} + 4 \cdot p_{\rm B}} = 100 \hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} p_{\rm B} = \frac{0.01 - 1.5 \cdot 10^{-5}}{ 4} \hspace{0.15cm}\underline {\approx 2.5\%} \hspace{0.05cm}.$$
  
'''5.''' Aus der Grafik auf der Angabenseite erkennt man, dass der Abszissenwert $10 · lg ξ = 6 dB$ den Störabstand $20 dB$ zur Folge hat. Aus $10 · lg ρ_υ = 20 dB$ folgt $ρ_υ = 100$ und damit weiter (mit $N = 8$):
 
$$\rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \approx \frac{1}{ 1.5 \cdot 10^{-5} + 4 \cdot p_{\rm B}} = 100$$
 
$$\Rightarrow \hspace{0.3cm} p_{\rm B} = \frac{0.01 - 1.5 \cdot 10^{-5}}{ 4} \hspace{0.15cm}\underline {\approx 0.025} \hspace{0.05cm}.$$
 
  
'''6.'''Bei gleichem $ξ$ kann wieder mit der Bitfehlerwahrscheinlichkeit $p_B = 0.025$ gerechnet werden. Damit erhält man mit $N = 3$ (Bit pro Abtastwert)
+
'''(6)'''&nbsp; With the same performance parameter&nbsp; $ξ$,&nbsp; the bit error probability is still&nbsp; $p_{\rm B} = 0.025$.&nbsp; Thus, with&nbsp; $N = 3$&nbsp; (bits per sample):
$$\rho_{\upsilon}= \frac{1}{ 2^{-6 } + 4 \cdot p_{\rm B}} = \frac{1}{ 0.015625 + 0.01} \approx 39 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\upsilon}\hspace{0.15cm}\underline {\approx 15.9\,{\rm dB}} \hspace{0.05cm}.$$
+
:$$\rho_{\upsilon}= \frac{1}{ 2^{-6 } + 4 \cdot p_{\rm B}} = \frac{1}{ 0.015625 + 0.01} \approx 39 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\upsilon}\hspace{0.15cm}\underline {\approx 15.9\,{\rm dB}} \hspace{0.05cm}.$$
Bei 3 Bit pro Abtastwert ist die Quantisierungsrauschleistung ($P_Q = 0.015625$) schon größer als die Fehlerrauschleistung ($P_F = 0.01$). Durch Erhöhung der Sendeleistung könnte wegen der Quantisierung der Sinkenstörabstand maximal 18 dB betragen, wenn keine Bitfehler vorkommen ($P_F = 0$).
+
Further,&nbsp; it should be noted:
 +
*With only three bits per sample,&nbsp; the quantization noise power&nbsp; $(P_{\rm Q} = 0.015625)$&nbsp; is already larger than the error noise power&nbsp; $(P_{\rm E} = 0.01)$.  
 +
*By increasing the transmit power,&nbsp; the signal-to-noise ratio could be maximum&nbsp; $10 ⋅ \lg \ ρ_v =18 \ \rm dB$&nbsp; because of quantization, if no bit errors occur&nbsp; $(P_{\rm E} = 0)$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 78: Line 101:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^4.1 Pulscodemodulation^]]
+
[[Category:Modulation Methods: Exercises|^4.1 Pulse Code Modulation^]]

Latest revision as of 16:18, 23 January 2023

Signal-to-noise ratio of PCM 30/32 compared to ZSB amplitude modulation

The graph shows the signal-to-noise ratio  $10 ⋅ \lg \ ρ_v$  for pulse code modulation  $\rm (PCM)$  compared to analog double-sideband amplitude modulation, abbreviated as  "$\rm DSB-AM$". 

For the latter,   $ρ_v = ξ$,  where the persormanc parameter

$$\xi = \frac{\alpha^2 \cdot P_{\rm S}}{N_0 \cdot f_{\rm N}} $$

summarizes the following system parameters:

  • the frequency-independent attenuation factor  $α$  of the transmission channel,
  • the power  $P_{\rm S}$  of the transmitted signal  $s(t)$,&nbsp, also called  "transmit power"  for short,
  • the message frequency  $f_{\rm N}$  (bandwidth)  of the cosine source signal  $q(t)$,
  • the noise power density  $N_0$  of the AWGN noise.


For the PCM system,  the following approximation for the sink SNR was given in the section  "Estimation of SNR degradation due to bit errors",  which also takes into account transmission errors due to AWGN noise:

$$ \rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \hspace{0.05cm}.$$
  • Here  $N$  denotes the number of bits per sample and  $p_{\rm B}$  the bit error probability.
  • Since  $ξ$  can in digital modulation also be interpreted as the  "signal energy per bit"  related to the  "noise power density"  $(E_{\rm B}/N_0)$,  with the complementary Gaussian error signal  ${\rm Q}(x)$  approximately:
$$ p_{\rm B}= {\rm Q} \left ( \sqrt{2 \xi }\right ) \hspace{0.05cm}.$$



Hints:


Questions

1

How many bits per sample   ⇒   $N = N_1$  does the PCM system under consideration use?

