Difference between revisions of "Aufgaben:Exercise 3.9: Convolution of Rectangle and Gaussian Pulse"

From LNTwww
Line 39: Line 39:
 
|type="{}"}
 
|type="{}"}
 
$y_1(t=0)$  = { 0.682 3% }  $\text{V}$
 
$y_1(t=0)$  = { 0.682 3% }  $\text{V}$
$y_1(t=20\text{ns})$  =  { 0.158 3% }  $\text{V}$
+
$y_1(t=20\,\text{ns})$  =  { 0.158 3% }  $\text{V}$
  
 
{Welche Signalwerte ergeben sich beim Ausgangssignal $y_2(t) = x_2(t) \ast h(t)$ zu den Zeitpunkten $t$ = 0 und $t$ = 20 ns?
 
{Welche Signalwerte ergeben sich beim Ausgangssignal $y_2(t) = x_2(t) \ast h(t)$ zu den Zeitpunkten $t$ = 0 und $t$ = 20 ns?
 
|type="{}"}
 
|type="{}"}
 
$y_2(t=0)$  = { 0.8 3% }  $\text{V}$
 
$y_2(t=0)$  = { 0.8 3% }  $\text{V}$
$y_2(t=20\text{ns})$  = { 0.11 3% }  $\text{V}$
+
$y_2(t=20 \text{ns})$  = { 0.11 3% }  $\text{V}$
  
 
{Wie groß ist das Ausgangssignal $y_3(t) = x_3(t) \ast h(t)$ zu den betrachteten Zeitpunkten? Interpretieren Sie das Ergebnis.
 
{Wie groß ist das Ausgangssignal $y_3(t) = x_3(t) \ast h(t)$ zu den betrachteten Zeitpunkten? Interpretieren Sie das Ergebnis.
 
|type="{}"}
 
|type="{}"}
 
$y_3(t=0)$  = { 0.8 3% }  $\text{V}$
 
$y_3(t=0)$  = { 0.8 3% }  $\text{V}$
$y_3(t=20\text{ns})$  = { 0.11 3% }  $\text{V}$
+
$y_3(t=20 \text{ns})$  = { 0.11 3% }  $\text{V}$
  
  

Revision as of 15:43, 18 January 2017

Faltung von Rechteck und Gauß

Wir betrachten in der Aufgabe einen gaußförmigen Tiefpass mit der äquivalenten Bandbreite $\Delta f = 40 \,\text{MHz}$:

$$H( f ) = {\rm{e}}^{{\rm{ - \pi }}( {f/\Delta f} )^2 } .$$

Die dazugehörige Impulsantwort lautet:

$$h( t ) = \Delta f \cdot {\rm{e}}^{{\rm{ - \pi }}( {\Delta f \hspace{0.05cm} \cdot \hspace{0.05cm} t} )^2 } .$$

Aus der Skizze ist zu ersehen, dass die äquivalente Zeitdauer   ⇒   $\Delta t = 1/\Delta f = 25\,\text{ns}$ der Impulsantwort $h(t)$ an den beiden Wendepunkten der Gaußfunktion abgelesen werden kann.

An den Eingang des Tiefpasses werden nun drei verschiedene impulsartige Signale angelegt:

  • ein Rechteckimpuls $x_1(t)$ mit der Amplitude $A_1 =1\,\text{V}$ und der Dauer $T_1 = 20\,\text{ns}$ (roter Kurvenverlauf),
  • ein Rechteckimpuls $x_2(t)$ mit der Amplitude $A_2 =10\,\text{V}$ und der Dauer $T_2 = 2\,\text{ns}$ (violetter Kurvenverlauf),
  • ein Diracimpuls $x_3(t)$ mit dem Impulsgewicht $2 \cdot 10^{–8},\text{Vs}$ (grüner Pfeil).


Hinweise:

  • Die Aufgabe gehört zum Kapitel Faltungssatz und Faltungsoperation.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Zur Lösung der nachfolgenden Fragen können Sie das komplementäre Gaußsche Fehlerintegral benutzen, das wie folgt definiert ist:

$${\rm Q}( x ) = \frac{1}{ {\sqrt {2{\rm{\pi }}} }}\int_{\it x}^\infty {{\rm{e}}^{{{ - {\it u}}}^{\rm{2}} {\rm{/2}}} }\hspace{0.1cm}{\rm{d}}{\it u}.$$

Die nachfolgende Tabelle gibt einige Funktionswerte wieder:

Einige Werte der Q-Funktion


Fragebogen

1

Berechnen Sie das Signal $y_1(t) = x_1(t) \ast h(t)$. Welche Werte ergeben sich zu den Zeiten $t = 0$ und $t = 20\,\text{ns}$ mit der Näherung $(2\pi )^{1/2} \approx 2.5$?

$y_1(t=0)$  =

 $\text{V}$
$y_1(t=20\,\text{ns})$  =

 $\text{V}$

2

Welche Signalwerte ergeben sich beim Ausgangssignal $y_2(t) = x_2(t) \ast h(t)$ zu den Zeitpunkten $t$ = 0 und $t$ = 20 ns?

$y_2(t=0)$  =

 $\text{V}$
$y_2(t=20 \text{ns})$  =

 $\text{V}$

3

Wie groß ist das Ausgangssignal $y_3(t) = x_3(t) \ast h(t)$ zu den betrachteten Zeitpunkten? Interpretieren Sie das Ergebnis.

