Difference between revisions of "Aufgaben:Exercise 4.14: Phase Progression of the MSK"

From LNTwww
m
 
(30 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modualtionsverfahren/Nichtlineare Modulationsverfahren
+
{{quiz-Header|Buchseite=Modulationsverfahren/Nichtlineare_digitale_Modulation
 
}}
 
}}
  
[[File:P_ID1740__Mod_A_4_13.png|right|]]
+
[[File:P_ID1740__Mod_A_4_13.png|right|frame|Source signal and low-pass signals <br>in both branches of the MSK]]
Eine Realisierungsmöglichkeit für die MSK bietet die Offset–QPSK, wie aus dem Blockschaltbild im Theorieteil hervorgeht. Hierzu ist zunächst eine Umcodierung der Quellensymbole $q_k$ ∈ {+1, –1} in die ebenfalls binären Amplitudenkoeffizienten $a_k$ ∈ {+1, –1} vorzunehmen. Diese Umcodierung wird in der [http://en.lntwww.de/Modulationsverfahren/Nichtlineare_Modulationsverfahren#Realisierung_der_MSK_als_Offset.E2.80.93QPSK_.281.29 Aufgabe Z4.13] eingehend behandelt.
+
One possible implementation of&nbsp; ''Minimum Shift Keying''&nbsp; $\rm (MSK)$&nbsp; is offered by &nbsp; $\rm Offset–QPSK$, as shown in the [[Modulation_Methods/Nonlinear_Digital_Modulation#Realizing_MSK_as_Offset.E2.80.93QPSK|block diagram]]&nbsp; in the theory section.
 +
*For this, a recoding of the source symbols &nbsp;$q_k ∈ \{+1, –1\}$&nbsp;  into the similarly binary amplitude coefficients &nbsp;$a_k ∈ \{+1, –1\}$&nbsp; must first be undertaken.  
 +
*This recoding is discussed in detail in  &nbsp;[[Aufgaben:Exercise_4.14Z:_Offset_QPSK_vs._MSK|Exercise 4.14Z]]&nbsp;.
  
Die Grafik zeigt unten die beiden äquivalenten Tiefpass–Signale $s_I(t)$ und $s_Q(t)$ in den beiden Zweigen, die sich nach dieser Umcodierung
 
$$a_k = (-1)^{k+1} \cdot a_{k-1} \cdot q_k $$
 
aus dem oben skizzierten Quellensignal $q(t)$ für den Inphase– und den Quadraturzweig ergeben. Berücksichtigt ist hierbei der MSK–Grundimpuls
 
$$ g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos (\frac{\pi \cdot t}{2 \cdot T}) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm sonst}\hspace{0.05cm}. \\ \end{array}$$
 
Dieser ist ebenso wie die Signale $s_I(t)$ und $s_Q(t)$ auf 1 normiert. Für das äquivalente Tiefpass–Signal gilt entsprechend dem  [http://en.lntwww.de/Signaldarstellung/%C3%84quivalentes_Tiefpass-Signal_und_zugeh%C3%B6rige_Spektralfunktion Kapitel 4.3] im Buch „Signaldarstellung”:
 
$$ s_{\rm TP}(t) = s_{\rm I}(t) + {\rm j} \cdot s_{\rm Q}(t) = |s_{\rm TP}(t)| \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}\phi(t)}$$
 
mit dem Betrag
 
$$|s_{\rm TP}(t)| = \sqrt{s_{\rm I}^2(t) + s_{\rm Q}^2(t)} $$
 
und der Phase
 
$$ \phi(t) = {\rm arc} \hspace{0.15cm}s_{\rm TP}(t) = {\rm arctan}\hspace{0.1cm} \frac{s_{\rm Q}(t)}{s_{\rm I}(t)} \hspace{0.05cm}.$$
 
Das physikalische MSK–Sendesignal ergibt sich dann zu
 
$$ s(t) = |s_{\rm TP}(t)| \cdot \cos (2 \pi \cdot f_{\rm T} \cdot t + \phi(t)) \hspace{0.05cm}.$$
 
'''Hinweis:''' Die Aufgabe gehört zum [http://en.lntwww.de/Modulationsverfahren/Nichtlineare_Modulationsverfahren Kapitel 4.4]. Gehen Sie davon aus, dass $ϕ(t = 0) = ϕ_0 = 0$ ist.
 
