Difference between revisions of "Aufgaben:Exercise 3.7: Synchronous Demodulator"
Line 30: | Line 30: | ||
$A$ = { 2 3% } | $A$ = { 2 3% } | ||
− | {Berechnen Sie das Ausgangssignal $v(t)$ unter den Voraussetzungen $A = 2$ und $f_{\rm T} = 31\,\text{kHz}$ = 31 kHz. Welcher Signalwert tritt zum Zeitpunkt$t = 50\, µ\text{s}$ auf? | + | {Berechnen Sie das Ausgangssignal $v(t)$ unter den Voraussetzungen $A = 2$ und $f_{\rm T} = 31\,\text{kHz}$ = 31 kHz. Welcher Signalwert tritt zum Zeitpunkt$ t = 50\, µ\text{s}$ auf? |
|type="{}"} | |type="{}"} | ||
$v(t = 50\, µ\text{s})$ = { 7.608 3% } $\text{V}$ | $v(t = 50\, µ\text{s})$ = { 7.608 3% } $\text{V}$ | ||
Line 41: | Line 41: | ||
'''1.''' Benennen wir das Signal nach dem Multiplizierer mit $m(t) = r(t) \cdot z_{\rm E}(t)$, so ergibt sich das zugehörige Spektrum $M(f)$ als das Faltungsprodukt aus $R(f)$ und $Z_{\rm E}(f)$. | '''1.''' Benennen wir das Signal nach dem Multiplizierer mit $m(t) = r(t) \cdot z_{\rm E}(t)$, so ergibt sich das zugehörige Spektrum $M(f)$ als das Faltungsprodukt aus $R(f)$ und $Z_{\rm E}(f)$. | ||
*Die Faltung des Spektrums $R(f)$ mit der rechten Diraclinie bei $+30 \text{kHz}$ führt zu diskreten Spektrallinien bei $-\hspace{-0.08cm}5\, \text{kHz}$, $5 \,\text{kHz}$, $55 \,\text{kHz}$z und $65 \,\text{kHz}$. Diese sind alle imaginär und gegenüber den Impulsgewichten von $R(f)$ um den Faktor $A/2 = 0.5$ kleiner. | *Die Faltung des Spektrums $R(f)$ mit der rechten Diraclinie bei $+30 \text{kHz}$ führt zu diskreten Spektrallinien bei $-\hspace{-0.08cm}5\, \text{kHz}$, $5 \,\text{kHz}$, $55 \,\text{kHz}$z und $65 \,\text{kHz}$. Diese sind alle imaginär und gegenüber den Impulsgewichten von $R(f)$ um den Faktor $A/2 = 0.5$ kleiner. | ||
− | *Die Faltung von $R(f)$ mit dem Dirac bei $-\hspace{-0.08cm}30 \text{kHz}$ ergibt Linien bei $-\hspace{-0.08cm}65 \text{kHz}$, $-\hspace{-0.08cm}55 \text{kHz}$, $-\hspace{-0.08cm}5 \text{kHz}$ und $5 \text{kHz}$. | + | *Die Faltung von $R(f)$ mit dem Dirac bei $-\hspace{-0.08cm}30 \,\text{kHz}$ ergibt Linien bei $-\hspace{-0.08cm}65 \,\text{kHz}$, $-\hspace{-0.08cm}55 \,\text{kHz}$, $-\hspace{-0.08cm}5 \,\text{kHz}$ und $5 \,\text{kHz}$. |
+ | |||
Durch Überlagerung der beiden Zwischenresultate und Berücksichtigung des Tiefpassfilters, der die Linien bei $\pm 55 \text{kHz}$ und $\pm 65 \text{kHz}$unterdrückt, folgt somit für das Spektrum des Sinkensignals: | Durch Überlagerung der beiden Zwischenresultate und Berücksichtigung des Tiefpassfilters, der die Linien bei $\pm 55 \text{kHz}$ und $\pm 65 \text{kHz}$unterdrückt, folgt somit für das Spektrum des Sinkensignals: | ||
Line 49: | Line 50: | ||
Das Sinkensignal $v(t)$ ist also ein $5 \text{kHz}$–Sinussignal mit der Amplitude $4 \text{V}$. Der Zeitpunkt $t = 50\, µ\text{s}$ entspricht einem Viertel der Periodendauer $T_0 = 1/f_{\rm N} = 200\, µ\text{s}$. Somit ist hier das Sinkensignal maximal, also $\underline{4 \text{V}}$. | Das Sinkensignal $v(t)$ ist also ein $5 \text{kHz}$–Sinussignal mit der Amplitude $4 \text{V}$. Der Zeitpunkt $t = 50\, µ\text{s}$ entspricht einem Viertel der Periodendauer $T_0 = 1/f_{\rm N} = 200\, µ\text{s}$. Somit ist hier das Sinkensignal maximal, also $\underline{4 \text{V}}$. | ||
