Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 5.8Z: Cyclic Prefix and Guard Interval"

From LNTwww
 
(22 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Realisierung von OFDM-Systemen
+
{{quiz-Header|Buchseite=Modulation_Methods/Implementation_of_OFDM_Systems
 
}}
 
}}
  
[[File:P_ID1664__Z_5_8.png|right|]]
+
[[File:EN_Z_5_8.png|right|frame|OFDM scheme with cyclic prefix]]
Wir gehen in dieser Aufgabe von einem OFDM–System mit N = 8 Trägern und zyklischem Präfix aus. Der Subträgerabstand $f_0$ sei 4 kHz. Die Grafik zeigt das Prinzip des zyklischen Präfixes.
+
In this exercise,  we assume an  OFDM system with  $N = 8$  carriers and cyclic prefix.  Let the subcarrier spacing be  $f_0 = 4 \ \rm kHz  ⇒   basic symbol duration: T=1/f_0$.  The diagram shows the principle of the cyclic prefix.
Die Übertragung erfolgt über einen Zweiwegekanal, wobei beide Pfade verzögert sind. Die Kanalimpulsantwort lautet somit mit $τ_1 = 50 μs$ und $τ_2 = 125 μs$:
+
*Transmission is via a two-way channel,  with both paths delayed.  The channel impulse response is thus with  $τ_1 = \ \rm 50 µs$  and  $τ_2 = 125\ \rm  µs$:
h(t)=h1δ(tτ1)+h2δ(tτ2).
+
:h(t)=h1δ(tτ1)+h2δ(tτ2).
Der Einsatz eines solchen zyklischen Präfixes vermindert allerdings die Bandbreiteneffizienz (Verhältnis von Symbolrate zu Bandbreite) um den Faktor
+
*However,  the use of such a cyclic prefix decreases the bandwidth efficiency  $(ratioofsymbolratetobandwidth)$  by a factor of
β=11+TG/T
+
:β=11+TG/T
und führt auch zu einer Verringerung des Signal&ndash;Rausch&ndash;Verhältnisses um ebenfalls diesen Wert <i>&beta;</i>. Voraussetzung für die Gültigkeit des hier angegebenen SNR&ndash;Verlustes ist allerdings, dass die Impulsantworten <i>g</i><sub>S</sub>(<i>t</i>) und <i>g</i><sub>E</sub>(<i>t</i>) von Sende&ndash; und Empfangsfilter an die Symboldauer <i>T</i> angepasst sind (Matched&ndash;Filter&ndash;Ansatz).
+
:and leads also to a reduction of the signal-to-noise ratio by this value&nbsp; β&nbsp; as well.
 +
*However,&nbsp; a prerequisite for the validity of the SNR loss given here is that the impulse responses &nbsp;$g_{\rm S}(t)&nbsp; and &nbsp;g_{\rm E}(t)$&nbsp; of the transmit filter&nbsp; (German:&nbsp; "Sendefilter" &nbsp; &rArr;  &nbsp; subscript:&nbsp; "S")&nbsp; and the receive filter&nbsp; (German:&nbsp; "Empfangsfilter" &nbsp; &rArr;  &nbsp; subscript:&nbsp; "E")&nbsp; are matched to the symbol duration &nbsp;$T$&nbsp; (matched&ndash;filter approach$)$.
  
'''Hinweis:''' Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von [http://en.lntwww.de/Modulationsverfahren/Realisierung_von_OFDM-Systemen Kapitel 5.6].
 
  
  
  
  
===Fragebogen===
+
Notes:
 +
*The exercise belongs to the chapter&nbsp; [[Modulation_Methods/Realisierung_von_OFDM-Systemen|Implementation of OFDM Systems]].
 +
*Reference is made in particular to the pages&nbsp;  [[Modulation_Methods/Implementation_of_OFDM_Systems#Cyclic_Prefix|Cyclic Prefix]]&nbsp; and &nbsp;[[Modulation_Methods/Implementation_of_OFDM_Systems#OFDM_system_with_cyclic_prefix|OFDM system with cyclic prefix]].
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Geben Sie die Kernsymboldauer an.
+
{Specify the basic symbol duration &nbsp;T.
 