  
===Fragebogen===
+
The graph shows the two equivalent low-pass signals &nbsp;$s_{\rm I}(t)$&nbsp; and &nbsp;$s_{\rm Q}(t)$&nbsp; in the two branches below, which are obtained for the inphase and quadrature branches after recoding &nbsp;$a_k = (-1)^{k+1} \cdot a_{k-1} \cdot q_k $&nbsp;from the source signal &nbsp;$q(t)$&nbsp; sketched above.&nbsp; Considered here is the MSK fundamental pulse,
 +
:$$ g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos \big ({\pi \hspace{0.05cm} t}/({2 \hspace{0.05cm} T})\big ) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{for}} \\{\rm{for}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$
 +
This is normalized to &nbsp;$1$&nbsp;, as are the signals &nbsp;$s_{\rm I}(t)$&nbsp; and &nbsp;$s_{\rm Q}(t)$&nbsp;.
 +
 
 +
In keeping with the chapter &nbsp;[[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function|Equivalent Low-Pass Signal and its Spectral Function]]&nbsp;in the book "Signal Representation", the equivalent low-pass signal is:
 +
:$$ s_{\rm TP}(t) = s_{\rm I}(t) + {\rm j} \cdot s_{\rm Q}(t) = |s_{\rm TP}(t)| \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}\phi(t)}\hspace{0.05cm},$$
 +
*with magnitude
 +
:$$|s_{\rm TP}(t)| = \sqrt{s_{\rm I}^2(t) + s_{\rm Q}^2(t)} $$
 +
*and phase
 +
:$$ \phi(t) = {\rm arc} \hspace{0.15cm}s_{\rm TP}(t) = {\rm arctan}\hspace{0.1cm} \frac{s_{\rm Q}(t)}{s_{\rm I}(t)} \hspace{0.05cm}.$$
 +
The physical MSK transmitted signal is then given by
 +
:$$ s(t) = |s_{\rm TP}(t)| \cdot \cos (2 \pi \cdot f_{\rm T} \cdot t + \phi(t)) \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Nonlinear_Digital_Modulation|Nonlinear Digital Modulation]].
 +
*Particular reference is made to the section&nbsp; [[Modulation_Methods/Nonlinear_Digital_Modulation#Realizing_MSK_as_Offset.E2.80.93QPSK|Realizing MSK as Offset–QPSK]].
 +
 +
*Assume &nbsp;$ϕ(t = 0) = ϕ_0 = 0$&nbsp;.
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen gelten für die Hüllkurve $|s_{TP}(t)|$?
+
{Which statements are true for the envelope curve &nbsp;$|s_{\rm TP}(t)|$&nbsp; of MSK?
 
|type="[]"}
 
|type="[]"}
- Die Hüllkurve schwankt cosinusförmig.
+
- The envelope curve is a cosine oscillation.
+ Die Hüllkurve ist konstant.
+
+ The envelope curve is constant.
+ Die Hüllkurve ist unabhängig von der gesendeten Folge.
+
+ The envelope curve is independent of the transmitted sequence.
  
{Es gelte $T = 1 μs$. Berechnen Sie den Phasenverlauf im Intervall 0 ≤ t ≤ T. Welche Phasenwerte ergeben sich bei t = T/2 und t = T?
+
{Let &nbsp;$T = 1 \ \rm &micro;s$.&nbsp; Calculate the phase response in the interval &nbsp;$0 ≤ t ≤ T$.  
 +
<br>What are the phase values for &nbsp;$t = T/2$&nbsp; and &nbsp;$t = T$?
 
|type="{}"}
 
|type="{}"}
$ϕ(t = T/2)$ = { 45 3%  } $Grad$  
+
$ϕ(t = T/2)\ = \ $ { 45 3%  } $\ \rm degrees$  
$ϕ(t = T)$ = { 90 3% } $Grad$
+
$ϕ(t = T) \hspace{0.63cm}  = \ ${ 90 3% } $\ \rm degrees$
  
{Bestimmen Sie die Phasenwerte bei t = 2T, t = 3T und t = 4T.
+
{Determine the phase values at &nbsp;$t = 2T$, &nbsp;$t = 3T$ &nbsp;and&nbsp; $t = 4T$.
 
