Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.15Z: MSK Basic Pulse and MSK Spectrum"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modualtionsverfahren/Nichtlineare Modulationsverfahren }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choic…“)
 
 
(36 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modualtionsverfahren/Nichtlineare Modulationsverfahren
+
{{quiz-Header|Buchseite=Modulationsverfahren/Nichtlineare_digitale_Modulation
 
}}
 
}}
  
[[File:|right|]]
+
[[File:P_ID1744__Mod_Z_4_14.png|right|frame|MSK basic pulse and its spectrum]]
 +
The fundamental pulse that is always required to &nbsp;[[Modulation_Methods/Nonlinear_Digital_Modulation#Realizing_MSK_as_Offset.E2.80.93QPSK|realize MSK as Offset–QPSK]] &nbsp; has the form shown in the graph above:
 +
:gMSK(t)={g0cos(π/2t/T)0|t|T,otherwise.
 +
The spectral function &nbsp;G(f) is drawn below, that is, the &nbsp;[[Signal_Representation/Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|Fourier transform]]&nbsp; of &nbsp;g(t).
  
 +
The corresponding equation is to be determined in this task, by considering:
 +
:g(t)=c(t)r(t).
 +
The following abbreviations are used here:
 +
* c(t)&nbsp; is a cosine oscillation with amplitude &nbsp;1&nbsp; and&nbsp; frequency &nbsp;f0 (yet to be determined).
 +
* r(t)&nbsp; is a square wave function with amplitude&nbsp;g0&nbsp; and duration&nbsp;2T.
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Nonlinear_Digital_Modulation|Nonlinear Digital Modulation]].
 +
*Particular reference is made to the page&nbsp; [[Modulation_Methods/Nonlinear_Digital_Modulation#Realizing_MSK_as_Offset.E2.80.93QPSK|Realizing MSK as Offset–QPSK]].
 +
 +
*The result obtained here is also used in &nbsp;[[Aufgaben:Exercise_4.15:_MSK_Compared_with_BPSK_and_QPSK|Exercise 4.15]]&nbsp;.
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{How should one choose the frequency&nbsp;f0&nbsp; of the cosine oscillation &nbsp;c(t)&nbsp; so that  &nbsp;g(t)=c(t)·r(t)&nbsp;?
|type="[]"}
+
|type="{}"}
- Falsch
+
f0 =   { 0.25 3% }  1/T
+ Richtig
 
  
 +
{What is the spectrum &nbsp;R(f)&nbsp; of the rectangular function &nbsp;r(t)?&nbsp; What spectral value occurs when&nbsp;f=0&nbsp;?
 +
|type="{}"}
 +
R(f=0) =   { 2 3%  }  g0T
  
{Input-Box Frage
+
{Calculate the spectrun &nbsp;G(f)&nbsp; of the MSK pulse &nbsp;g(t), particularly the spectral value at &nbsp;f=0.
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$G(f=0) \ = \ $ { 1.273 3% }  g0T
 
 
  
 +
{Summarize the result of question &nbsp; '''(3)'''&nbsp; in one term. At what frequency &nbsp;f1&nbsp; does &nbsp;G(f)&nbsp; have its first zero?
 +
|type="{}"}
 +
f1 =  { 0.75 3% }  1/T
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; The period of the cosine signal must be&nbsp; T0=4T&nbsp;.&nbsp; Thus, the frequency is f0=1/T0=0.25_·1/T.
'''2.'''
+
 
'''3.'''
+
 
'''4.'''
+
'''(2)'''&nbsp; The spectral function of a rectangular pulse of height&nbsp; g0&nbsp; and duration&nbsp;2T&nbsp; is:
'''5.'''
+
:$$R(f) = g_0 \cdot 2 T \cdot {\rm si} ( \pi f \cdot 2T )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}{\rm si} (x) = \sin(x)/x \hspace{0.3cm}
'''6.'''
+
\Rightarrow \hspace{0.3cm}R(f = 0) \hspace{0.15cm}\underline {= 2} \cdot g_0 \cdot T\hspace{0.05cm}.$$
'''7.'''
+
 