|type="{}"}
 
|type="{}"}
T = { 250 3% } $μs$
+
$T \ = \ { 250 3% }\ \rm &micro; s$
  
{Wie lang sollte das Guard–Intervall mindestens sein?
+
{What should be the minimum length of the guard interval &nbsp;TG?&nbsp;
 
|type="{}"}
 
|type="{}"}
$T_G$ = { 125 3% } $μs$
+
$T_{\rm G}\ = \ { 125 3% }\ \rm &micro; s$
  
{Bestimmen Sie die resultierende Rahmendauer.
+
{Determine the resulting frame duration &nbsp;TR.
 
|type="{}"}
 
|type="{}"}
$T_R$ = { 375 3% } $μs$
+
$T_{\rm R}\ = \ { 375 3% }\ \rm &micro; s$
  
{Welche Aussagen sind richtig? Durch eine Guardlücke, also das Nullsetzen des OFDM–Signals im Guard–Intervall, können
+
{Which statements are correct?&nbsp; By using a guard gap,&nbsp; i.e. setting the OFDM signal to zero in the guard interval,&nbsp; it is possible to
 
|type="[]"}
 
|type="[]"}
- Intercarrier–Interferenzen (ICI) unterdrückt werden,
+
- suppress intercarrier interference&nbsp; $\rm (ICI)$,&nbsp;
+ Impulsinterferenzen (ISI) unterdrückt werden.
+
+ suppress intersymbol interference&nbsp; $\rm (ISI)$.&nbsp;
  
{Welche Aussagen sind richtig? Durch ein zyklisches Präfix, also durch eine zyklische Erweiterung des OFDM–Signals im Guard–Intervall, können
+
{Which statements are correct?&nbsp; By using a cyclic prefix,&nbsp; i.e. a cyclic extension of the OFDM signal in the guard interval,&nbsp; it is possible to
 
|type="[]"}
 
|type="[]"}
+ Intercarrier–Interferenzen (ICI) unterdrückt werden,
+
+ suppress intercarrier interference&nbsp; $\rm (ICI)$,&nbsp;
+ Impulsinterferenzen (ISI) unterdrückt werden.
+
+ suppress intersymbol interference&nbsp; $\rm (ISI)$.&nbsp;
  
{Nennen Sie die jeweilige Anzahl der Abtastwerte für
+
{State the respective number of samples for the basic symbol &nbsp;(N),&nbsp;  the guard interval &nbsp;(NG)&nbsp; and the entire frame &nbsp;(NR).
 
|type="{}"}
 
|type="{}"}
$\text{das Kernsymbol: N}$ = { 8 3% }  
+
$N \hspace{0.35cm} = \ $ { 8 }  
$\text{das Guard–Intervall: NG}$ = { 4 3% }
+
$N_{\rm G} \ = \ $ { 4 }
$\text{den gesamten Rahmen: $N_{gesamt}$}$ = { 12 3% }
+
$N_{\rm R} \ = \ $ { 12 }
  
{Geben Sie unter der Vorraussetzung, dass lediglich der erste Träger mit dem Trägerkoeffizienten &ndash;1 verwendet wird, die Abtastwerte des Guard&ndash;Intervalls vor der Übertragung über den Kanal an:
+
{Specify the guard interval samples, assuming that only the first carrier  is used with carrier coefficient &nbsp;$-1$.
 
|type="{}"}
 
|type="{}"}
$\text{Re{$d_{-1}$}}$ = { -0.707 3% }
+
$\text{Re}\big[d_{-1}\big] \ = \ $ { -714--0.700 }
$\text{Im{$d_{-1}$}}$ = { 0.707 3% }
+
$\text{Im}\big[d_{-1}\big] \ = \ $ { 0.707 1% }
$\text{Re{$d_{-2}$}}$ = { 0 3% }
+
$\text{Re}\big[d_{-2}\big] \ = \ $ { 0. }
$\text{Im{$d_{-2}$}}$ = { 1 3% }
+
$\text{Im}\big[d_{-2}\big] \ = \ $ { 1 1% }
$\text{Re{$d_{-3}$}}$ = { 1 3% }
+
$\text{Re}\big[d_{-3}\big] \ = \ $ { 0.707 1% }
$\text{Im{$d_{-3}$}}$ = { -0.707 3% }
+
$\text{Im}\big[d_{-3}\big] \ = \ $ { 0.707 1% }
$\text{Re{$d_{-4}$}}$ = { 13% }
+
$\text{Re}\big[d_{-4}\big] \ = \ $ { 1 1% }
$\text{Im{$d_{-4}$}}$ = { 0 3% }
+
$\text{Im}\big[d_{-4}\big] \ = \ $ { 0. }
  