$y_3(t=0)$  =

 $\text{V}$
$y_3(t=20 \text{ns})$  =

 $\text{V}$


Musterlösung

1. Das Faltungsintegral lautet hier:

$$y_1( t ) = A_1 \cdot \Delta f \cdot \int_{t - T_1 /2}^{t + T_1 /2} {{\rm{e}}^{{\rm{ - \pi }}( {\Delta f \hspace{0.05cm}\cdot \hspace{0.05cm} \tau } )^2 } }\hspace{0.1cm} {\rm{d}}\tau = \frac{ {A_1 }}{ {\sqrt {2{\rm{\pi }}} }}\int_{u_1 }^{u_2 } {{\rm{e}}^{[[:Template:- u]]^{\rm{2}}{\rm{/2}}}\hspace{0.1cm} {\rm{d}}u.}$$

Hierbei wurde die folgende Substitution verwendet:

$$u = \sqrt {2{\rm{\pi }}} \cdot \Delta f \cdot \tau$$

Die Integrationsgrenzen liegen bei:

$$u_1 = \sqrt {2{\rm{\pi }}} \cdot \Delta f \cdot \left( {t - T_1 /2} \right),$$

$$u_2 = \sqrt {2{\rm{\pi }}} \cdot \Delta f \cdot \left( {t + T_1 /2} \right).$$

Mit dem komplementären Gaußschen Fehlerintegral kann hierfür auch geschrieben werden:

$$y_1 (t) = A_1 \cdot \left[ {{\rm Q} ( {u_1 } ) - {\rm Q}( {u_2 } )} \right].$$

Für den Zeitpunkt $t = 0$ erhält man mit $(2\pi )1/2 \approx 2.5$:

$$u_2 = \sqrt {2{\rm{\pi }}} \cdot \Delta f \cdot \frac{ {T_1 }}{2} \approx 2.5 \cdot 4 \cdot 10^{7} \;{\rm{1/s}} \cdot 10^{-8} \;{\rm{s}} = 1.$$

Mit $u_1 = –u_2 = –1$ folgt weiter:

$$y_1 ( {t = 0} ) \approx A_1 \cdot \left[ {{\rm Q}( { - 1} ) - {\rm Q}(+ 1 )} \right] = 1\;{\rm{V}} \cdot \left[ {{\rm{0}}{\rm{.841 - 0}}{\rm{.159}}} \right] \hspace{0.15 cm}\underline{= 0.682\;{\rm{V}}}{\rm{.}}$$

Für den zweiten Zeitpunkt erhält man entsprechend:

$$y_1 ( {t = 20\;{\rm{ns}}} ) \approx A_1 \cdot \left[ {{\rm Q}( 1 ) - {\rm Q}( 3 )} \right] = 1\;{\rm{V}} \cdot \left[ {{\rm{0}}{\rm{.159 - 0}}{\rm{.001}}} \right] \hspace{0.15 cm}\underline{= 0.158\;{\rm{V}}}{\rm{.}}$$

2. Analog zur obigen Musterlösung kann nun geschrieben werden:

$$y_2 ( {t = 0} ) \approx A_2 \cdot \left[ {{\rm Q}( { - 0.1} ) - {\rm Q}( {0.1} )} \right] = 10\;{\rm{V}} \cdot \left[ {{\rm{0}}{\rm{.540 - 0}}{\rm{.460}}} \right] \hspace{0.15 cm}\underline{= 0.80\;{\rm{V}}}{\rm{,}}$$

$$y_2 ( {t = 20\,{\rm ns}} ) \approx A_2 \cdot \left[ {{\rm Q}( {1.9} ) - {\rm Q}( {2.1} )} \right] = 10\;{\rm{V}} \cdot \left[ {{\rm{0}}{\rm{.029 - 0}}{\rm{.018}}} \right] \hspace{0.15 cm}\underline{= 0.11\;{\rm{V}}}{\rm{.}}$$

3. Beim diracförmigen Eingangssignal $x_3(t)$ ist das Ausgangssignal $y_3(t)$ gleich der Impulsantwort $h(t)$, gewichtet mit dem Gewicht der Diracfunktion:

$$y_3 (t) = 2 \cdot 10^{ - 8} \,{\rm{Vs}} \cdot 4 \cdot 10^7 \;{\rm{1/s}} \cdot {\rm{e}}^{ - {\rm{\pi }}( {\Delta f \cdot t})^2 }.$$

Zum Zeitpunkt $t$ = 0 erhält man 0.8 V. Nach $t$ = 20 Nanosekunden ist der Ausgangsimpuls um den Faktor exp(–0.64π) ≈ 0.136 kleiner und man erhält das Ergebnis $y_3$( $t$ = 20 ns) ≈ 0.11 V. Man erkennt aus dem Vergleich der Resultate aus 2) und 3), dass $y_3(t)$ ≈ $y_2(t)$ gilt. Der Grund hierfür ist, dass der Diracimpuls eine gute Näherung für einen rechteckförmigen Eingangsimpuls gleicher Fläche ist, wenn die Rechteckdauer $T$ deutlich kleiner ist als die äquivalente Impulsdauer $\Delta t$ der Impulsantwort. Das heißt für unser Beispiel: Für $T$ << $\Delta t$ ist auch der Ausgangsimpuls nahezu gaußförmig.