Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.14: Phase Progression of the MSK"

From LNTwww
m
 
(30 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modualtionsverfahren/Nichtlineare Modulationsverfahren
+
{{quiz-Header|Buchseite=Modulationsverfahren/Nichtlineare_digitale_Modulation
 
}}
 
}}
  
[[File:P_ID1740__Mod_A_4_13.png|right|]]
+
[[File:P_ID1740__Mod_A_4_13.png|right|frame|Source signal and low-pass signals <br>in both branches of the MSK]]
Eine Realisierungsmöglichkeit für die MSK bietet die Offset–QPSK, wie aus dem Blockschaltbild im Theorieteil hervorgeht. Hierzu ist zunächst eine Umcodierung der Quellensymbole $q_k$ ∈ {+1, –1} in die ebenfalls binären Amplitudenkoeffizienten $a_k$ ∈ {+1, –1} vorzunehmen. Diese Umcodierung wird in der [http://en.lntwww.de/Modulationsverfahren/Nichtlineare_Modulationsverfahren#Realisierung_der_MSK_als_Offset.E2.80.93QPSK_.281.29 Aufgabe Z4.13] eingehend behandelt.
+
One possible implementation of&nbsp; ''Minimum Shift Keying''&nbsp; $\rm (MSK)&nbsp; is offered by &nbsp;\rm Offset–QPSK$, as shown in the [[Modulation_Methods/Nonlinear_Digital_Modulation#Realizing_MSK_as_Offset.E2.80.93QPSK|block diagram]]&nbsp; in the theory section.
 +
*For this, a recoding of the source symbols &nbsp;$q_k ∈ \{+1, –1\}$&nbsp;  into the similarly binary amplitude coefficients &nbsp;$a_k ∈ \{+1, –1\}$&nbsp; must first be undertaken.  
 +
*This recoding is discussed in detail in  &nbsp;[[Aufgaben:Exercise_4.14Z:_Offset_QPSK_vs._MSK|Exercise 4.14Z]]&nbsp;.
  
Die Grafik zeigt unten die beiden äquivalenten Tiefpass–Signale sI(t) und sQ(t) in den beiden Zweigen, die sich nach dieser Umcodierung
 
ak=(1)k+1ak1qk
 
aus dem oben skizzierten Quellensignal q(t) für den Inphase– und den Quadraturzweig ergeben. Berücksichtigt ist hierbei der MSK–Grundimpuls
 
gMSK(t)={cos(πt2T)0f¨urf¨urTt+T,sonst.
 
Dieser ist ebenso wie die Signale sI(t) und sQ(t) auf 1 normiert. Für das äquivalente Tiefpass–Signal gilt entsprechend dem  [http://en.lntwww.de/Signaldarstellung/%C3%84quivalentes_Tiefpass-Signal_und_zugeh%C3%B6rige_Spektralfunktion Kapitel 4.3] im Buch „Signaldarstellung”:
 
sTP(t)=sI(t)+jsQ(t)=|sTP(t)|ejϕ(t)
 
mit dem Betrag
 
|sTP(t)|=s2I(t)+s2Q(t)
 
und der Phase
 
ϕ(t)=arcsTP(t)=arctansQ(t)sI(t).
 
Das physikalische MSK–Sendesignal ergibt sich dann zu
 
s(t)=|sTP(t)|cos(2πfTt+ϕ(t)).
 
'''Hinweis:''' Die Aufgabe gehört zum [http://en.lntwww.de/Modulationsverfahren/Nichtlineare_Modulationsverfahren Kapitel 4.4]. Gehen Sie davon aus, dass ϕ(t = 0) = ϕ_0 = 0 ist.
 