{Welche Bandbreiteneffizienz ergibt sich inklusive des Guard–Intervalls?
+
{What is the bandwidth efficiency &nbsp;β&nbsp; including the guard interval?
 
|type="{}"}
 
|type="{}"}
β = { 0.667 3% }  
+
$\beta\ = \ $ { 0.667 3% }  
  
{Wie groß ist der damit verbundene SNR–Verlust unter der Voraussetzung des Matched–Filter–Ansatzes?
+
{What is the associated SNR loss &nbsp;10 · \lg \ Δρ&nbsp; (in dB) assuming the matched filter approach?
 
|type="{}"}
 
|type="{}"}
$10 · lg Δ_ρ$ = { 1.76 3% } dB  
+
$10 · \lg \ Δρ \ = \ { 1.76 3% } \ \rm dB$  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Die Kernsymboldauer ist gleich dem Kehrwert des Trägerabstands:
+
'''(1)'''&nbsp;  The basic symbol duration is equal to the reciprocal of the carrier spacing: &nbsp;
$$ T = \frac{1}{f_0} \hspace{0.15cm}\underline {= 250\,\,{\rm \mu s}}.$$
+
:$$ T = {1}/{f_0} \hspace{0.15cm}\underline {= 250\,\,{\rm &micro; s}}.$$
 +
 
 +
 
 +
'''(2)'''&nbsp;  To avoid interference,&nbsp; the duration&nbsp; T_{\rm G}&nbsp;  of the guard interval should be at least as long as the maximum channel delay&nbsp; (here: τ_2 = 125\ \rm  &micro; s):
 +
: T_{\rm G} \hspace{0.15cm}\underline {= 125\,\,{\rm &micro; s}}.
 +
 
 +
 
 +
'''(3)'''&nbsp;  Thus,&nbsp; for the frame duration: 
 +
:$$ T_{\rm{R}} = T + T_{\rm G}\hspace{0.15cm}\underline {= 375\,\,{\rm &micro; s}}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp;  <u>Solution 2</u>&nbsp; is correct:
 +
*Only intersymbol interference&nbsp; \rm (ISI)&nbsp; can be avoided by a guard gap of suitable length.
 +
*The gap duration&nbsp; T_{\rm G}&nbsp; must be chosen so large that the current symbol is not affected by the predecessor symbol.
 +
*In the present example,&nbsp; it must be &nbsp; T_{\rm G}≥ 125\ \rm  &micro; s.&nbsp;
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp;    <u>Both solutions</u>&nbsp; are applicable:
 +
*A cyclic prefix of suitable length also suppresses intercarrier interference&nbsp; \rm (ICI).&nbsp; 
 +
*This ensures that a complete and undistorted oscillation occurs for all carriers within the basic symbol duration&nbsp; T,&nbsp; even if other carriers are active.
  
'''2.''' Um Interferenzen zu vermeiden, ist die Dauer des Guard–Intervalls mindestens so groß zu wählen wie die maximale Verzögerung (hier: τ_2 = 125 μs) des Kanals ⇒ T_G = 125 μs.
 
  
'''3.'''  Für die Rahmendauer gilt somit:
 
T_{\rm{R}} = T + T_{\rm{G}}\hspace{0.15cm}\underline {= 375\,\,{\rm \mu s}}.
 
  
'''4.''' Durch eine Guardlücke geeigneter Länge können ausschließlich Impulsinterferenzen (ISI) vermieden werden. Die Lückendauer $T_G$ muss dabei so groß gewählt werden, dass das aktuelle Symbol durch das Vorgängersymbol nicht beeinträchtigt wird. Im vorliegenden Beispiel muss $T_G ≥ 125 μs$ sein. Richtig ist der Lösungsvorschlag 2.
+
'''(6)'''&nbsp;  The number of samples within the basic symbol is equal to the number of carriers &nbsp; &rArr; &nbsp; \underline{N=8}.  
 +
*Because of&nbsp; $T_{\rm G}= T/2$&nbsp;, &nbsp; $N_{\rm G}\hspace{0.15cm}\underline {= 4}$&nbsp; and thus&nbsp; $N_{\rm R} = N + N_{\rm G}\hspace{0.15cm}\underline {= 12}$&nbsp; holds.
  