$N_1 \ = \ $

2

How many bits per sample   ⇒   $N = N_2$  would have to be used to achieve  $10 ⋅ \lg \ ρ_v > 64 \ \rm dB$  ("music quality")?

$N_2 \ = \ $

3

What  (logarithmized)  performance parameter  $ξ_{40\ \rm dB}$  is required for 8-bit PCM to have a signal-to-noise ratio of  $40\ \rm dB$ ?

$10 ⋅ \lg \ ξ_{40\ \rm dB} \ = \ $

$\ \rm dB$

4

By what factor could the transmit power be reduced for PCM compared to  "DSB-AM"  to still achieve  $10 ⋅ \lg \ ρ_v = 40\ \rm dB$ ?

$K_\text{AM → PCM} \ = \ $

5

What is the bit error probability  $p_{\rm B}$  for  $10 ⋅ \lg \ ξ = 6\ \rm dB$  and  $N = N_1$   ⇒   result of the subtask  (1)?

$p_{\rm B} \ = \ $

$\ \%$

6

What would be the SNR for the same  $ξ$  with a 3-bit PCM   ⇒   $N = 3$ ?

$10 ⋅ \lg \ ρ_v \ = \ $

$\ \rm dB$


Solution

(1)  The horizontal section of the PCM curve is determined by the quantization noise alone. 

  • Here,  with the quantization step number  $M = 2^N$:
$$ \rho_{v} (\xi \rightarrow \infty) = \rho_{\rm Q} = M^2 = 2^{2N} \hspace{0.3cm}\rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{v} \approx 6\,{\rm dB} \cdot N\hspace{0.05cm}.$$
  • From the readable signal-to-noise ratio  $10 ⋅ \lg \ ρ_v ≈ 48 \ \rm dB$  it follows:
      $N_1\hspace{0.15cm}\underline { = 8}$  bits per sample and for the quantization level number  $M = 256$.


(2)  From the above approximation,  we obtain for  $N_2\hspace{0.15cm}\underline { = 11}$  bits per sample   ⇒   $M = 2048$  the signal-to-noise ratio  $66 \ \rm dB$.

  • With  $N = 10$   ⇒   $M = 1024$  one reaches only approx.  $60 \ \rm dB$.
  • For the compact disc  $\rm (CD)$,  the PCM parameters  $N = 16$   ⇒   $M = 65536$   ⇒   $10 ⋅ \lg \ ρ_v > 96 \ \rm dB$  are used.


(3)  For double-sideband amplitude modulation  $\rm (DSB-AM)$,  this would require  $10 ⋅ \lg \ ξ = 40\ \rm dB$ .

  • As can be seen from the graph in the data section,  this abscissa value for the given PCM is lower by  $30 \ \rm dB$ ⇒  $10 ⋅ \lg \ ξ_{40\ \rm dB}\hspace{0.15cm}\underline { = 10 \ \rm dB}$.


(4)  The logarithmic value  $30 \ \rm dB$  corresponds to a power reduced by a factor  $10^3\hspace{0.15cm}\underline { = 1000}$  .


(5)  From the graph in the information section,  it can be seen that the abscissa value  $10 ⋅ \lg \ ξ= 6 \ \rm dB$  results in the signal-to-noise ratio  $20 \ \rm dB$.

  • From  $10 ⋅ \lg \ ρ_v = 20 \ \rm dB$  follows  $ρ_v = 100$  and thus further  $($with  $N = N_1 = 8)$:
$$\rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \approx \frac{1}{ 1.5 \cdot 10^{-5} + 4 \cdot p_{\rm B}} = 100 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm B} = \frac{0.01 - 1.5 \cdot 10^{-5}}{ 4} \hspace{0.15cm}\underline {\approx 2.5\%} \hspace{0.05cm}.$$


(6)  With the same performance parameter  $ξ$,  the bit error probability is still  $p_{\rm B} = 0.025$.  Thus, with  $N = 3$  (bits per sample):

$$\rho_{\upsilon}= \frac{1}{ 2^{-6 } + 4 \cdot p_{\rm B}} = \frac{1}{ 0.015625 + 0.01} \approx 39 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\upsilon}\hspace{0.15cm}\underline {\approx 15.9\,{\rm dB}} \hspace{0.05cm}.$$

Further,  it should be noted:

  • With only three bits per sample,  the quantization noise power  $(P_{\rm Q} = 0.015625)$  is already larger than the error noise power  $(P_{\rm E} = 0.01)$.
  • By increasing the transmit power,  the signal-to-noise ratio could be maximum  $10 ⋅ \lg \ ρ_v =18 \ \rm dB$  because of quantization, if no bit errors occur  $(P_{\rm E} = 0)$.