  
===Fragebogen===
+
The graph shows the two equivalent low-pass signals &nbsp;s_{\rm I}(t)&nbsp; and &nbsp;s_{\rm Q}(t)&nbsp; in the two branches below, which are obtained for the inphase and quadrature branches after recoding &nbsp;$a_k = (-1)^{k+1} \cdot a_{k-1} \cdot q_k &nbsp;from the source signal &nbsp;q(t)$&nbsp; sketched above.&nbsp; Considered here is the MSK fundamental pulse,
 +
:$$ g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos \big ({\pi \hspace{0.05cm} t}/({2 \hspace{0.05cm} T})\big ) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{for}} \\{\rm{for}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$
 +
This is normalized to &nbsp;1&nbsp;, as are the signals &nbsp;s_{\rm I}(t)&nbsp; and &nbsp;s_{\rm Q}(t)&nbsp;.
 +
 
 +
In keeping with the chapter &nbsp;[[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function|Equivalent Low-Pass Signal and its Spectral Function]]&nbsp;in the book "Signal Representation", the equivalent low-pass signal is:
 +
:$$ s_{\rm TP}(t) = s_{\rm I}(t) + {\rm j} \cdot s_{\rm Q}(t) = |s_{\rm TP}(t)| \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}\phi(t)}\hspace{0.05cm},$$
 +
*with magnitude
 +
:|s_{\rm TP}(t)| = \sqrt{s_{\rm I}^2(t) + s_{\rm Q}^2(t)}
 +
*and phase
 +
: \phi(t) = {\rm arc} \hspace{0.15cm}s_{\rm TP}(t) = {\rm arctan}\hspace{0.1cm} \frac{s_{\rm Q}(t)}{s_{\rm I}(t)} \hspace{0.05cm}.
 +
The physical MSK transmitted signal is then given by
 +
: s(t) = |s_{\rm TP}(t)| \cdot \cos (2 \pi \cdot f_{\rm T} \cdot t + \phi(t)) \hspace{0.05cm}.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Nonlinear_Digital_Modulation|Nonlinear Digital Modulation]].
 +
*Particular reference is made to the section&nbsp; [[Modulation_Methods/Nonlinear_Digital_Modulation#Realizing_MSK_as_Offset.E2.80.93QPSK|Realizing MSK as Offset–QPSK]].
 +
 +
*Assume &nbsp;ϕ(t = 0) = ϕ_0 = 0&nbsp;.
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen gelten für die Hüllkurve |s_{TP}(t)|?
+
{Which statements are true for the envelope curve &nbsp;$|s_{\rm TP}(t)|$&nbsp; of MSK?
 
|type="[]"}
 
|type="[]"}
- Die Hüllkurve schwankt cosinusförmig.
+
- The envelope curve is a cosine oscillation.
+ Die Hüllkurve ist konstant.
+
+ The envelope curve is constant.
+ Die Hüllkurve ist unabhängig von der gesendeten Folge.
+
+ The envelope curve is independent of the transmitted sequence.
  
{Es gelte $T = 1 μs$. Berechnen Sie den Phasenverlauf im Intervall 0 ≤ t ≤ T. Welche Phasenwerte ergeben sich bei t = T/2 und t = T?
+
{Let &nbsp;$T = 1 \ \rm &micro;s$.&nbsp; Calculate the phase response in the interval &nbsp;$0 ≤ t ≤ T$.  
 +
<br>What are the phase values for &nbsp;$t = T/2&nbsp; and &nbsp;t = T$?
 
|type="{}"}
 
|type="{}"}
ϕ(t = T/2) = { 45 3%  } $Grad$  
+
$ϕ(t = T/2)\ = \ { 45 3%  } \ \rm degrees$  
ϕ(t = T) = { 90 3% } $Grad$
+
$ϕ(t = T) \hspace{0.63cm}  = \ { 90 3% } \ \rm degrees$
  
{Bestimmen Sie die Phasenwerte bei t = 2T, t = 3T und t = 4T.
+
{Determine the phase values at &nbsp;$t = 2T$, &nbsp;$t = 3T &nbsp;and&nbsp; t = 4T$.
 