− | '''2.''' Mit $A | + | '''2.''' Mit $A = 1$ ist also $v(t)$ nur halb so groß wie $q(t).$ ⇒ Mit $\underline{A = 2}$ sind beide Signale. |
− | '''3.''' Die beiden Diraclinien bei $\pm | + | '''3.''' Die beiden Diraclinien bei $\pm f_{\rm T}$ haben nun jeweils das Gewicht $1$. Alle nachfolgend genannten Spektrallinien sind imaginär und betragsmäßig gleich $2 \text{V}$. |
− | Dagegen führt die Faltung mit der linken Diracfunktion zu Spektrallinien bei | + | *Die Faltung von $R(f)$ mit der rechten Diraclinie von $z_{\rm E}(t)$ liefert Anteile bei $-\hspace{-0.08cm}4\, \text{kHz}$, (p: positiv) $56 \,\text{kHz}$ (n: negativ), $56 \,\text{kHz}$ (p) und $66 \,\text{kHz}$ (n). |
+ | *Dagegen führt die Faltung mit der linken Diracfunktion zu Spektrallinien bei $-\hspace{-0.08cm}66 \,\text{kHz}$ (p), $-\hspace{-0.08cm}56 \,\text{kHz}$ (n), $-\hspace{-0.08cm}6 \,\text{kHz}$ (p) und $4 \,\text{kHz}$ (n), alle ebenfalls mit den (betragsmäßigen) Impulsgewichten $2 \text{V}$. | ||
+ | *Unter Berücksichtigung des Tiefpasses verbleiben nur die vier Spektrallinien bei $\pm 4 \,\text{kHz}$ und $\pm 6 \,\text{kHz}$. Das dazugehörige Zeitsignal lautet somit mit $f_4 = 4 \,\text{kHz}$ und $f_46 = 6 \,\text{kHz}$: | ||
$$v( t ) = 4\;{\rm{V}} \cdot \sin ( {2{\rm{\pi }}f_4 t} ) + 4\;{\rm{V}} \cdot \sin ( {2{\rm{\pi }}f_6 t} ).$$ | $$v( t ) = 4\;{\rm{V}} \cdot \sin ( {2{\rm{\pi }}f_4 t} ) + 4\;{\rm{V}} \cdot \sin ( {2{\rm{\pi }}f_6 t} ).$$ | ||
− | |||
− | $$v( t) = 4\;{\rm{V}} \cdot \left( {\sin ( {0.4{\rm{\pi }}} ) + \sin ( {0.6{\rm{\pi }}} )} \right)\hspace{0.15 cm}\underline{ = 7.608\;{\rm{V}}}{\rm{.}}$$ | + | Zum Zeitpunkt $t = 50\, µ\text{s}$ erhält man: |
+ | |||
+ | $$v( t = 50\, µ\text{s}) = 4\;{\rm{V}} \cdot \left( {\sin ( {0.4{\rm{\pi }}} ) + \sin ( {0.6{\rm{\pi }}} )} \right)\hspace{0.15 cm}\underline{ = 7.608\;{\rm{V}}}{\rm{.}}$$ | ||
{{ML-Fuß}} | {{ML-Fuß}} |
Revision as of 12:08, 18 January 2017
Zur Rücksetzung eines amplitudenmodulierten Signals in den ursprünglichen Frequenzbereich verwendet man oft einen Synchrondemodulator:
- Dieser multipliziert das AM-Eingangssignal $r(t)$ mit einem empfangsseitigen Trägersignal $z_{\rm E}(t)$, das sowohl hinsichtlich der Frequenz $f_{\rm T}$ als auch der Phase $\varphi_{\rm T}$ mit dem sendeseitigen Trägersignal $z_{\rm S}(t)$ übereinstimmen sollte.
- Anschließend folgt ein rechteckförmiger Tiefpass zur Eliminierung aller spektralen Anteile oberhalb der Trägerfrequenz $f_{\rm T}$. Das Ausgangssignal des Synchrondemodulators nennen wir $v(t)$.
Das oben skizzierte Spektrum $R(f)$ des Empfangssignals $r(t)$ ist durch Zweiseitenband–Amplitudenmodulation eines sinusförmigen Quellensignals $q(t)$ mit der Frequenz $5\,\text{kHz}$ und der Amplitude $8\,\text{V}$ entstanden. Als sendeseitiges Trägersignal $z_{\rm S}(t)$ wurde ein Cosinussignal mit der Frequenz $30\,\text{kHz}$ verwendet.