|type="{}"}
 
|type="{}"}
$ϕ(t = 2T)$ = { 0 3% } $Grad$
+
$ϕ(t = 2T) \ = \ $ { 0. } $\ \rm degrees$
$ϕ(t = 3T)$ = { -90 3% } $Grad$
+
$ϕ(t = 3T) \ = \ $ { -92.7--87.3 } $\ \rm degrees$
$ϕ(t = 4T)$ = { -180 3% } $Grad$
+
$ϕ(t = 4T) \ = \ $ { -185.4--174.6 } $\ \rm degrees$
  
{Skizzieren und interpretieren Sie den Phasenverlauf $ϕ(t)$ im Bereich von 0 bis 8T. Welche Phasenwerte ergeben sich zu den folgenden Zeiten?
+
{Sketch and interpret the phase response &nbsp;$ϕ(t)$&nbsp; in the range from &nbsp;$0$ &nbsp;to&nbsp; $8T$. <br>What are the phase values at the following times?
 
|type="{}"}
 
|type="{}"}
$ϕ(5T)$ = { -90 3% } $Grad$
+
$ϕ(t = 5T) \ = \ $ { -92.7--87.3 } $\ \rm degrees$
$ϕ(6T)$ = { 0 3% } $Grad$
+
$ϕ(t = 6T) \ = \ $ { 0. } $\ \rm degrees$
$ϕ(7T)$ = { -90 3% } $Grad$
+
$ϕ(t = 7T) \ = \ $ { -92.7--87.3 } $\ \rm degrees$
$ϕ(8T)$ = { 3% } $Grad$
+
$ϕ(t = 8T) \ = \ $ { 0. } $\ \rm degrees$
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Aus der oberen Skizze kann man $T_B = 1 μs$ ablesen.
+
'''(1)'''&nbsp; <u>Answers 2 and 3</u> are correct:
 +
*For example, in the range &nbsp; $0 ≤ t ≤ T$, considering that &nbsp; $a_0^2 = a_1^2 = 1$&nbsp;:
 +
:$$ |s_{\rm TP}(t)| = \sqrt{a_0^2 \cdot \cos^2 (\frac{\pi \cdot t}{2 \cdot T}) + a_1^2 \cdot \sin^2 (\frac{\pi \cdot t}{2 \cdot T})} = 1 \hspace{0.05cm}.$$
 +
*Thus, statement 2 is correct, while statement 1 is false.
 +
*This result holds for any pair of values&nbsp; $a_0 ∈ \{+1, \ –1\}$&nbsp; and&nbsp; $a_1 ∈ \{+1, \ –1\}$.
 +
*From this, it can be further concluded that the envelope is independent of the transmitted sequence.
 +
 
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; With the given equation, it holds that:
 +
:$$\phi(t) = {\rm arctan}\hspace{0.1cm} \frac{s_{\rm Q}(t)}{s_{\rm I}(t)} = {\rm arctan}\hspace{0.1cm} \frac{a_1 \cdot \sin (\frac{\pi \cdot t}{2 \cdot T})}{a_0 \cdot \cos (\frac{\pi \cdot t}{2 \cdot T})}= {\rm arctan}\hspace{0.1cm}\left [ \frac{a_1}{a_0}\cdot \tan \hspace{0.1cm}(\frac{\pi \cdot t}{2 \cdot T})\right ] \hspace{0.05cm}.$$
 +
*The quotient&nbsp; $a_1/a_0$&nbsp; is always&nbsp; $+1$&nbsp; or&nbsp; $-1$.&nbsp; Thus, this quotient is preferable and we get:
 +
:$$\phi(t) =  \frac{a_1}{a_0}\cdot {\rm arctan}\hspace{0.1cm}\left [
 +
  \tan \hspace{0.1cm}(\frac{\pi  \cdot t}{2  \cdot T})\right ]=  \frac{a_1}{a_0}\cdot \frac{\pi  \cdot t}{2  \cdot T}
 +
\hspace{0.05cm}.$$
 +
*The initial phase&nbsp; $ϕ_0 = 0$&nbsp; can rule out ambiguities.&nbsp; In particular, because&nbsp; $a_0 = a_1 = +1$:
 +
:$$\phi(t = T/2 = 0.5\,{\rm &micro; s}) =  {\pi}/{4}\hspace{0.15cm}\underline { = +45^\circ},\hspace{0.2cm}\phi(t = T= 1\,{\rm &micro; s}) =  {\pi}/{2}\hspace{0.15cm}\underline {= +90^\circ}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp;  The easiest way to solve this problem is to use the unit circle:
 +
:$$ {\rm Re} = s_{\rm I}(2T) = +1, \hspace{0.2cm} {\rm Im} = s_{\rm Q}(2T) = 0 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}\phi(t = 2T= 2\,{\rm &micro; s}) \hspace{0.15cm}\underline {= 0^\circ},$$
 +
:$$ {\rm Re} = s_{\rm I}(3T) = 0, \hspace{0.2cm} {\rm Im} = s_{\rm Q}(3T) = -1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}\phi(t = 3T= 3\,{\rm &micro; s}) \hspace{0.15cm}\underline {= -90^\circ},$$
 +
[[File:P_ID1741__Mod_A_4_13_d.png|right|frame|Source signal and phase response in MSK]]
 +
:$${\rm Re} = s_{\rm I}(4T) = -1, \hspace{0.2cm} {\rm Im} = s_{\rm Q}(4T) = 0 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}\phi(t = 4T= 4\,{\rm &micro; s})= \pm 180^\circ \hspace{0.05cm}.$$
  
