Difference between revisions of "Aufgaben:Exercise 1.3: Measured Step Response"

From LNTwww
 
(48 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Systembeschreibung im Zeitbereich}}
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/System_Description_in_Time_Domain}}
==A1.3 Gemessene Sprungantwort==
 
  
[[File:P_ID817__LZI_A_1_3.png |right|Gemessene Sprungantwort (Aufgabe A1.3)]]
+
[[File:P_ID817__LZI_A_1_3.png |right|frame|Measured step response]]
An den Eingang eines linearen zeitinvarianten (LZI–)Übertragungssystems mit Frequenzgang $H(f)$ und Impulsantwort $h(t)$ wird ein sprungförmiges Signal angelegt (blaue Kurve):
+
A step-shaped signal $$x_1(t) = 4\hspace{0.05cm} {\rm V} \cdot \gamma(t)$$  (blue curve in the upper sketch)  is applied to the input of a linear time-invariant (LTI) transmission system
$$x_1(t) = 4\,{\rm V} \cdot \gamma(t).$$
+
*with the frequency response   $H(f)$  
Das gemessene Ausgangssignal $y_1(t)$ hat dann den in der unteren Grafik dargestellten Verlauf. Mit $T =$ 2 ms kann dieses Signal im Bereich von 0 bis $T$ wie folgt beschrieben werden:
+
*and the impulse response  $h(t)$.  
$$y_1(t) = 2\,{\rm V} \cdot\left[ {t}/{T} - 0.5 \cdot ({t}/{T})^2\right].$$
 
  
Ab $t = T =$ 2 ms ist $y_1(t)$ konstant gleich 1 V.  
+
 +
The measured output signal  $y_1(t)$  then has the curve shown below.
 +
*With  $T = 2 \,{\rm ms}$  this signal can be described in the range from  $0$  to  $T$  as follows:
 +
:$$y_1(t) = 2 \hspace{0.05cm}{\rm V} \cdot\big[ {t}/{T} - 0.5 \cdot ({t}/{T})^2\big].$$
  
In der letzten Teilaufgabe (e) wird nach dem Ausgangssignal $y_2(t)$ gefragt, wenn am Eingang ein symmetrischer Rechteckimpuls $x_2(t)$ der Dauer $T =$ 2 ms anliegt (siehe roter Kurvenzug in der oberen Grafik).  
+
*From  $t = T $  on   $y_1(t)$  is constantly equal  $1 \,{\rm V}$.  
  
'''Hinweis:''' Diese Aufgabe bezieht sich auf den Theorieteil von [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Zeitbereich|Kapitel 1.2]]. 
 
Für den Rechteckimpuls $x_2(t)$ kann mit $A =$ 2 V auch geschrieben werden:
 
$$x_2(t) = A \cdot \left[\gamma(t + {T}/{2}) - \gamma(t - {T}/{2})\right].$$
 
Der Frequenzgang $H(f)$ des hier betrachteten LZI–Systems kann dem Angabenblatt zu [[Aufgaben:3.8_Dreimal_Faltung|Aufgabe A3.8]] im Buch „Signaldarstellung” entnommen werden. Allerdings sind die Abszissen– und Ordinatenparameter entsprechend anzupassen. Zur Lösung dieser Aufgabe A1.3 wird $H(f)$ jedoch nicht explizit benötigt.
 
  
 +
In the last subtask  '''(5)'''  the output signal  $y_2(t)$  is to be determined if a symmetrical rectangular pulse  $x_2(t)$  of duration  $T = 2 \hspace{0.15cm} {\rm ms}$   is applied to the input (see red curve in the upper graph).
 +
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Please note:''
 +
*The exercise belongs to the chapter  [[Linear_and_Time_Invariant_Systems/System_Description_in_Time_Domain|System Description in Time Domain]].
 +
*The rectangular pulse  $x_2(t)$  can also be written as follows with   $A = 2 \hspace{0.05cm} \text{V}$ :
 +
:$$x_2(t) = A \cdot \big [\gamma(t + {T}/{2}) - \gamma(t - {T}/{2})\big ].$$
 +
*The frequency response  $H(f)$  of the LTI system considered here can be taken from the exercise description of  [[Aufgaben:Exercise_3.8:_Triple_Convolution%3F|Exercise 3.8]]  in the book  "Signal Representation”.  However, the abscissa and ordinate parameters have to be adjusted accordingly.
 +
*For the solution of the problem on hand, though,  $H(f)$  is not explicitly required.
 +
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen sind anhand der Grafik über das LZI–System möglich?
+
{What statements can be made about the LTI system based on the graph?
 