'''5.''' Durch ein zyklisches Präfix geeigneter Länge werden zusätzlich auch Intercarrier–Interferenzen (ICI) unterdrückt. Es wird damit sichergestellt, dass für alle Träger innerhalb der Kernsymboldauer T eine vollständige und unverfälschte Schwingung auftritt, auch wenn andere Träger aktiv sind. Das heißt: Beide Lösungsvorschläge sind zutreffend.
 
  
'''6.''' Die Anzahl der Abtastwerte innerhalb des Kernsymbols ist gleich der Anzahl N = 8 der Träger. Wegen T_G = T/2 gilt N_G = 4 und damit N_{gesamt} = 12.
 
  
'''7.''' Die Belegung des ersten Trägers (Frequenz f_0) mit dem Koeffizienten –1 führt zu den Abtastwerten
+
'''(7)'''&nbsp;  Assigning the coefficient&nbsp; "-1"&nbsp; to the first carrier&nbsp; $($frequency $f_0)$&nbsp; results in the samples
 +
:d_0 = -1, \hspace{0.3cm}d_1 = -0.707 - {\rm j} \cdot 0.707, \hspace{0.3cm}d_2 =  -{\rm j} ,\hspace{0.3cm} d_3 = +0.707 -{\rm j} \cdot 0.707,
 +
:$$d_4 = +1, \hspace{0.3cm}d_5 = +0.707 + {\rm j} \cdot 0.707, \hspace{0.3cm}d_6 =  +{\rm j} ,\hspace{0.3cm} d_7 = -0.707 +{\rm j} \cdot 0.707. $$
  
<i>d</i><sub>0</sub> = &ndash;1, <i>d</i><sub>1</sub> = &ndash;0.707 &ndash; j &middot; 0.707, <i>d</i><sub>2</sub> = &ndash;j, <i>d</i><sub>3</sub> = + 0.707 &ndash; j &middot; 0.707,
+
*The cyclic expansion provides the additional samples&nbsp; $d_{-1} = d_7$, &nbsp; $d_{-2} = d_6$, &nbsp; d_{-3} = d_5&nbsp; and&nbsp; d_{-4} = d_4:
 +
:$$\underline{{\rm Re}[d_{-1}] = -0.707,\hspace{0.3cm}{\rm Im}[d_{-1}] = +0.707,\hspace{0.3cm}{\rm Re}[d_{-2}] = 0,\hspace{0.3cm} {\rm Im}[d_{-2}] = 1},$$
 +
:$$\underline{{\rm Re}[d_{-3}] = +0.707,\hspace{0.3cm}{\rm Im}[d_{-3}] = +0.707,\hspace{0.3cm}{\rm Re}[d_{-4}] = 1,\hspace{0.3cm} {\rm Im}\{d_{-4}] = 0}.$$
  
<i>d</i><sub>4</sub> = + 1, <i>d</i><sub>5</sub> = +0.707 + j &middot; 0.707, <i>d</i><sub>6</sub> = j, <i>d</i><sub>7</sub> = &ndash;0.707 + j &middot; 0.707.
 
  
Die zyklische Erweiterung liefert die zusätzlichen Abtastwerte <i>d</i><sub>&ndash;1</sub> = <i>d</i><sub>7</sub>, <i>d</i><sub>&ndash;2</sub> = <i>d</i><sub>6</sub>, <i>d</i><sub>&ndash;3</sub> = <i>d</i><sub>5</sub> und <i>d</i><sub>&ndash;4</sub> = <i>d</i><sub>4</sub>:
+
'''(8)'''&nbsp;   According to the given equation,&nbsp; the bandwidth efficiency is equal to
 +
:$$\beta = \frac{1}{1 + {T_{\rm{G}}}/{T}} = \frac{1}{1 + ({125\,\,{\rm \mu s}})/({250\,\,{\rm \mu s}})} \hspace{0.15cm}\underline {= 0.667}.$$
  
\underline{{\rm Re}\{d_{-1}\} = -0.707,\hspace{0.3cm}{\rm Im}\{d_{-1}\} = +0.707,\hspace{0.3cm}{\rm Re}\{d_{-2}\} = 0,\hspace{0.3cm} {\rm Im}\{d_{-2}\} = 1},
 
\underline{{\rm Re}\{d_{-3}\} = +0.707,\hspace{0.3cm}{\rm Im}\{d_{-3}\} = +0.707,\hspace{0.3cm}{\rm Re}\{d_{-4}\} = 1,\hspace{0.3cm} {\rm Im}\{d_{-4}\} = 0}.
 