|type="{}"}
 
|type="{}"}
ϕ(t = 2T) = { 0 3% } $Grad$
+
$ϕ(t = 2T) \ = \ $ { 0. } $\ \rm degrees$
ϕ(t = 3T) = { -90 3% } $Grad$
+
$ϕ(t = 3T) \ = \ $ { -92.7--87.3 } $\ \rm degrees$
ϕ(t = 4T) = { -180 3% } $Grad$
+
$ϕ(t = 4T) \ = \ $ { -185.4--174.6 } $\ \rm degrees$
  
{Skizzieren und interpretieren Sie den Phasenverlauf ϕ(t) im Bereich von 0 bis 8T. Welche Phasenwerte ergeben sich zu den folgenden Zeiten?
+
{Sketch and interpret the phase response &nbsp;ϕ(t)&nbsp; in the range from &nbsp;$0 &nbsp;to&nbsp; 8T$. <br>What are the phase values at the following times?
 
|type="{}"}
 
|type="{}"}
ϕ(5T) = { -90 3% } $Grad$
+
$ϕ(t = 5T) \ = \ $ { -92.7--87.3 } $\ \rm degrees$
ϕ(6T) = { 0 3% } $Grad$
+
$ϕ(t = 6T) \ = \ $ { 0. } $\ \rm degrees$
ϕ(7T) = { -90 3% } $Grad$
+
$ϕ(t = 7T) \ = \ $ { -92.7--87.3 } $\ \rm degrees$
ϕ(8T) = { 3% } $Grad$
+
$ϕ(t = 8T) \ = \ $ { 0. } $\ \rm degrees$
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Aus der oberen Skizze kann man $T_B = 1 μs$ ablesen.
+
'''(1)'''&nbsp; <u>Answers 2 and 3</u> are correct:
 +
*For example, in the range &nbsp; 0 ≤ t ≤ T, considering that &nbsp; a_0^2 = a_1^2 = 1&nbsp;:
 +
: |s_{\rm TP}(t)| = \sqrt{a_0^2 \cdot \cos^2 (\frac{\pi \cdot t}{2 \cdot T}) + a_1^2 \cdot \sin^2 (\frac{\pi \cdot t}{2 \cdot T})} = 1 \hspace{0.05cm}.
 +
*Thus, statement 2 is correct, while statement 1 is false.
 +
*This result holds for any pair of values&nbsp; a_0 ∈ \{+1, \ –1\}&nbsp; and&nbsp; a_1 ∈ \{+1, \ –1\}.
 +
*From this, it can be further concluded that the envelope is independent of the transmitted sequence.
 +
 
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; With the given equation, it holds that:
 +
:\phi(t) = {\rm arctan}\hspace{0.1cm} \frac{s_{\rm Q}(t)}{s_{\rm I}(t)} = {\rm arctan}\hspace{0.1cm} \frac{a_1 \cdot \sin (\frac{\pi \cdot t}{2 \cdot T})}{a_0 \cdot \cos (\frac{\pi \cdot t}{2 \cdot T})}= {\rm arctan}\hspace{0.1cm}\left [ \frac{a_1}{a_0}\cdot \tan \hspace{0.1cm}(\frac{\pi \cdot t}{2 \cdot T})\right ] \hspace{0.05cm}.
 +
*The quotient&nbsp; a_1/a_0&nbsp; is always&nbsp; +1&nbsp; or&nbsp; -1.&nbsp; Thus, this quotient is preferable and we get:
 +
:$$\phi(t) =  \frac{a_1}{a_0}\cdot {\rm arctan}\hspace{0.1cm}\left [
 +
  \tan \hspace{0.1cm}(\frac{\pi  \cdot t}{2  \cdot T})\right ]=  \frac{a_1}{a_0}\cdot \frac{\pi  \cdot t}{2  \cdot T}
 +
\hspace{0.05cm}.$$
 +
*The initial phase&nbsp; ϕ_0 = 0&nbsp; can rule out ambiguities.&nbsp; In particular, because&nbsp; a_0 = a_1 = +1:
 +
:$$\phi(t = T/2 = 0.5\,{\rm &micro; s}) =  {\pi}/{4}\hspace{0.15cm}\underline { = +45^\circ},\hspace{0.2cm}\phi(t = T= 1\,{\rm &micro; s}) =  {\pi}/{2}\hspace{0.15cm}\underline {= +90^\circ}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp;  The easiest way to solve this problem is to use the unit circle:
 +
:$$ {\rm Re} = s_{\rm I}(2T) = +1, \hspace{0.2cm} {\rm Im} = s_{\rm Q}(2T) = 0 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}\phi(t = 2T= 2\,{\rm &micro; s}) \hspace{0.15cm}\underline {= 0^\circ},$$
 +
:$$ {\rm Re} = s_{\rm I}(3T) = 0, \hspace{0.2cm} {\rm Im} = s_{\rm Q}(3T) = -1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}\phi(t = 3T= 3\,{\rm &micro; s}) \hspace{0.15cm}\underline {= -90^\circ},$$
 +
[[File:P_ID1741__Mod_A_4_13_d.png|right|frame|Source signal and phase response in MSK]]
 +
:{\rm Re} = s_{\rm I}(4T) = -1, \hspace{0.2cm} {\rm Im} = s_{\rm Q}(4T) = 0 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}\phi(t = 4T= 4\,{\rm &micro; s})= \pm 180^\circ \hspace{0.05cm}.
  