|type="[]"}
 
|type="[]"}
- $H(f)$ beschreibt ein akausales System.  
+
- $H(f)$&nbsp; describes an acausal system.  
+ $H(f)$ beschreibt ein kausales System.
+
+ $H(f)$&nbsp; describes a causal system.
+ $H(f)$ beschreibt einen Tiefpass.  
+
+ $H(f)$&nbsp; describes a low-pass filter.  
- $H(f)$ beschreibt einen Hochpass.  
+
- $H(f)$&nbsp; describes a high-pass filter.  
  
  
{Wie groß ist der Gleichsignalübertragungsfaktor?  
+
{What is the direct signal transmission factor?  
 
|type="{}"}
 
|type="{}"}
$H(f = 0) =$ { 0.25 }
+
$H(f = 0) \ =\ $ { 0.25 }
  
  
{Wie lautet die Sprungantwort $σ(t)$? Welcher Wert tritt bei $t = T/2$ auf?  
+
{What is the step response&nbsp; $σ(t)$?&nbsp; What is its value at&nbsp; $t = T/2$&nbsp;?  
 
|type="{}"}
 
|type="{}"}
$σ(t = \rm 1 \: ms) =$ { 0.1875 5%  }
+
$σ(t = \rm 1 \: ms) \ = \ $ { 0.1875 5%  }
  
  
{Berechnen Sie die Impulsantwort $h(t)$ des Systems. Welche Werte besitzt diese zu den Zeitpunkten $t = T/2$ und $t = T$?  
+
{Compute the impulse response&nbsp; $h(t)$&nbsp; of the system.&nbsp; What values does it have at times&nbsp; $t = T/2$&nbsp; and&nbsp; $t = T$?  
 
|type="{}"}
 
|type="{}"}
$h(t = \rm 1 \: ms) =$ { 125 } 1/s
+
$h(t = \rm 1 \: ms) \ =\ $ { 125 } &nbsp;$\text {1/s}$
$h(t = \rm 2 \: ms) =$ { 0 } 1/s
+
$h(t = \rm 2 \: ms) \ =\ ${ 0. } &nbsp;$\text {1/s}$
  
 
+
{The rectangular pulse&nbsp; $x_2(t)$&nbsp; is applied to the input.&nbsp; What is the output signal&nbsp; $y_2(t)$&nbsp; at the times&nbsp; $t_1 = -1  \text { ms}$,&nbsp; $t_2 = 0$,&nbsp; $t_3 = +1   \text { ms}$ &nbsp;and&nbsp; $t_4 = +2 \text { ms}$?  
{Am Eingang liegt der Rechteckimpuls $x_2(t)$ an. Welches Ausgangssignal $y_2(t)$ ergibt sich zu den Zeiten $t =$ –1 ms, $t =$ 0, $t =$ +1 ms und $t =$ +2 ms?  
 