'''2.''' Bei QPSK bzw. Offset–QPSK ist aufgrund der Seriell–Parallel–Wandlung die Symboldauer T doppelt so groß wie die Bitdauer:
+
*From the sketch below, we can see that &nbsp; $\phi(t = 4T= 4\,{\rm &micro; s})\hspace{0.15cm}\underline { = - 180^\circ}\hspace{0.05cm}$&nbsp; is correct.
$$ T = 2 \cdot T_{\rm B} \hspace{0.15cm}\underline {= 2\,{\rm \mu s}} \hspace{0.05cm}.$$
 
  
'''3.'''  Entsprechend der aus der Skizze für die ersten Bit erkennbaren Zuordnung gilt:
 
$$ a_{\rm I3} = q_5  \hspace{0.15cm}\underline {= +1},\hspace{0.2cm}a_{\rm Q3} = q_6 \hspace{0.15cm}\underline {= +1},$$
 
$$a_{\rm I4} = q_7 \hspace{0.15cm}\underline { = -1},\hspace{0.2cm}a_{\rm Q4} = q_8 \hspace{0.15cm}\underline {= +1} \hspace{0.05cm}.$$
 
  
'''4.'''  Bei der MSK ist die Symboldauer T gleich der Bitdauer:
 
$$T = T_{\rm B}\hspace{0.15cm}\underline { = 1\,{\rm \mu s}} \hspace{0.05cm}.$$
 
'''5.'''  Entsprechend der angegebenen Umcodiervorschrift gilt mit $a_4 = –1$:
 
$$q_5 = +1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_5 = a_4 \cdot q_5 \hspace{0.15cm}\underline {= -1},$$
 
$$q_6 = +1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_6 = -a_5 \cdot q_6 \hspace{0.15cm}\underline {= +1},$$
 
$$ q_7 = -1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_7 = a_6 \cdot q_7 \hspace{0.15cm}\underline {= -1}, $$
 
$$q_8 = +1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_8 = -a_7 \cdot q_8\hspace{0.15cm}\underline { = +1}\hspace{0.05cm}.$$
 
  
 +
'''(4)'''&nbsp; The graph shows the MSK phase&nbsp; $ϕ(t)$&nbsp; together with the source signal&nbsp; $q(t)$.&nbsp; It can be seen that:
 +
* At symbol&nbsp; $a_\nu =+1$&nbsp;  the phase increases linearly by $90^\circ \  (π/2)$&nbsp; within the symbol duration $T$&nbsp;.
 +
* At symbol&nbsp; $a_\nu =-1$&nbsp; the phase decreases linearly by $90^\circ \  (π/2)$&nbsp; within the symbol duration $T$&nbsp;.
  
