Difference between revisions of "Aufgaben:Exercise 3.7: Synchronous Demodulator"

From LNTwww
Line 39: Line 39:
  
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Benennen wir das Signal nach dem Multiplizierer mit $m(t) = r(t) \cdot z_E(t)$, so ergibt sich das zugehörige Spektrum $M(f)$ als das Faltungsprodukt aus $R(f)$ und $Z_E(f)$. Die Faltung des Spektrums $R(f)$ mit der rechten Diraclinie bei +30 kHz führt zu diskreten Spektrallinien bei –5 kHz, 5 kHz, 55 kHz und 65 kHz. Diese sind alle imaginär und gegenüber den Impulsgewichten von $R(f)$ um den Faktor $A$/2 = 0.5 kleiner. Die Faltung von $R(f)$ mit dem Dirac bei –30 kHz ergibt Linien bei –65 kHz, –55 kHz, –5 kHz, 5 kHz.
+
'''1.''' Benennen wir das Signal nach dem Multiplizierer mit $m(t) = r(t) \cdot z_{\rm E}(t)$, so ergibt sich das zugehörige Spektrum $M(f)$ als das Faltungsprodukt aus $R(f)$ und $Z_{\rm E}(f)$.  
Durch Überlagerung der beiden Zwischenresultate und Berücksichtigung des Tiefpassfilters, der die Linien bei ±55 kHz und ±65 kHz unterdrückt, folgt somit für das Spektrum des Sinkensignals:
+
*Die Faltung des Spektrums $R(f)$ mit der rechten Diraclinie bei $+30 \text{kHz}$ führt zu diskreten Spektrallinien bei $-\hspace{-0.08cm}5\, \text{kHz}$, $5 \,\text{kHz}$, $55 \,\text{kHz}$z und $65 \,\text{kHz}$. Diese sind alle imaginär und gegenüber den Impulsgewichten von $R(f)$ um den Faktor $A/2 = 0.5$ kleiner.  
 +
*Die Faltung von $R(f)$ mit dem Dirac bei $-\hspace{-0.08cm}30 \text{kHz}$ ergibt Linien bei $-\hspace{-0.08cm}65 \text{kHz}$, $-\hspace{-0.08cm}55 \text{kHz}$, $-\hspace{-0.08cm}5 \text{kHz}$ und  $5 \text{kHz}$.
 +
 
 +
Durch Überlagerung der beiden Zwischenresultate und Berücksichtigung des Tiefpassfilters, der die Linien bei $\pm 55 \text{kHz}$ und $\pm 65 \text{kHz}$unterdrückt, folgt somit für das Spektrum des Sinkensignals:
 
   
 
   
 
$$V( f) =  - {\rm{j}} \cdot 2\;{\rm{V}} \cdot \delta ( {f - f_{\rm N} }) + {\rm{j}} \cdot 2\;{\rm{V}} \cdot \delta ( {f + f_{\rm N} } )\hspace{0.3cm}{\rm mit}\hspace{0.3cm}f_{\rm N} = 5\;{\rm kHz}.$$
 
$$V( f) =  - {\rm{j}} \cdot 2\;{\rm{V}} \cdot \delta ( {f - f_{\rm N} }) + {\rm{j}} \cdot 2\;{\rm{V}} \cdot \delta ( {f + f_{\rm N} } )\hspace{0.3cm}{\rm mit}\hspace{0.3cm}f_{\rm N} = 5\;{\rm kHz}.$$
  
Das Sinkensignal $υ(t)$ ist also ein 5 kHz–Sinussignal mit der Amplitude 4 V. Der Zeitpunkt $t$ = 50 µs entspricht einem Viertel der Periodendauer. Somit ist hier das Sinkensignal maximal, also 4 V.
+
Das Sinkensignal $v(t)$ ist also ein $5 \text{kHz}$–Sinussignal mit der Amplitude $4 \text{V}$. Der Zeitpunkt $t = 50\, µ\text{s}$ entspricht einem Viertel der Periodendauer $T_0 = 1/f_{\rm N} = 200\, µ\text{s}$. Somit ist hier das Sinkensignal maximal, also $\underline{4 \text{V}}$.
  
 
'''2.''' Mit $A$ = 1 ist $υ(t) = q(t)$/2. Dagegen sind mit $A$ = 2 beide Signale gleich.
 
'''2.''' Mit $A$ = 1 ist $υ(t) = q(t)$/2. Dagegen sind mit $A$ = 2 beide Signale gleich.

Revision as of 11:49, 18 January 2017

Synchrondemodulator

Zur Rücksetzung eines amplitudenmodulierten Signals in den ursprünglichen Frequenzbereich verwendet man oft einen Synchrondemodulator:

  • Dieser multipliziert das AM-Eingangssignal $r(t)$ mit einem empfangsseitigen Trägersignal $z_{\rm E}(t)$, das sowohl hinsichtlich der Frequenz $f_{\rm T}$ als auch der Phase $\varphi_{\rm T}$ mit dem sendeseitigen Trägersignal $z_{\rm S}(t)$ übereinstimmen sollte.
  • Anschließend folgt ein rechteckförmiger Tiefpass zur Eliminierung aller spektralen Anteile oberhalb der Trägerfrequenz $f_{\rm T}$. Das Ausgangssignal des Synchrondemodulators nennen wir $v(t)$.