 
|type="{}"}
 
|type="{}"}
$y_2(t = \rm \: –1 \: ms) =$ { 0 } V
+
$y_2(t = t_1) \ =\ $ { 0. } &nbsp;$\text {V}$
$y_2(t = 0) =$ { 0.375 5%  } V
+
$y_2(t = t_2) \ =\ $ { 0.375 5%  } &nbsp;$\text {V}$
$y_2(t = \rm +1 \: ms) =$ { 0.5 5%  } V
+
$y_2(t = t_3) \ =\ $ { 0.5 5%  } &nbsp;$\text {V}$
$y_2(t = \rm +2 \: ms) =$ { 0.125 5%  } V
+
$y_2(t = t_4) \ =\ $ { 0.125 5%  } &nbsp;$\text {V}$
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Das Ausgangssignal $y_1(t)$ ist 0, solange das Eingangssignal $x_1(t) =$ 0 ist. Das bedeutet, dass hier ein kausales System vorliegt. Zum gleichen Ergebnis hätte man allein durch die Aussage „das Ausgangssignal wurde gemessen” kommen können. Nur kausale Systeme sind realisierbar und nur bei realisierbaren Systemen kann etwas gemessen werden.  
+
'''(1)'''&nbsp; <u>Approaches 2 und 3</u> are correct:
 +
*The output signal is&nbsp; $y_1(t)=0$&nbsp; as long as the input signal is&nbsp; $x_1(t) = 0$.&nbsp; This means that there is a causal system on hand.
 +
*One could have arrived at the same result just by considering the statement "the output signal was measured".&nbsp; Only causal systems are realisable and only in realisable systems something can be measured.
 +
*The input signal&nbsp; $x_1(t)$&nbsp; can be interpreted as a direct&nbsp; (DC)&nbsp; signal for very large times&nbsp; $(t \gg 0)$.&nbsp; If&nbsp; $H(f)$&nbsp; was a high-pass filter, then&nbsp; $y_1(t)$&nbsp; would have to go towards zero for&nbsp; $t → ∞$.&nbsp; This means: &nbsp; $H(f)$&nbsp; represents a low-pass filter.  
  
Das Eingangssignal $x_1(t)$ kann für sehr große Zeiten $(t >> 0)$ als Gleichsignal interpretiert werden. Wäre $H(f)$ ein Hochpass, dann müsste $y_1(t)$ für $t → ∞$ gegen 0 gehen. Das heißt: $H(f)$ stellt einen Tiefpass dar. Richtig sind die $\rm \underline{Lösungsvorschläge \: 2 \: und \: 3}$.
 
  
  
'''2.''' Der Gleichsignalübertragungsfaktor kann aus den Signalen $x_1(t)$ und $y_1(t)$ abgelesen werden, wenn der Einschwingvorgang abgeklungen ist:  
+
'''(2)'''&nbsp; The direct signal transmission factor can be read from&nbsp; $x_1(t)$&nbsp; and&nbsp; $y_1(t)$&nbsp; when the transient has decayed:  
$$H(f =0) = \frac{y_1(t \rightarrow \infty)}{x_1(t \rightarrow \infty)}=
+
:$$H(f =0) = \frac{y_1(t \rightarrow \infty)}{x_1(t \rightarrow \infty)}=
 
  \frac{ {\rm 1\, V} }{ {\rm 4\, V} } \hspace{0.15cm}\underline{= 0.25}.$$
 
  \frac{ {\rm 1\, V} }{ {\rm 4\, V} } \hspace{0.15cm}\underline{= 0.25}.$$
  
  
'''3.''' Die Sprungantwort $σ(t)$ ist gleich dem Ausgangssignal $y(t)$, wenn am Eingang $x(t) = γ(t)$ anliegen würde. Wegen $x_1(t) =$ 4V · $γ(t)$ gilt somit im Bereich von 0 bis $T =$ 2 ms:  
+
'''(3)'''&nbsp; The step response&nbsp; $σ(t)$&nbsp; is equal to the output signal&nbsp; $y(t)$,&nbsp; if&nbsp; $x(t) = γ(t)$&nbsp; is applied to the input.  
$$\sigma(t) = \frac{y_1(t)}{ {\rm 4\, V} } = 0.5 \cdot\left( {t}/{T} - 0.5 ({t}/{T})^2\right).$$
+
*Because of&nbsp; $x_1(t) = 4 \hspace{0.05cm} \rm {V} · γ(t)$&nbsp; the following holds in the range from&nbsp; $0$&nbsp; to&nbsp; $T = 2 \ \rm ms$:  
Zum Zeitpunkt $t = T =$ 2 ms erreicht die Sprungantwort ihren Endwert 0.25. Für $t = T/2 =$ 1 ms ergibt sich der Zahlenwert 3/16 $\rm \underline{\: = \: 0.1875}$. Beachten Sie bitte, dass die Sprungantwort $σ(t)$ ebenso wie die Sprungfunktion $γ(t)$ keine Einheit besitzt.  
+
:$$\sigma(t) = \frac{y_1(t)}{ {\rm 4\, V} } = 0.5 \cdot\big( {t}/{T} - 0.5 ({t}/{T})^2\big).$$
 +
*At time&nbsp; $t = T = 2 \ \rm ms$&nbsp; the step response reaches its final value&nbsp; $0.25$.  
 +
*For&nbsp; $t = T/2 = 1 \hspace{0.15cm} \rm ms$&nbsp; the numerical value&nbsp; $3/16 \; \underline{\: = \: 0.1875}$ is obtained.  
 +
*Please note that the step response&nbsp; $σ(t)$&nbsp; as well as the step function&nbsp; $γ(t)$&nbsp; have no unit.  
  