'''2.''' Bei QPSK bzw. Offset–QPSK ist aufgrund der Seriell–Parallel–Wandlung die Symboldauer T doppelt so groß wie die Bitdauer:
+
*From the sketch below, we can see that &nbsp; $\phi(t = 4T= 4\,{\rm &micro; s})\hspace{0.15cm}\underline { = - 180^\circ}\hspace{0.05cm}$&nbsp; is correct.
$$ T = 2 \cdot T_{\rm B} \hspace{0.15cm}\underline {= 2\,{\rm \mu s}} \hspace{0.05cm}.$$
 
  
'''3.'''  Entsprechend der aus der Skizze für die ersten Bit erkennbaren Zuordnung gilt:
 
a_{\rm I3} = q_5  \hspace{0.15cm}\underline {= +1},\hspace{0.2cm}a_{\rm Q3} = q_6 \hspace{0.15cm}\underline {= +1},
 
a_{\rm I4} = q_7 \hspace{0.15cm}\underline { = -1},\hspace{0.2cm}a_{\rm Q4} = q_8 \hspace{0.15cm}\underline {= +1} \hspace{0.05cm}.
 
  
'''4.'''  Bei der MSK ist die Symboldauer T gleich der Bitdauer:
 
T = T_{\rm B}\hspace{0.15cm}\underline { = 1\,{\rm \mu s}} \hspace{0.05cm}.
 
'''5.'''  Entsprechend der angegebenen Umcodiervorschrift gilt mit a_4 = –1:
 
q_5 = +1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_5 = a_4 \cdot q_5 \hspace{0.15cm}\underline {= -1},
 
q_6 = +1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_6 = -a_5 \cdot q_6 \hspace{0.15cm}\underline {= +1},
 
q_7 = -1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_7 = a_6 \cdot q_7 \hspace{0.15cm}\underline {= -1},
 
q_8 = +1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_8 = -a_7 \cdot q_8\hspace{0.15cm}\underline { = +1}\hspace{0.05cm}.
 
  
 +
'''(4)'''&nbsp; The graph shows the MSK phase&nbsp; ϕ(t)&nbsp; together with the source signal&nbsp; q(t).&nbsp; It can be seen that:
 +
* At symbol&nbsp; a_\nu =+1&nbsp;  the phase increases linearly by 90^\circ \  (π/2)&nbsp; within the symbol duration T&nbsp;.
 +
* At symbol&nbsp; a_\nu =-1&nbsp; the phase decreases linearly by 90^\circ \  (π/2)&nbsp; within the symbol duration T&nbsp;.
  
