Difference between revisions of "Aufgaben:Exercise 4.15Z: MSK Basic Pulse and MSK Spectrum"
From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modualtionsverfahren/Nichtlineare Modulationsverfahren }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choic…“) |
|||
(36 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Modulationsverfahren/Nichtlineare_digitale_Modulation |
}} | }} | ||
− | [[File:|right|]] | + | [[File:P_ID1744__Mod_Z_4_14.png|right|frame|MSK basic pulse and its spectrum]] |
+ | The fundamental pulse that is always required to [[Modulation_Methods/Nonlinear_Digital_Modulation#Realizing_MSK_as_Offset.E2.80.93QPSK|realize MSK as Offset–QPSK]] has the form shown in the graph above: | ||
+ | :gMSK(t)={g0⋅cos(π/2⋅t/T)0|t|≤T,otherwise. | ||
+ | The spectral function G(f) is drawn below, that is, the [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|Fourier transform]] of g(t). | ||
+ | The corresponding equation is to be determined in this task, by considering: | ||
+ | :g(t)=c(t)⋅r(t). | ||
+ | The following abbreviations are used here: | ||
+ | * c(t) is a cosine oscillation with amplitude 1 and frequency f0 (yet to be determined). | ||
+ | * r(t) is a square wave function with amplitude g0 and duration 2T. | ||
− | === | + | |
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ''Hints:'' | ||
+ | *This exercise belongs to the chapter [[Modulation_Methods/Nonlinear_Digital_Modulation|Nonlinear Digital Modulation]]. | ||
+ | *Particular reference is made to the page [[Modulation_Methods/Nonlinear_Digital_Modulation#Realizing_MSK_as_Offset.E2.80.93QPSK|Realizing MSK as Offset–QPSK]]. | ||
+ | |||
+ | *The result obtained here is also used in [[Aufgaben:Exercise_4.15:_MSK_Compared_with_BPSK_and_QPSK|Exercise 4.15]] . | ||
+ | |||
+ | |||
+ | ===Questions=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {How should one choose the frequency f0 of the cosine oscillation c(t) so that g(t)=c(t)·r(t) ? |
− | |type=" | + | |type="{}"} |
− | + | f0 = { 0.25 3% } ⋅1/T | |
− | |||
+ | {What is the spectrum R(f) of the rectangular function r(t)? What spectral value occurs when f=0 ? | ||
+ | |type="{}"} | ||
+ | R(f=0) = { 2 3% } ⋅g0⋅T | ||
− | { | + | {Calculate the spectrun G(f) of the MSK pulse g(t), particularly the spectral value at f=0. |
|type="{}"} | |type="{}"} | ||
− | $\ | + | $G(f=0) \ = \ $ { 1.273 3% } ⋅g0⋅T |
− | |||
+ | {Summarize the result of question '''(3)''' in one term. At what frequency f1 does G(f) have its first zero? | ||
+ | |type="{}"} | ||
+ | f1 = { 0.75 3% } ⋅1/T | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | '''(1)''' The period of the cosine signal must be T0=4T . Thus, the frequency is f0=1/T0=0.25_·1/T. |
− | '''2 | + | |
− | '''3 | + | |
− | ''' | + | '''(2)''' The spectral function of a rectangular pulse of height g0 and duration 2T is: |
− | ''' | + | :$$R(f) = g_0 \cdot 2 T \cdot {\rm si} ( \pi f \cdot 2T )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}{\rm si} (x) = \sin(x)/x \hspace{0.3cm} |
− | + | \Rightarrow \hspace{0.3cm}R(f = 0) \hspace{0.15cm}\underline {= 2} \cdot g_0 \cdot T\hspace{0.05cm}.$$ | |
− | + | ||
+ | |||
+ | '''(3)''' When g(t)=c(t)·r(t) , it follows from the convolution theorem that: G(f)=C(f)⋆R(f). | ||
+ | *The spectral function C(f) consists of two Dirac functions at ±f0, each with weight 1/2. From this follows: | ||
+ | :G(f)=2⋅g0⋅T⋅[1/2⋅δ(f−f0)+1/2⋅δ(f+f0)]⋆si(2πfT)=g0⋅T⋅[si(2πT⋅(f−f0))+si(2πT⋅(f+f0))]. | ||
+ | *Using the result f0=1/(4T) from question '''(1)''' , it further holds that: | ||
+ | :G(f)=g0⋅T⋅[si(2πfT−π/2)+si(2πfT+π/2)] | ||
+ | :⇒G(f=0)=g0⋅T⋅[si(−π/2)+si(+π/2)]=2⋅g0⋅T⋅si(π/2)=2⋅g0⋅T⋅sin(π/2)π/2=4/π⋅g0⋅T≈1.273_⋅g0⋅T. | ||
+ | |||
+ | |||
+ | '''(4)''' By writing out the si–function, with \sin (α ± π/2) = ± \cos(α), one gets: | ||
+ | :G(f) = g_0 \cdot T \cdot \left [ \frac{{\rm sin} ( 2 \pi f T - \pi / 2 )}{2 \pi f T - \pi / 2 } + \frac{{\rm sin} ( 2 \pi f T + \pi / 2 )}{2 \pi f T + \pi / 2 } \right ]= g_0 \cdot T \cdot \frac {2}{\pi}\cdot\left [ \frac{-{\rm cos} ( 2 \pi f T )}{4 f T - 1 } + \frac{{\rm cos} ( 2 \pi f T )}{4 f T + 1 } \right ] | ||
+ | :\Rightarrow \hspace{0.3cm} G(f) = g_0 \cdot T \cdot \frac {2}{\pi}\cdot \frac{(1+4 f T ) \cdot {\rm cos} ( 2 \pi f T )+ (1-4 f T ) \cdot {\rm cos} ( 2 \pi f T )}{1 - (4 f T)^2 } = \frac {4}{\pi}\cdot g_0 \cdot T \cdot \frac{ {\rm cos} ( 2 \pi f T )}{1 - (4 f T)^2 }\hspace{0.05cm}. | ||
+ | |||
+ | *The zeroes of G(f) are exclusively determined by the cosine function in the numerator, and are found at the frequencies f · T = 0.25,\ 0.75,\ 1.25, ... | ||
+ | *However, the first zero at f · T = 0.25 is cancelled out by the simultaneously occuring zero in the denominator. Therefore: | ||
+ | :$$f_1 \hspace{0.15cm}\underline {= 0.75} \cdot 1/T \hspace{0.05cm}.$$ | ||
+ | |||
+ | |||
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | [[Category: | + | [[Category:Modulation Methods: Exercises|^4.4 Non-linear Digital Modulation^]] |
Latest revision as of 11:50, 12 April 2022
The fundamental pulse that is always required to realize MSK as Offset–QPSK has the form shown in the graph above:
- g_{\rm MSK}(t) = \left\{ \begin{array}{l} g_0 \cdot \cos (\pi/2 \cdot t/T) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} | t | \le T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}
The spectral function G(f) is drawn below, that is, the Fourier transform of g(t).