  
'''4.''' Die Sprungantwort $σ(t)$ ist das Integral über die Impulsantwort $h(t)$. Damit ergibt sich $h(t)$ aus $σ(t)$ durch Differentiation nach der Zeit. Im Bereich $0 < t < T$ gilt deshalb:  
+
 
[[File:P_ID840__LZI_A_1_3d.png | Berechnete Impulsantwort (ML zu Aufgabe A1.3d) | rechts]]
+
[[File:P_ID840__LZI_A_1_3d.png|rechts|frame |Impulse response]]
$$\begin{align*}h(t) & = \frac{{\rm d}\hspace{0.1cm}\sigma(t)}{{\rm d}t}= \\ & = 0.5 \cdot\left( \frac{1}{T} - 0.5 (\frac{2t}{T^2})\right)  = \frac{0.5}{T} \cdot (1- \frac{t}{T})\end{align*}$$
+
'''(4)'''&nbsp; The step response&nbsp; $σ(t)$&nbsp;  is the integral over the impulse response&nbsp; $h(t)$.  
$$\Rightarrow \hspace{0.2cm} h(t = {\rm 1\, ms}) = h(t = T/2) = \frac{0.25}{T} \hspace{0.15cm}\underline{= 125 \cdot{1}/{ {\rm s} } },$$
+
*Thus,&nbsp; $h(t)$&nbsp; is obtained from&nbsp; $σ(t)$&nbsp; by differentiation with respect to time.  
$$\Rightarrow \hspace{0.2cm} h(t = {\rm 2\, ms}) = h(t = T) \hspace{0.15cm}\underline{= 0}.$$
+
*Therefore, in the range&nbsp; $0 < t < T$&nbsp; the following is valid:  
Für $t < 0$ und $t ≥ T$ ist $h(t)$ stets 0. Der Wert $h(t = 0)$ bei exakt $t = 0$ muss aus dem Mittelwert zwischen links- und rechtsseitigem Grenzwert ermittelt werden:  
+
:$$h(t) = \frac{{\rm d}\hspace{0.1cm}\sigma(t)}{{\rm d}t}=  0.5 \cdot\left( \frac{1}{T} - 0.5 (\frac{2t}{T^2})\right)  = \frac{0.5}{T} \cdot (1- \frac{t}{T})$$
$$h(t=0) = \frac{1}{2} \cdot \left[ \lim_{\varepsilon
+
:$$\Rightarrow \hspace{0.2cm} h(t = {\rm 1\, ms}) = h(t = T/2) = \frac{0.25}{T} \hspace{0.15cm}\underline{= 125 \cdot{1}/{ {\rm s} } },$$
 +
:$$\Rightarrow \hspace{0.2cm} h(t = {\rm 2\, ms}) = h(t = T) \hspace{0.15cm}\underline{= 0}.$$
 +
*For&nbsp; $t < 0$&nbsp; and&nbsp; $t ≥ T$,&nbsp; &nbsp; $h(t)=0$&nbsp; always holds.  
 +
*The value&nbsp; $h(t = 0)$&nbsp; at exactly&nbsp; $t = 0$&nbsp; must be determined from the mean value between the left-hand and right-hand limits:  
 +
:$$h(t=0) = {1}/{2} \cdot \left[ \lim_{\varepsilon
 