 +
*Thus, the remaining phase values are:
 +
:\phi(5T) \hspace{0.15cm}\underline { = -90^\circ},\hspace{0.2cm}\phi(t = 6T)  \hspace{0.15cm}\underline {= 0^\circ} \hspace{0.05cm}.
 +
: \phi(7T)\hspace{0.15cm}\underline { = -90^\circ},\hspace{0.2cm} \phi(t = 8T) \hspace{0.15cm}\underline {= 0^\circ} \hspace{0.05cm}.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Modulationsverfahren|^4.4 Nichtlineare Modulationsverfahren^]]
+
[[Category:Modulation Methods: Exercises|^4.4 Non-linear Digital Modulation^]]

Latest revision as of 13:37, 21 March 2022

Source signal and low-pass signals
in both branches of the MSK

One possible implementation of  Minimum Shift Keying  \rm (MSK)  is offered by   \rm Offset–QPSK, as shown in the block diagram  in the theory section.

  • For this, a recoding of the source symbols  q_k ∈ \{+1, –1\}  into the similarly binary amplitude coefficients  a_k ∈ \{+1, –1\}  must first be undertaken.
  • This recoding is discussed in detail in  Exercise 4.14Z .


The graph shows the two equivalent low-pass signals  s_{\rm I}(t)  and  s_{\rm Q}(t)  in the two branches below, which are obtained for the inphase and quadrature branches after recoding  a_k = (-1)^{k+1} \cdot a_{k-1} \cdot q_k  from the source signal  q(t)  sketched above.  Considered here is the MSK fundamental pulse,

g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos \big ({\pi \hspace{0.05cm} t}/({2 \hspace{0.05cm} T})\big ) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{for}} \\{\rm{for}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}

This is normalized to  1 , as are the signals  s_{\rm I}(t)  and  s_{\rm Q}(t) .

In keeping with the chapter  Equivalent Low-Pass Signal and its Spectral Function in the book "Signal Representation", the equivalent low-pass signal is:

s_{\rm TP}(t) = s_{\rm I}(t) + {\rm j} \cdot s_{\rm Q}(t) = |s_{\rm TP}(t)| \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}\phi(t)}\hspace{0.05cm},
  • with magnitude
|s_{\rm TP}(t)| = \sqrt{s_{\rm I}^2(t) + s_{\rm Q}^2(t)}
  • and phase
\phi(t) = {\rm arc} \hspace{0.15cm}s_{\rm TP}(t) = {\rm arctan}\hspace{0.1cm} \frac{s_{\rm Q}(t)}{s_{\rm I}(t)} \hspace{0.05cm}.

The physical MSK transmitted signal is then given by

s(t) = |s_{\rm TP}(t)| \cdot \cos (2 \pi \cdot f_{\rm T} \cdot t + \phi(t)) \hspace{0.05cm}.





Hints:

  • Assume  ϕ(t = 0) = ϕ_0 = 0 .


Questions

1

Which statements are true for the envelope curve  |s_{\rm TP}(t)|  of MSK?

The envelope curve is a cosine oscillation.
The envelope curve is constant.
The envelope curve is independent of the transmitted sequence.

2

Let  T = 1 \ \rm µs.  Calculate the phase response in the interval  0 ≤ t ≤ T.
What are the phase values for  t = T/2  and  t = T?

ϕ(t = T/2)\ = \

\ \rm degrees
ϕ(t = T) \hspace{0.63cm} = \

\ \rm degrees

3

Determine the phase values at  t = 2T,  t = 3T  and  t = 4T.

ϕ(t = 2T) \ = \

\ \rm degrees
ϕ(t = 3T) \ = \

\ \rm degrees
ϕ(t = 4T) \ = \

\ \rm degrees

4

Sketch and interpret the phase response  ϕ(t)  in the range from  0  to  8T.
What are the phase values at the following times?