Das Spektrum des empfangsseitigen Trägersignals $z_{\rm E}(t)$ besteht entsprechend der unteren Skizze aus zwei Diraclinien, jeweils mit dem Gewicht $A/2$. Da $z_{\rm E}(t)$ keine Einheit beinhalten soll, sind auch die Gewichte der Diracfunktionen dimensionslos.
Hinweise:
- Die Aufgabe gehört zum Kapitel Faltungssatz und Faltungsoperation.
- Wichtige Informationen finden Sie vor allem auf der Seite Faltung einer Funktion mit einer Diracfunktion.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- Die Faltung des Spektrums $R(f)$ mit der rechten Diraclinie bei $+30 \text{kHz}$ führt zu diskreten Spektrallinien bei $-\hspace{-0.08cm}5\, \text{kHz}$, $5 \,\text{kHz}$, $55 \,\text{kHz}$z und $65 \,\text{kHz}$. Diese sind alle imaginär und gegenüber den Impulsgewichten von $R(f)$ um den Faktor $A/2 = 0.5$ kleiner.
- Die Faltung von $R(f)$ mit dem Dirac bei $-\hspace{-0.08cm}30 \,\text{kHz}$ ergibt Linien bei $-\hspace{-0.08cm}65 \,\text{kHz}$, $-\hspace{-0.08cm}55 \,\text{kHz}$, $-\hspace{-0.08cm}5 \,\text{kHz}$ und $5 \,\text{kHz}$.
Durch Überlagerung der beiden Zwischenresultate und Berücksichtigung des Tiefpassfilters, der die Linien bei $\pm 55 \text{kHz}$ und $\pm 65 \text{kHz}$unterdrückt, folgt somit für das Spektrum des Sinkensignals:
$$V( f) = - {\rm{j}} \cdot 2\;{\rm{V}} \cdot \delta ( {f - f_{\rm N} }) + {\rm{j}} \cdot 2\;{\rm{V}} \cdot \delta ( {f + f_{\rm N} } )\hspace{0.3cm}{\rm mit}\hspace{0.3cm}f_{\rm N} = 5\;{\rm kHz}.$$
Das Sinkensignal $v(t)$ ist also ein $5 \text{kHz}$–Sinussignal mit der Amplitude $4 \text{V}$. Der Zeitpunkt $t = 50\, µ\text{s}$ entspricht einem Viertel der Periodendauer $T_0 = 1/f_{\rm N} = 200\, µ\text{s}$. Somit ist hier das Sinkensignal maximal, also $\underline{4 \text{V}}$.
2. Mit $A = 1$ ist also $v(t)$ nur halb so groß wie $q(t).$ ⇒ Mit $\underline{A = 2}$ sind beide Signale.
3. Die beiden Diraclinien bei $\pm f_{\rm T}$ haben nun jeweils das Gewicht $1$. Alle nachfolgend genannten Spektrallinien sind imaginär und betragsmäßig gleich $2 \text{V}$.
- Die Faltung von $R(f)$ mit der rechten Diraclinie von $z_{\rm E}(t)$ liefert Anteile bei $-\hspace{-0.08cm}4\, \text{kHz}$, (p: positiv) $56 \,\text{kHz}$ (n: negativ), $56 \,\text{kHz}$ (p) und $66 \,\text{kHz}$ (n).
- Dagegen führt die Faltung mit der linken Diracfunktion zu Spektrallinien bei $-\hspace{-0.08cm}66 \,\text{kHz}$ (p), $-\hspace{-0.08cm}56 \,\text{kHz}$ (n), $-\hspace{-0.08cm}6 \,\text{kHz}$ (p) und $4 \,\text{kHz}$ (n), alle ebenfalls mit den (betragsmäßigen) Impulsgewichten $2 \text{V}$.
- Unter Berücksichtigung des Tiefpasses verbleiben nur die vier Spektrallinien bei $\pm 4 \,\text{kHz}$ und $\pm 6 \,\text{kHz}$. Das dazugehörige Zeitsignal lautet somit mit $f_4 = 4 \,\text{kHz}$ und $f_46 = 6 \,\text{kHz}$:
$$v( t ) = 4\;{\rm{V}} \cdot \sin ( {2{\rm{\pi }}f_4 t} ) + 4\;{\rm{V}} \cdot \sin ( {2{\rm{\pi }}f_6 t} ).$$
Zum Zeitpunkt $t = 50\, µ\text{s}$ erhält man:
$$v( t = 50\, µ\text{s}) = 4\;{\rm{V}} \cdot \left( {\sin ( {0.4{\rm{\pi }}} ) + \sin ( {0.6{\rm{\pi }}} )} \right)\hspace{0.15 cm}\underline{ = 7.608\;{\rm{V}}}{\rm{.}}$$