\hspace{0.03cm} \to \hspace{0.03cm}0} h(- \varepsilon)+ \lim_{\varepsilon
 
\hspace{0.03cm} \to \hspace{0.03cm}0} h(- \varepsilon)+ \lim_{\varepsilon
  \hspace{0.03cm} \to \hspace{0.03cm} 0} h(+ \varepsilon)\right] = \left[ 0 + \frac{0.5}{T}\right] = \frac{0.25}{T}= 250 \cdot{1}/{ {\rm s} }.$$
+
  \hspace{0.03cm} \to \hspace{0.03cm} 0} h(+ \varepsilon)\right] = \left[ 0 + {0.5}/{T}\right] = {0.25}/{T}= 250 \cdot{1}/{ {\rm s} }.$$
 +
 
 +
 
  
 +
[[File:P_ID829__LZI_A_1_3e.png | rechts|frame| Rectangular response]]
 +
'''(5)'''&nbsp; The symmetrical rectangular pulse&nbsp; $x_2(t)$&nbsp; can also be represented as the difference of two steps shifted by&nbsp; $±T/2$:&nbsp;
 +
:$$x_2(t) = A \cdot \big[\gamma(t + {T}/{2}) - \gamma(t - {T}/{2})\big].$$
 +
*Hence, the output signal is equal to the difference of two step responses shifted by&nbsp; $±T/2$:
 +
:$$y_2(t) = A \cdot \big[\sigma(t + {T}/{2}) - \sigma(t - {T}/{2})\big].$$
 +
*For&nbsp; $t = \: -T/2 = -1\ \rm ms$&nbsp; the following holds: &nbsp; $y_2(t) \;\underline{ = 0}$.
  
'''5.''' Der Rechteckimpuls $x_2(t)$ kann auch als die Differenz zweier um $±T/2$ verschobener Sprünge dargestellt werden:
+
*For the other time points considered the following is obtained as indicated in the graph:  
[[File:P_ID829__LZI_A_1_3e.png | Berechnete Rechteckantwort (ML zu Aufgabe A1.3e) | rechts]]
+
:$$y_2(t = 0) = A \cdot \big[\sigma(0.5 \cdot T) - \sigma(-0.5 \cdot T)\big] =
$$x_2(t) = A \cdot \left[\gamma(t + \frac{T}{2}) - \gamma(t - \frac{T}{2})\right].$$
 
Damit ist das Ausgangssignal gleich der Differenz zweier um $±T/2$ verschobener Sprungantworten:
 
$$y_2(t) = A \cdot \left[\sigma(t + \frac{T}{2}) - \sigma(t - \frac{T}{2})\right].$$
 
Für $t = \: –T/2 =$ –1ms gilt $y_2(t) =$ 0. Für die weiteren Zeitpunkte $t =$ 0, $t = T/2 =$ 1 ms sowie $t = T =$ 2 ms erhält man (siehe Grafik):  
 
$$y_2(t = 0) = A \cdot \left[\sigma(0.5 \cdot T) - \sigma(-0.5 \cdot T)\right] =
 
 
  {\rm 2\, V}\cdot \left[0.1875 - 0\right] \hspace{0.15cm}\underline{= {\rm 0.375\, V}},$$
 
  {\rm 2\, V}\cdot \left[0.1875 - 0\right] \hspace{0.15cm}\underline{= {\rm 0.375\, V}},$$
$$y_2(t = T/2) = y_2(t = 1\,{\rm ms}) =A \cdot \left[\sigma( T) - \sigma(0)\right] =
+
:$$y_2(t = T/2) = y_2(t = 1\,{\rm ms}) =A \cdot \big[\sigma( T) - \sigma(0)\big] =
 
  {\rm 2\, V}\cdot \left[0.25 - 0\right] \hspace{0.15cm}\underline{= {\rm 0.5\, V}},$$
 
  {\rm 2\, V}\cdot \left[0.25 - 0\right] \hspace{0.15cm}\underline{= {\rm 0.5\, V}},$$
$$y_2(t = T) = A \cdot \left[\sigma(1.5 \cdot T) - \sigma(0.5 \cdot T)\right] =
+
:$$y_2(t = T) = A \cdot \big[\sigma(1.5 \cdot T) - \sigma(0.5 \cdot T)\big] =
  {\rm 2\, V}\cdot \left[0.25 - 0.1875\right] \hspace{0.15cm}\underline{= {\rm 0.125\, V}}.$$
+
  {\rm 2\, V}\cdot \big[0.25 - 0.1875\big] \hspace{0.15cm}\underline{= {\rm 0.125\, V}}.$$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 101: Line 129:
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^1.2 Systembeschreibung im Zeitbereich^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^1.2 System Description in Time Domain^]]

Latest revision as of 11:21, 12 July 2021

Measured step response

A step-shaped signal $$x_1(t) = 4\hspace{0.05cm} {\rm V} \cdot \gamma(t)$$  (blue curve in the upper sketch)  is applied to the input of a linear time-invariant (LTI) transmission system

  • with the frequency response  $H(f)$
  • and the impulse response  $h(t)$.