The corresponding equation is to be determined in this task, by considering:
- g(t) = c(t) \cdot r(t)\hspace{0.05cm}.
The following abbreviations are used here:
- c(t) is a cosine oscillation with amplitude 1 and frequency f_0 (yet to be determined).
- r(t) is a square wave function with amplitude g_0 and duration 2T.
Hints:
- This exercise belongs to the chapter Nonlinear Digital Modulation.
- Particular reference is made to the page Realizing MSK as Offset–QPSK.
- The result obtained here is also used in Exercise 4.15 .
Questions
Solution
(1) The period of the cosine signal must be T_0 = 4T . Thus, the frequency is f_0 = 1/T_0\hspace{0.15cm}\underline {= 0.25} · 1/T.
(2) The spectral function of a rectangular pulse of height g_0 and duration 2T is:
- R(f) = g_0 \cdot 2 T \cdot {\rm si} ( \pi f \cdot 2T )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}{\rm si} (x) = \sin(x)/x \hspace{0.3cm} \Rightarrow \hspace{0.3cm}R(f = 0) \hspace{0.15cm}\underline {= 2} \cdot g_0 \cdot T\hspace{0.05cm}.
(3) When g(t) = c(t) · r(t) , it follows from the convolution theorem that: G(f) = C(f) \star R(f)\hspace{0.05cm}.
- The spectral function C(f) consists of two Dirac functions at ± f_0, each with weight 1/2. From this follows:
- G(f) = 2 \cdot g_0 \cdot T \cdot \big [ 1/2 \cdot \delta (f - f_0 ) + 1/2 \cdot \delta (f + f_0 )\big ] \star {\rm si} ( 2 \pi f T )= g_0 \cdot T \cdot \big [ {\rm si} ( 2 \pi T \cdot (f - f_0 ) ) + {\rm si} ( 2 \pi T \cdot (f + f_0 ) ) \big ] \hspace{0.05cm}.
- Using the result f_0 = 1/(4T) from question (1) , it further holds that:
- G(f) = g_0 \cdot T \cdot \big [ {\rm si} ( 2 \pi f T - \pi / 2 ) + {\rm si} ( 2 \pi f T + \pi / 2) \big ]
- \Rightarrow \hspace{0.3cm} G(f = 0) = g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} \big [ {\rm si} ( - \pi/2 ) + {\rm si} ( +\pi/2 ) \big ] = 2 \cdot g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} {\rm si} ( \pi/2 ) = 2 \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} \frac {{\rm sin}({\pi}/{2}) } { {\pi}/{2} } ={4}/{\pi} \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{0.15cm}\underline {\approx 1.273} \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T .
(4) By writing out the \rm si–function, with \sin (α ± π/2) = ± \cos(α), one gets:
- G(f) = g_0 \cdot T \cdot \left [ \frac{{\rm sin} ( 2 \pi f T - \pi / 2 )}{2 \pi f T - \pi / 2 } + \frac{{\rm sin} ( 2 \pi f T + \pi / 2 )}{2 \pi f T + \pi / 2 } \right ]= g_0 \cdot T \cdot \frac {2}{\pi}\cdot\left [ \frac{-{\rm cos} ( 2 \pi f T )}{4 f T - 1 } + \frac{{\rm cos} ( 2 \pi f T )}{4 f T + 1 } \right ]
- \Rightarrow \hspace{0.3cm} G(f) = g_0 \cdot T \cdot \frac {2}{\pi}\cdot \frac{(1+4 f T ) \cdot {\rm cos} ( 2 \pi f T )+ (1-4 f T ) \cdot {\rm cos} ( 2 \pi f T )}{1 - (4 f T)^2 } = \frac {4}{\pi}\cdot g_0 \cdot T \cdot \frac{ {\rm cos} ( 2 \pi f T )}{1 - (4 f T)^2 }\hspace{0.05cm}.
- The zeroes of G(f) are exclusively determined by the cosine function in the numerator, and are found at the frequencies f · T = 0.25,\ 0.75,\ 1.25, ...
- However, the first zero at f · T = 0.25 is cancelled out by the simultaneously occuring zero in the denominator. Therefore:
- f_1 \hspace{0.15cm}\underline {= 0.75} \cdot 1/T \hspace{0.05cm}.