 +
 
 +
'''(3)'''&nbsp; When&nbsp; g(t)=c(t)·r(t)&nbsp;, it follows from the convolution theorem that: &nbsp; G(f)=C(f)R(f).
 +
*The spectral function&nbsp; C(f)&nbsp; consists of two  Dirac functions at&nbsp; ±f0, each with weight&nbsp; 1/2.&nbsp; From this follows:
 +
:G(f)=2g0T[1/2δ(ff0)+1/2δ(f+f0)]si(2πfT)=g0T[si(2πT(ff0))+si(2πT(f+f0))].
 +
*Using the result&nbsp; f0=1/(4T)&nbsp; from question&nbsp; '''(1)'''&nbsp;, it further holds that:
 +
:G(f)=g0T[si(2πfTπ/2)+si(2πfT+π/2)]
 +
:G(f=0)=g0T[si(π/2)+si(+π/2)]=2g0Tsi(π/2)=2g0Tsin(π/2)π/2=4/πg0T1.273_g0T.
 +
 
 +
 
 +
'''(4)'''&nbsp; By writing out the&nbsp; si–function, with &nbsp; \sin (α ± π/2) = ± \cos(α), one gets:
 +
:G(f)  =  g_0 \cdot T \cdot \left [ \frac{{\rm sin} ( 2 \pi f T - \pi / 2 )}{2 \pi f T - \pi / 2 } + \frac{{\rm sin} ( 2 \pi f T + \pi / 2 )}{2 \pi f T + \pi / 2 } \right ]=  g_0 \cdot T \cdot \frac {2}{\pi}\cdot\left [ \frac{-{\rm cos} ( 2 \pi f T )}{4 f T - 1 } + \frac{{\rm cos} ( 2 \pi f T )}{4 f T + 1 } \right ]
 +
:\Rightarrow \hspace{0.3cm} G(f)  =  g_0 \cdot T \cdot \frac {2}{\pi}\cdot \frac{(1+4 f T ) \cdot {\rm cos} ( 2 \pi f T )+ (1-4 f T ) \cdot {\rm cos} ( 2 \pi f T )}{1 - (4 f T)^2 } =  \frac {4}{\pi}\cdot g_0 \cdot T \cdot \frac{ {\rm cos} ( 2 \pi f T )}{1 - (4 f T)^2 }\hspace{0.05cm}.
 +
 
 +
*The zeroes of&nbsp; G(f)&nbsp; are exclusively determined by the cosine function in the numerator, and are found at the frequencies&nbsp; f · T = 0.25,\ 0.75,\ 1.25,&nbsp; ...
 +
*However, the first zero at&nbsp; f · T = 0.25&nbsp; is cancelled out by the simultaneously occuring zero in the denominator.&nbsp; Therefore:
 +
:$$f_1 \hspace{0.15cm}\underline {= 0.75} \cdot 1/T \hspace{0.05cm}.$$
 +
 
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Modulationsverfahren|^4.4 Nichtlineare Modulationsverfahren^]]
+
[[Category:Modulation Methods: Exercises|^4.4 Non-linear Digital Modulation^]]

Latest revision as of 11:50, 12 April 2022

MSK basic pulse and its spectrum

The fundamental pulse that is always required to  realize MSK as Offset–QPSK   has the form shown in the graph above:

g_{\rm MSK}(t) = \left\{ \begin{array}{l} g_0 \cdot \cos (\pi/2 \cdot t/T) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} | t | \le T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}

The spectral function  G(f) is drawn below, that is, the  Fourier transform  of  g(t).

The corresponding equation is to be determined in this task, by considering:

g(t) = c(t) \cdot r(t)\hspace{0.05cm}.

The following abbreviations are used here:

  • c(t)  is a cosine oscillation with amplitude  1  and  frequency  f_0 (yet to be determined).
  • r(t)  is a square wave function with amplitude g_0  and duration 2T.





Hints:


Questions

1

How should one choose the frequency f_0  of the cosine oscillation  c(t)  so that  g(t) = c(t) · r(t) ?

f_0 \ = \

\ \cdot 1/T

2

What is the spectrum  R(f)  of the rectangular function  r(t)?  What spectral value occurs when f = 0 ?