Das oben skizzierte Spektrum $R(f)$ des Empfangssignals $r(t)$ ist durch Zweiseitenband–Amplitudenmodulation eines sinusförmigen Quellensignals $q(t)$ mit der Frequenz $5\,\text{kHz}$ und der Amplitude $8\,\text{V}$ entstanden. Als sendeseitiges Trägersignal $z_{\rm S}(t)$ wurde ein Cosinussignal mit der Frequenz $30\,\text{kHz}$ verwendet.

Das Spektrum des empfangsseitigen Trägersignals $z_{\rm E}(t)$ besteht entsprechend der unteren Skizze aus zwei Diraclinien, jeweils mit dem Gewicht $A/2$. Da $z_{\rm E}(t)$ keine Einheit beinhalten soll, sind auch die Gewichte der Diracfunktionen dimensionslos.

Hinweise:


Fragebogen

1

Es gelte $f_{\rm T} = 30\,\text{kHz}$ und $A=1$. Berechnen Sie das Ausgangssignal $v(t)$. Welcher Signalwert tritt zum Zeitpunkt $t = 50\, µ\text{s}$ auf?

$v(t = 50\, µ\text{s})$  =

 $\text{V}$

2

Wie groß muss die Amplitude des empfangsseitigen Trägersignals $z_{\rm E}(t)$ gewählt werden, damit $v(t) = q(t)$ gilt?

$A$  =

3

Berechnen Sie das Ausgangssignal $v(t)$ unter den Voraussetzungen $A = 2$ und $f_{\rm T} = 31\,\text{kHz}$ = 31 kHz. Welcher Signalwert tritt zum Zeitpunkt$t = 50\, µ\text{s}$ auf?

$v(t = 50\, µ\text{s})$  =

 $\text{V}$


Musterlösung

1. Benennen wir das Signal nach dem Multiplizierer mit $m(t) = r(t) \cdot z_{\rm E}(t)$, so ergibt sich das zugehörige Spektrum $M(f)$ als das Faltungsprodukt aus $R(f)$ und $Z_{\rm E}(f)$.

  • Die Faltung des Spektrums $R(f)$ mit der rechten Diraclinie bei $+30 \text{kHz}$ führt zu diskreten Spektrallinien bei $-\hspace{-0.08cm}5\, \text{kHz}$, $5 \,\text{kHz}$, $55 \,\text{kHz}$z und $65 \,\text{kHz}$. Diese sind alle imaginär und gegenüber den Impulsgewichten von $R(f)$ um den Faktor $A/2 = 0.5$ kleiner.
  • Die Faltung von $R(f)$ mit dem Dirac bei $-\hspace{-0.08cm}30 \text{kHz}$ ergibt Linien bei $-\hspace{-0.08cm}65 \text{kHz}$, $-\hspace{-0.08cm}55 \text{kHz}$, $-\hspace{-0.08cm}5 \text{kHz}$ und $5 \text{kHz}$.

Durch Überlagerung der beiden Zwischenresultate und Berücksichtigung des Tiefpassfilters, der die Linien bei $\pm 55 \text{kHz}$ und $\pm 65 \text{kHz}$unterdrückt, folgt somit für das Spektrum des Sinkensignals:

$$V( f) = - {\rm{j}} \cdot 2\;{\rm{V}} \cdot \delta ( {f - f_{\rm N} }) + {\rm{j}} \cdot 2\;{\rm{V}} \cdot \delta ( {f + f_{\rm N} } )\hspace{0.3cm}{\rm mit}\hspace{0.3cm}f_{\rm N} = 5\;{\rm kHz}.$$

Das Sinkensignal $v(t)$ ist also ein $5 \text{kHz}$–Sinussignal mit der Amplitude $4 \text{V}$. Der Zeitpunkt $t = 50\, µ\text{s}$ entspricht einem Viertel der Periodendauer $T_0 = 1/f_{\rm N} = 200\, µ\text{s}$. Somit ist hier das Sinkensignal maximal, also $\underline{4 \text{V}}$.

2. Mit $A$ = 1 ist $υ(t) = q(t)$/2. Dagegen sind mit $A$ = 2 beide Signale gleich.

3. Die beiden Diraclinien bei $\pm f_T$ haben nun jeweils das Gewicht 1. Alle nachfolgend genannten Spektrallinien sind imaginär und betragsmäßig gleich 2 V. Die Faltung von $R(f)$ mit der rechten Diraclinie von $z_E(t)$ liefert Anteile bei –4 kHz (p: positiv), 6 kHz (n: negativ), 56 kHz (p) und 66 kHz (n). Dagegen führt die Faltung mit der linken Diracfunktion zu Spektrallinien bei –66 kHz (p), –56 kHz (n), –6 kHz (p) und 4 kHz (n), alle ebenfalls mit den (betragsmäßigen) Impulsgewichten 2 V. Unter Berücksichtigung des Tiefpasses verbleiben nur die vier Spektrallinien bei ±4 kHz und ±6 kHz. Das dazugehörige Zeitsignal lautet mit $f_4$ = 4 kHz und $f_6$ = 6 kHz:

$$v( t ) = 4\;{\rm{V}} \cdot \sin ( {2{\rm{\pi }}f_4 t} ) + 4\;{\rm{V}} \cdot \sin ( {2{\rm{\pi }}f_6 t} ).$$ Zum Zeitpunkt t = 50 µs erhält man:

$$v( t) = 4\;{\rm{V}} \cdot \left( {\sin ( {0.4{\rm{\pi }}} ) + \sin ( {0.6{\rm{\pi }}} )} \right)\hspace{0.15 cm}\underline{ = 7.608\;{\rm{V}}}{\rm{.}}$$