 +
*Thus, the remaining phase values are:
 +
:$$\phi(5T) \hspace{0.15cm}\underline { = -90^\circ},\hspace{0.2cm}\phi(t = 6T)  \hspace{0.15cm}\underline {= 0^\circ} \hspace{0.05cm}.$$
 +
:$$ \phi(7T)\hspace{0.15cm}\underline { = -90^\circ},\hspace{0.2cm} \phi(t = 8T) \hspace{0.15cm}\underline {= 0^\circ} \hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Modulationsverfahren|^4.4 Nichtlineare Modulationsverfahren^]]
+
[[Category:Modulation Methods: Exercises|^4.4 Non-linear Digital Modulation^]]

Latest revision as of 12:37, 21 March 2022

Source signal and low-pass signals
in both branches of the MSK

One possible implementation of  Minimum Shift Keying  $\rm (MSK)$  is offered by   $\rm Offset–QPSK$, as shown in the block diagram  in the theory section.

  • For this, a recoding of the source symbols  $q_k ∈ \{+1, –1\}$  into the similarly binary amplitude coefficients  $a_k ∈ \{+1, –1\}$  must first be undertaken.
  • This recoding is discussed in detail in  Exercise 4.14Z .


The graph shows the two equivalent low-pass signals  $s_{\rm I}(t)$  and  $s_{\rm Q}(t)$  in the two branches below, which are obtained for the inphase and quadrature branches after recoding  $a_k = (-1)^{k+1} \cdot a_{k-1} \cdot q_k $ from the source signal  $q(t)$  sketched above.  Considered here is the MSK fundamental pulse,

$$ g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos \big ({\pi \hspace{0.05cm} t}/({2 \hspace{0.05cm} T})\big ) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{for}} \\{\rm{for}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$

This is normalized to  $1$ , as are the signals  $s_{\rm I}(t)$  and  $s_{\rm Q}(t)$ .

In keeping with the chapter  Equivalent Low-Pass Signal and its Spectral Function in the book "Signal Representation", the equivalent low-pass signal is:

$$ s_{\rm TP}(t) = s_{\rm I}(t) + {\rm j} \cdot s_{\rm Q}(t) = |s_{\rm TP}(t)| \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}\phi(t)}\hspace{0.05cm},$$
  • with magnitude
$$|s_{\rm TP}(t)| = \sqrt{s_{\rm I}^2(t) + s_{\rm Q}^2(t)} $$
  • and phase
$$ \phi(t) = {\rm arc} \hspace{0.15cm}s_{\rm TP}(t) = {\rm arctan}\hspace{0.1cm} \frac{s_{\rm Q}(t)}{s_{\rm I}(t)} \hspace{0.05cm}.$$

The physical MSK transmitted signal is then given by

$$ s(t) = |s_{\rm TP}(t)| \cdot \cos (2 \pi \cdot f_{\rm T} \cdot t + \phi(t)) \hspace{0.05cm}.$$





Hints:

  • Assume  $ϕ(t = 0) = ϕ_0 = 0$ .


Questions

1

Which statements are true for the envelope curve  $|s_{\rm TP}(t)|$  of MSK?

The envelope curve is a cosine oscillation.
The envelope curve is constant.
The envelope curve is independent of the transmitted sequence.

2

Let  $T = 1 \ \rm µs$.  Calculate the phase response in the interval  $0 ≤ t ≤ T$.
What are the phase values for  $t = T/2$  and  $t = T$?

$ϕ(t = T/2)\ = \ $

$\ \rm degrees$
$ϕ(t = T) \hspace{0.63cm} = \ $

$\ \rm degrees$

3

Determine the phase values at  $t = 2T$,  $t = 3T$  and  $t = 4T$.

$ϕ(t = 2T) \ = \ $

$\ \rm degrees$
$ϕ(t = 3T) \ = \ $

$\ \rm degrees$
$ϕ(t = 4T) \ = \ $

$\ \rm degrees$

4

Sketch and interpret the phase response  $ϕ(t)$  in the range from  $0$  to  $8T$.
What are the phase values at the following times?