R(f=0) \ = \

\ \cdot g_0 \cdot T

3

Calculate the spectrun  G(f)  of the MSK pulse  g(t), particularly the spectral value at  f = 0.

G(f=0) \ = \

\ \cdot g_0 \cdot T

4

Summarize the result of question   (3)  in one term. At what frequency  f_1  does  G(f)  have its first zero?

f_1 \ = \

\ \cdot 1/T


Solution

(1)  The period of the cosine signal must be  T_0 = 4T .  Thus, the frequency is f_0 = 1/T_0\hspace{0.15cm}\underline {= 0.25} · 1/T.


(2)  The spectral function of a rectangular pulse of height  g_0  and duration  2T  is:

R(f) = g_0 \cdot 2 T \cdot {\rm si} ( \pi f \cdot 2T )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}{\rm si} (x) = \sin(x)/x \hspace{0.3cm} \Rightarrow \hspace{0.3cm}R(f = 0) \hspace{0.15cm}\underline {= 2} \cdot g_0 \cdot T\hspace{0.05cm}.


(3)  When  g(t) = c(t) · r(t) , it follows from the convolution theorem that:   G(f) = C(f) \star R(f)\hspace{0.05cm}.

  • The spectral function  C(f)  consists of two Dirac functions at  ± f_0, each with weight  1/2.  From this follows:
G(f) = 2 \cdot g_0 \cdot T \cdot \big [ 1/2 \cdot \delta (f - f_0 ) + 1/2 \cdot \delta (f + f_0 )\big ] \star {\rm si} ( 2 \pi f T )= g_0 \cdot T \cdot \big [ {\rm si} ( 2 \pi T \cdot (f - f_0 ) ) + {\rm si} ( 2 \pi T \cdot (f + f_0 ) ) \big ] \hspace{0.05cm}.
  • Using the result  f_0 = 1/(4T)  from question  (1) , it further holds that:
G(f) = g_0 \cdot T \cdot \big [ {\rm si} ( 2 \pi f T - \pi / 2 ) + {\rm si} ( 2 \pi f T + \pi / 2) \big ]
\Rightarrow \hspace{0.3cm} G(f = 0) = g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} \big [ {\rm si} ( - \pi/2 ) + {\rm si} ( +\pi/2 ) \big ] = 2 \cdot g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} {\rm si} ( \pi/2 ) = 2 \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} \frac {{\rm sin}({\pi}/{2}) } { {\pi}/{2} } ={4}/{\pi} \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{0.15cm}\underline {\approx 1.273} \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T .


(4)  By writing out the  \rm si–function, with   \sin (α ± π/2) = ± \cos(α), one gets:

G(f) = g_0 \cdot T \cdot \left [ \frac{{\rm sin} ( 2 \pi f T - \pi / 2 )}{2 \pi f T - \pi / 2 } + \frac{{\rm sin} ( 2 \pi f T + \pi / 2 )}{2 \pi f T + \pi / 2 } \right ]= g_0 \cdot T \cdot \frac {2}{\pi}\cdot\left [ \frac{-{\rm cos} ( 2 \pi f T )}{4 f T - 1 } + \frac{{\rm cos} ( 2 \pi f T )}{4 f T + 1 } \right ]
\Rightarrow \hspace{0.3cm} G(f) = g_0 \cdot T \cdot \frac {2}{\pi}\cdot \frac{(1+4 f T ) \cdot {\rm cos} ( 2 \pi f T )+ (1-4 f T ) \cdot {\rm cos} ( 2 \pi f T )}{1 - (4 f T)^2 } = \frac {4}{\pi}\cdot g_0 \cdot T \cdot \frac{ {\rm cos} ( 2 \pi f T )}{1 - (4 f T)^2 }\hspace{0.05cm}.
  • The zeroes of  G(f)  are exclusively determined by the cosine function in the numerator, and are found at the frequencies  f · T = 0.25,\ 0.75,\ 1.25,  ...
  • However, the first zero at  f · T = 0.25  is cancelled out by the simultaneously occuring zero in the denominator.  Therefore:
f_1 \hspace{0.15cm}\underline {= 0.75} \cdot 1/T \hspace{0.05cm}.