ϕ(t = 5T) \ = \

\ \rm degrees
ϕ(t = 6T) \ = \

\ \rm degrees
ϕ(t = 7T) \ = \

\ \rm degrees
ϕ(t = 8T) \ = \

\ \rm degrees


Solution

(1)  Answers 2 and 3 are correct:

  • For example, in the range   0 ≤ t ≤ T, considering that   a_0^2 = a_1^2 = 1 :
|s_{\rm TP}(t)| = \sqrt{a_0^2 \cdot \cos^2 (\frac{\pi \cdot t}{2 \cdot T}) + a_1^2 \cdot \sin^2 (\frac{\pi \cdot t}{2 \cdot T})} = 1 \hspace{0.05cm}.
  • Thus, statement 2 is correct, while statement 1 is false.
  • This result holds for any pair of values  a_0 ∈ \{+1, \ –1\}  and  a_1 ∈ \{+1, \ –1\}.
  • From this, it can be further concluded that the envelope is independent of the transmitted sequence.



(2)  With the given equation, it holds that:

\phi(t) = {\rm arctan}\hspace{0.1cm} \frac{s_{\rm Q}(t)}{s_{\rm I}(t)} = {\rm arctan}\hspace{0.1cm} \frac{a_1 \cdot \sin (\frac{\pi \cdot t}{2 \cdot T})}{a_0 \cdot \cos (\frac{\pi \cdot t}{2 \cdot T})}= {\rm arctan}\hspace{0.1cm}\left [ \frac{a_1}{a_0}\cdot \tan \hspace{0.1cm}(\frac{\pi \cdot t}{2 \cdot T})\right ] \hspace{0.05cm}.
  • The quotient  a_1/a_0  is always  +1  or  -1.  Thus, this quotient is preferable and we get:
\phi(t) = \frac{a_1}{a_0}\cdot {\rm arctan}\hspace{0.1cm}\left [ \tan \hspace{0.1cm}(\frac{\pi \cdot t}{2 \cdot T})\right ]= \frac{a_1}{a_0}\cdot \frac{\pi \cdot t}{2 \cdot T} \hspace{0.05cm}.
  • The initial phase  ϕ_0 = 0  can rule out ambiguities.  In particular, because  a_0 = a_1 = +1:
\phi(t = T/2 = 0.5\,{\rm µ s}) = {\pi}/{4}\hspace{0.15cm}\underline { = +45^\circ},\hspace{0.2cm}\phi(t = T= 1\,{\rm µ s}) = {\pi}/{2}\hspace{0.15cm}\underline {= +90^\circ} \hspace{0.05cm}.


(3)  The easiest way to solve this problem is to use the unit circle:

{\rm Re} = s_{\rm I}(2T) = +1, \hspace{0.2cm} {\rm Im} = s_{\rm Q}(2T) = 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi(t = 2T= 2\,{\rm µ s}) \hspace{0.15cm}\underline {= 0^\circ},
{\rm Re} = s_{\rm I}(3T) = 0, \hspace{0.2cm} {\rm Im} = s_{\rm Q}(3T) = -1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi(t = 3T= 3\,{\rm µ s}) \hspace{0.15cm}\underline {= -90^\circ},
Source signal and phase response in MSK
{\rm Re} = s_{\rm I}(4T) = -1, \hspace{0.2cm} {\rm Im} = s_{\rm Q}(4T) = 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi(t = 4T= 4\,{\rm µ s})= \pm 180^\circ \hspace{0.05cm}.
  • From the sketch below, we can see that   \phi(t = 4T= 4\,{\rm µ s})\hspace{0.15cm}\underline { = - 180^\circ}\hspace{0.05cm}  is correct.


(4)  The graph shows the MSK phase  ϕ(t)  together with the source signal  q(t).  It can be seen that:

  • At symbol  a_\nu =+1  the phase increases linearly by 90^\circ \ (π/2)  within the symbol duration T .
  • At symbol  a_\nu =-1  the phase decreases linearly by 90^\circ \ (π/2)  within the symbol duration T .
  • Thus, the remaining phase values are:
\phi(5T) \hspace{0.15cm}\underline { = -90^\circ},\hspace{0.2cm}\phi(t = 6T) \hspace{0.15cm}\underline {= 0^\circ} \hspace{0.05cm}.
\phi(7T)\hspace{0.15cm}\underline { = -90^\circ},\hspace{0.2cm} \phi(t = 8T) \hspace{0.15cm}\underline {= 0^\circ} \hspace{0.05cm}.