  
'''8.'''  Entsprechend der angegebenen Gleichung ist die Bandbreiteneffizienz gleich
+
'''(9)'''&nbsp;  The bandwidth efficiency&nbsp; $β&nbsp; = 2/3$&nbsp; results in an SNR loss of
$$\beta = \frac{1}{1 + {T_{\rm{G}}}/{T}} = \frac{1}{1 + ({125\,\,{\rm \mu s}})/({250\,\,{\rm \mu s}})} \hspace{0.15cm}\underline {= 0.667}.$$
+
:10 \cdot {\rm{lg}}\hspace{0.04cm}\Delta \rho = 10 \cdot {\rm{lg}}\hspace{0.04cm}(\beta) \hspace{0.15cm}\underline {\approx1.76\,\,{\rm{dB}}}.
'''9.''' Die Bandbreiteneffizienz β = 2/3 führt zu einem SNR–Verlust von
 
10 \cdot {\rm{lg}}\hspace{0.04cm}\Delta \rho = 10 \cdot {\rm{lg}}\hspace{0.04cm}(\beta) \hspace{0.15cm}\underline {\approx1.76\,\,{\rm{dB}}}.
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 103: Line 126:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^5.6 Realisierung von OFDM-Systemen^]]
+
[[Category:Modulation Methods: Exercises|^5.6 Realization of OFDM Systems^]]

Latest revision as of 16:52, 31 January 2022

OFDM scheme with cyclic prefix

In this exercise,  we assume an  \rm OFDM system with  N = 8  carriers and cyclic prefix.  Let the subcarrier spacing be  f_0 = 4 \ \rm kHz   ⇒   basic symbol duration:  T=1/f_0.  The diagram shows the principle of the cyclic prefix.

  • Transmission is via a two-way channel,  with both paths delayed.  The channel impulse response is thus with  τ_1 = \ \rm 50 µs  and  τ_2 = 125\ \rm µs:
h(t) = h_1 \cdot \delta (t- \tau_1) + h_2 \cdot \delta (t- \tau_2).
  • However,  the use of such a cyclic prefix decreases the bandwidth efficiency  (ratio of symbol rate to bandwidth)  by a factor of
\beta = \frac{1}{{1 + T_{\rm{G}} /T}}
and leads also to a reduction of the signal-to-noise ratio by this value  \beta  as well.
  • However,  a prerequisite for the validity of the SNR loss given here is that the impulse responses  g_{\rm S}(t)  and  g_{\rm E}(t)  of the transmit filter  (German:  "Sendefilter"   ⇒   subscript:  "S")  and the receive filter  (German:  "Empfangsfilter"   ⇒   subscript:  "E")  are matched to the symbol duration  T  (matched–filter approach).



Notes:



Questions

1

Specify the basic symbol duration  T.

T \ = \

\ \rm µ s

2

What should be the minimum length of the guard interval  T_{\rm G}

T_{\rm G}\ = \

\ \rm µ s

3

Determine the resulting frame duration  T_{\rm R}.

T_{\rm R}\ = \

\ \rm µ s

4

Which statements are correct?  By using a guard gap,  i.e. setting the OFDM signal to zero in the guard interval,  it is possible to

suppress intercarrier interference  \rm (ICI)
suppress intersymbol interference  \rm (ISI)

5

Which statements are correct?  By using a cyclic prefix,  i.e. a cyclic extension of the OFDM signal in the guard interval,  it is possible to

suppress intercarrier interference  \rm (ICI)
suppress intersymbol interference  \rm (ISI)

6

State the respective number of samples for the basic symbol  (N),  the guard interval  (N_{\rm G})  and the entire frame  (N_{\rm R}).

N \hspace{0.35cm} = \

N_{\rm G} \ = \

N_{\rm R} \ = \

7

Specify the guard interval samples, assuming that only the first carrier is used with carrier coefficient  -1.