The measured output signal  $y_1(t)$  then has the curve shown below.

  • With  $T = 2 \,{\rm ms}$  this signal can be described in the range from  $0$  to  $T$  as follows:
$$y_1(t) = 2 \hspace{0.05cm}{\rm V} \cdot\big[ {t}/{T} - 0.5 \cdot ({t}/{T})^2\big].$$
  • From  $t = T $  on   $y_1(t)$  is constantly equal  $1 \,{\rm V}$.


In the last subtask  (5)  the output signal  $y_2(t)$  is to be determined if a symmetrical rectangular pulse  $x_2(t)$  of duration  $T = 2 \hspace{0.15cm} {\rm ms}$  is applied to the input (see red curve in the upper graph).





Please note:

  • The exercise belongs to the chapter  System Description in Time Domain.
  • The rectangular pulse  $x_2(t)$  can also be written as follows with   $A = 2 \hspace{0.05cm} \text{V}$ :
$$x_2(t) = A \cdot \big [\gamma(t + {T}/{2}) - \gamma(t - {T}/{2})\big ].$$
  • The frequency response  $H(f)$  of the LTI system considered here can be taken from the exercise description of  Exercise 3.8  in the book  "Signal Representation”.  However, the abscissa and ordinate parameters have to be adjusted accordingly.
  • For the solution of the problem on hand, though,  $H(f)$  is not explicitly required.



Questions

1

What statements can be made about the LTI system based on the graph?

$H(f)$  describes an acausal system.
$H(f)$  describes a causal system.
$H(f)$  describes a low-pass filter.
$H(f)$  describes a high-pass filter.

2

What is the direct signal transmission factor?

$H(f = 0) \ =\ $

3

What is the step response  $σ(t)$?  What is its value at  $t = T/2$ ?

$σ(t = \rm 1 \: ms) \ = \ $

4

Compute the impulse response  $h(t)$  of the system.  What values does it have at times  $t = T/2$  and  $t = T$?

$h(t = \rm 1 \: ms) \ =\ $

 $\text {1/s}$
$h(t = \rm 2 \: ms) \ =\ $

 $\text {1/s}$

5

The rectangular pulse  $x_2(t)$  is applied to the input.  What is the output signal  $y_2(t)$  at the times  $t_1 = -1 \text { ms}$,  $t_2 = 0$,  $t_3 = +1 \text { ms}$  and  $t_4 = +2 \text { ms}$?

$y_2(t = t_1) \ =\ $

 $\text {V}$
$y_2(t = t_2) \ =\ $

 $\text {V}$
$y_2(t = t_3) \ =\ $

 $\text {V}$
$y_2(t = t_4) \ =\ $

 $\text {V}$


Solution

(1)  Approaches 2 und 3 are correct:

  • The output signal is  $y_1(t)=0$  as long as the input signal is  $x_1(t) = 0$.  This means that there is a causal system on hand.
  • One could have arrived at the same result just by considering the statement "the output signal was measured".  Only causal systems are realisable and only in realisable systems something can be measured.
  • The input signal  $x_1(t)$  can be interpreted as a direct  (DC)  signal for very large times  $(t \gg 0)$.  If  $H(f)$  was a high-pass filter, then  $y_1(t)$  would have to go towards zero for  $t → ∞$.  This means:   $H(f)$  represents a low-pass filter.


(2)  The direct signal transmission factor can be read from  $x_1(t)$  and  $y_1(t)$  when the transient has decayed:

$$H(f =0) = \frac{y_1(t \rightarrow \infty)}{x_1(t \rightarrow \infty)}= \frac{ {\rm 1\, V} }{ {\rm 4\, V} } \hspace{0.15cm}\underline{= 0.25}.$$


(3)  The step response  $σ(t)$  is equal to the output signal  $y(t)$,  if  $x(t) = γ(t)$  is applied to the input.