$ϕ(t = 5T) \ = \ $

$\ \rm degrees$
$ϕ(t = 6T) \ = \ $

$\ \rm degrees$
$ϕ(t = 7T) \ = \ $

$\ \rm degrees$
$ϕ(t = 8T) \ = \ $

$\ \rm degrees$


Solution

(1)  Answers 2 and 3 are correct:

  • For example, in the range   $0 ≤ t ≤ T$, considering that   $a_0^2 = a_1^2 = 1$ :
$$ |s_{\rm TP}(t)| = \sqrt{a_0^2 \cdot \cos^2 (\frac{\pi \cdot t}{2 \cdot T}) + a_1^2 \cdot \sin^2 (\frac{\pi \cdot t}{2 \cdot T})} = 1 \hspace{0.05cm}.$$
  • Thus, statement 2 is correct, while statement 1 is false.
  • This result holds for any pair of values  $a_0 ∈ \{+1, \ –1\}$  and  $a_1 ∈ \{+1, \ –1\}$.
  • From this, it can be further concluded that the envelope is independent of the transmitted sequence.



(2)  With the given equation, it holds that:

$$\phi(t) = {\rm arctan}\hspace{0.1cm} \frac{s_{\rm Q}(t)}{s_{\rm I}(t)} = {\rm arctan}\hspace{0.1cm} \frac{a_1 \cdot \sin (\frac{\pi \cdot t}{2 \cdot T})}{a_0 \cdot \cos (\frac{\pi \cdot t}{2 \cdot T})}= {\rm arctan}\hspace{0.1cm}\left [ \frac{a_1}{a_0}\cdot \tan \hspace{0.1cm}(\frac{\pi \cdot t}{2 \cdot T})\right ] \hspace{0.05cm}.$$
  • The quotient  $a_1/a_0$  is always  $+1$  or  $-1$.  Thus, this quotient is preferable and we get:
$$\phi(t) = \frac{a_1}{a_0}\cdot {\rm arctan}\hspace{0.1cm}\left [ \tan \hspace{0.1cm}(\frac{\pi \cdot t}{2 \cdot T})\right ]= \frac{a_1}{a_0}\cdot \frac{\pi \cdot t}{2 \cdot T} \hspace{0.05cm}.$$
  • The initial phase  $ϕ_0 = 0$  can rule out ambiguities.  In particular, because  $a_0 = a_1 = +1$:
$$\phi(t = T/2 = 0.5\,{\rm µ s}) = {\pi}/{4}\hspace{0.15cm}\underline { = +45^\circ},\hspace{0.2cm}\phi(t = T= 1\,{\rm µ s}) = {\pi}/{2}\hspace{0.15cm}\underline {= +90^\circ} \hspace{0.05cm}.$$


(3)  The easiest way to solve this problem is to use the unit circle:

$$ {\rm Re} = s_{\rm I}(2T) = +1, \hspace{0.2cm} {\rm Im} = s_{\rm Q}(2T) = 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi(t = 2T= 2\,{\rm µ s}) \hspace{0.15cm}\underline {= 0^\circ},$$
$$ {\rm Re} = s_{\rm I}(3T) = 0, \hspace{0.2cm} {\rm Im} = s_{\rm Q}(3T) = -1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi(t = 3T= 3\,{\rm µ s}) \hspace{0.15cm}\underline {= -90^\circ},$$
Source signal and phase response in MSK
$${\rm Re} = s_{\rm I}(4T) = -1, \hspace{0.2cm} {\rm Im} = s_{\rm Q}(4T) = 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi(t = 4T= 4\,{\rm µ s})= \pm 180^\circ \hspace{0.05cm}.$$
  • From the sketch below, we can see that   $\phi(t = 4T= 4\,{\rm µ s})\hspace{0.15cm}\underline { = - 180^\circ}\hspace{0.05cm}$  is correct.


(4)  The graph shows the MSK phase  $ϕ(t)$  together with the source signal  $q(t)$.  It can be seen that:

  • At symbol  $a_\nu =+1$  the phase increases linearly by $90^\circ \ (π/2)$  within the symbol duration $T$ .
  • At symbol  $a_\nu =-1$  the phase decreases linearly by $90^\circ \ (π/2)$  within the symbol duration $T$ .
  • Thus, the remaining phase values are:
$$\phi(5T) \hspace{0.15cm}\underline { = -90^\circ},\hspace{0.2cm}\phi(t = 6T) \hspace{0.15cm}\underline {= 0^\circ} \hspace{0.05cm}.$$
$$ \phi(7T)\hspace{0.15cm}\underline { = -90^\circ},\hspace{0.2cm} \phi(t = 8T) \hspace{0.15cm}\underline {= 0^\circ} \hspace{0.05cm}.$$