\text{Re}\big[d_{-1}\big] \ = \

\text{Im}\big[d_{-1}\big] \ = \

\text{Re}\big[d_{-2}\big] \ = \

\text{Im}\big[d_{-2}\big] \ = \

\text{Re}\big[d_{-3}\big] \ = \

\text{Im}\big[d_{-3}\big] \ = \

\text{Re}\big[d_{-4}\big] \ = \

\text{Im}\big[d_{-4}\big] \ = \

8

What is the bandwidth efficiency  \beta  including the guard interval?

\beta\ = \

9

What is the associated SNR loss  10 · \lg \ Δρ  (in dB) assuming the matched filter approach?

10 · \lg \ Δρ \ = \

\ \rm dB


Solution

(1)  The basic symbol duration is equal to the reciprocal of the carrier spacing:  

T = {1}/{f_0} \hspace{0.15cm}\underline {= 250\,\,{\rm µ s}}.


(2)  To avoid interference,  the duration  T_{\rm G}  of the guard interval should be at least as long as the maximum channel delay  (here: τ_2 = 125\ \rm µ s):

T_{\rm G} \hspace{0.15cm}\underline {= 125\,\,{\rm µ s}}.


(3)  Thus,  for the frame duration:

T_{\rm{R}} = T + T_{\rm G}\hspace{0.15cm}\underline {= 375\,\,{\rm µ s}}.


(4)  Solution 2  is correct:

  • Only intersymbol interference  \rm (ISI)  can be avoided by a guard gap of suitable length.
  • The gap duration  T_{\rm G}  must be chosen so large that the current symbol is not affected by the predecessor symbol.
  • In the present example,  it must be   T_{\rm G}≥ 125\ \rm µ s


(5)  Both solutions  are applicable:

  • A cyclic prefix of suitable length also suppresses intercarrier interference  \rm (ICI)
  • This ensures that a complete and undistorted oscillation occurs for all carriers within the basic symbol duration  T,  even if other carriers are active.


(6)  The number of samples within the basic symbol is equal to the number of carriers   ⇒   \underline{N=8}.

  • Because of  T_{\rm G}= T/2 ,   N_{\rm G}\hspace{0.15cm}\underline {= 4}  and thus  N_{\rm R} = N + N_{\rm G}\hspace{0.15cm}\underline {= 12}  holds.


(7)  Assigning the coefficient  "-1"  to the first carrier  (frequency f_0)  results in the samples

d_0 = -1, \hspace{0.3cm}d_1 = -0.707 - {\rm j} \cdot 0.707, \hspace{0.3cm}d_2 = -{\rm j} ,\hspace{0.3cm} d_3 = +0.707 -{\rm j} \cdot 0.707,
d_4 = +1, \hspace{0.3cm}d_5 = +0.707 + {\rm j} \cdot 0.707, \hspace{0.3cm}d_6 = +{\rm j} ,\hspace{0.3cm} d_7 = -0.707 +{\rm j} \cdot 0.707.
  • The cyclic expansion provides the additional samples  d_{-1} = d_7,   d_{-2} = d_6,   d_{-3} = d_5  and  d_{-4} = d_4:
\underline{{\rm Re}[d_{-1}] = -0.707,\hspace{0.3cm}{\rm Im}[d_{-1}] = +0.707,\hspace{0.3cm}{\rm Re}[d_{-2}] = 0,\hspace{0.3cm} {\rm Im}[d_{-2}] = 1},
\underline{{\rm Re}[d_{-3}] = +0.707,\hspace{0.3cm}{\rm Im}[d_{-3}] = +0.707,\hspace{0.3cm}{\rm Re}[d_{-4}] = 1,\hspace{0.3cm} {\rm Im}\{d_{-4}] = 0}.


(8)  According to the given equation,  the bandwidth efficiency is equal to

\beta = \frac{1}{1 + {T_{\rm{G}}}/{T}} = \frac{1}{1 + ({125\,\,{\rm \mu s}})/({250\,\,{\rm \mu s}})} \hspace{0.15cm}\underline {= 0.667}.


(9)  The bandwidth efficiency  β  = 2/3  results in an SNR loss of

10 \cdot {\rm{lg}}\hspace{0.04cm}\Delta \rho = 10 \cdot {\rm{lg}}\hspace{0.04cm}(\beta) \hspace{0.15cm}\underline {\approx1.76\,\,{\rm{dB}}}.