  • Because of  $x_1(t) = 4 \hspace{0.05cm} \rm {V} · γ(t)$  the following holds in the range from  $0$  to  $T = 2 \ \rm ms$:
$$\sigma(t) = \frac{y_1(t)}{ {\rm 4\, V} } = 0.5 \cdot\big( {t}/{T} - 0.5 ({t}/{T})^2\big).$$
  • At time  $t = T = 2 \ \rm ms$  the step response reaches its final value  $0.25$.
  • For  $t = T/2 = 1 \hspace{0.15cm} \rm ms$  the numerical value  $3/16 \; \underline{\: = \: 0.1875}$ is obtained.
  • Please note that the step response  $σ(t)$  as well as the step function  $γ(t)$  have no unit.


Impulse response

(4)  The step response  $σ(t)$  is the integral over the impulse response  $h(t)$.

  • Thus,  $h(t)$  is obtained from  $σ(t)$  by differentiation with respect to time.
  • Therefore, in the range  $0 < t < T$  the following is valid:
$$h(t) = \frac{{\rm d}\hspace{0.1cm}\sigma(t)}{{\rm d}t}= 0.5 \cdot\left( \frac{1}{T} - 0.5 (\frac{2t}{T^2})\right) = \frac{0.5}{T} \cdot (1- \frac{t}{T})$$
$$\Rightarrow \hspace{0.2cm} h(t = {\rm 1\, ms}) = h(t = T/2) = \frac{0.25}{T} \hspace{0.15cm}\underline{= 125 \cdot{1}/{ {\rm s} } },$$
$$\Rightarrow \hspace{0.2cm} h(t = {\rm 2\, ms}) = h(t = T) \hspace{0.15cm}\underline{= 0}.$$
  • For  $t < 0$  and  $t ≥ T$,    $h(t)=0$  always holds.
  • The value  $h(t = 0)$  at exactly  $t = 0$  must be determined from the mean value between the left-hand and right-hand limits:
$$h(t=0) = {1}/{2} \cdot \left[ \lim_{\varepsilon \hspace{0.03cm} \to \hspace{0.03cm}0} h(- \varepsilon)+ \lim_{\varepsilon \hspace{0.03cm} \to \hspace{0.03cm} 0} h(+ \varepsilon)\right] = \left[ 0 + {0.5}/{T}\right] = {0.25}/{T}= 250 \cdot{1}/{ {\rm s} }.$$


Rectangular response

(5)  The symmetrical rectangular pulse  $x_2(t)$  can also be represented as the difference of two steps shifted by  $±T/2$: 

$$x_2(t) = A \cdot \big[\gamma(t + {T}/{2}) - \gamma(t - {T}/{2})\big].$$
  • Hence, the output signal is equal to the difference of two step responses shifted by  $±T/2$:
$$y_2(t) = A \cdot \big[\sigma(t + {T}/{2}) - \sigma(t - {T}/{2})\big].$$
  • For  $t = \: -T/2 = -1\ \rm ms$  the following holds:   $y_2(t) \;\underline{ = 0}$.
  • For the other time points considered the following is obtained as indicated in the graph:
$$y_2(t = 0) = A \cdot \big[\sigma(0.5 \cdot T) - \sigma(-0.5 \cdot T)\big] = {\rm 2\, V}\cdot \left[0.1875 - 0\right] \hspace{0.15cm}\underline{= {\rm 0.375\, V}},$$
$$y_2(t = T/2) = y_2(t = 1\,{\rm ms}) =A \cdot \big[\sigma( T) - \sigma(0)\big] = {\rm 2\, V}\cdot \left[0.25 - 0\right] \hspace{0.15cm}\underline{= {\rm 0.5\, V}},$$
$$y_2(t = T) = A \cdot \big[\sigma(1.5 \cdot T) - \sigma(0.5 \cdot T)\big] = {\rm 2\, V}\cdot \big[0.25 - 0.1875\big] \hspace{0.15cm}\underline{= {\rm 0.125\, V}}.$$