Difference between revisions of "Aufgaben:Exercise 4.5Z: Simple Phase Modulator"
Line 7: | Line 7: | ||
*Das sinusförmige Nachrichtensignal $q(t)$ der Frequenz $f_{\rm N} = 10 \ \text{kHz}$ wird mit dem Signal $m(t)$ multipliziert, das sich aus dem cosinusförmigen Trägersignal $z(t)$ durch Phasenverschiebung um $\phi = 90^\circ$ ergibt: | *Das sinusförmige Nachrichtensignal $q(t)$ der Frequenz $f_{\rm N} = 10 \ \text{kHz}$ wird mit dem Signal $m(t)$ multipliziert, das sich aus dem cosinusförmigen Trägersignal $z(t)$ durch Phasenverschiebung um $\phi = 90^\circ$ ergibt: | ||
− | :$$m(t) = {\cos} ( \omega_{\rm T} t + 90^\circ).$$ | + | :$$m(t) = {\cos} ( \omega_{\rm T} \cdot t + 90^\circ).$$ |
Anschließend wird das Signal $z(t)$ mit der Frequenz $f_{\rm T} = 1 \ \text{MHz}$ noch direkt addiert. | Anschließend wird das Signal $z(t)$ mit der Frequenz $f_{\rm T} = 1 \ \text{MHz}$ noch direkt addiert. | ||
Zur Abkürzung werden in dieser Aufgabe auch die | Zur Abkürzung werden in dieser Aufgabe auch die | ||
− | *Differenzfrequenz $f_\ | + | *Differenzfrequenz $f_{\rm D} = f_{\rm T} – f_{\rm N} = 0.99 \text{MHz}$, |
− | *die Summenfrequenz $f_\ | + | *die Summenfrequenz $f_{\rm S} = f_{\rm T} + f_{\rm N} = 1.01 \text{MHz}$ sowie |
− | *die beiden Kreisfrequenzen $\omega_\ | + | *die beiden Kreisfrequenzen $\omega_{\rm D} = 2\pi \cdot f_{\rm D}$ und $\omega_{\rm S} = 2\pi \cdot f_{\rm S}$ verwendet. |
''Hinweise:'' | ''Hinweise:'' | ||
Line 20: | Line 20: | ||
*Berücksichtigen Sie die trigonomischen Umformungen | *Berücksichtigen Sie die trigonomischen Umformungen | ||
:$$\sin(\alpha) \cdot \cos (\beta)= {1}/{2} \cdot \sin(\alpha - \beta) + {1}/{2} \cdot \sin(\alpha + \beta),$$ | :$$\sin(\alpha) \cdot \cos (\beta)= {1}/{2} \cdot \sin(\alpha - \beta) + {1}/{2} \cdot \sin(\alpha + \beta),$$ | ||
− | :$$\sin(\alpha) \cdot \sin (\beta)= {1}/{2} \cdot \cos(\alpha - \beta) - {1}/{2 | + | :$$\sin(\alpha) \cdot \sin (\beta)= {1}/{2} \cdot \cos(\alpha - \beta) - {1}/{2} \cdot \cos(\alpha + \beta).$$ |
+ | |||
Line 28: | Line 29: | ||
{Welche der folgenden Gleichungen beschreiben $s(t)$ in richtiger Weise? | {Welche der folgenden Gleichungen beschreiben $s(t)$ in richtiger Weise? | ||
|type="[]"} | |type="[]"} | ||
− | + $s(t) = \cos(\ | + | + $s(t) = \cos(\omega_{\rm T} \cdot t) – q(t) \cdot \sin(\omega_{\rm T} \cdot t)$. |
− | - $s(t) = \cos(\ | + | - $s(t) = \cos(\omega_{\rm T} \cdot t) + q(t) \cdot \cos(\omega_{\rm T} \cdot t)$. |
− | - $s(t) = \cos(\ | + | - $s(t) = \cos(\omega_{\rm T} \cdot t) + 0.5 sin(\omega_{\rm D} \cdot t) + 0.5 \sin(\omega_{\rm S} \cdot t)$. |
− | + $s(t) = \cos(\ | + | + $s(t) = \cos(\omega_{\rm T} \cdot t) - 0.5 cos(\omega_{\rm D} \cdot t) + 0.5 \cos(\omega_{\rm S} \cdot t)$. |
− | {Berechnen Sie das äquivalente Tiefpass-Signal $s_{TP}(t)$. Welche Inphase– und Quadtraturkomponente ergeben sich zum Zeitpunkt $t = 0$? | + | {Berechnen Sie das äquivalente Tiefpass-Signal $s_{\rm TP}(t)$. Welche Inphase– und Quadtraturkomponente ergeben sich zum Zeitpunkt $t = 0$? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $S_{\rm I}(t = 0)$ = { 1 3% } |
− | $ | + | $S_{\rm Q}(t = 0)$ = { 0. } |
− | {Welche der folgenden Aussagen treffen für die Ortskurve $s_{TP}(t)$ zu? | + | {Welche der folgenden Aussagen treffen für die Ortskurve $s_{\rm TP}(t)$ zu? |
|type="[]"} | |type="[]"} | ||
- Die Ortskurve ist ein Kreisbogen. | - Die Ortskurve ist ein Kreisbogen. | ||
Line 47: | Line 48: | ||
− | {Berechnen Sie den Betrag $a(t)$, insbesondere Maximal– und Minimalwert. | + | {Berechnen Sie den Betrag $a(t)$, insbesondere dessen Maximal– und Minimalwert. |
|type="{}"} | |type="{}"} | ||
− | $a_{max}$ = { 1.414 3% } | + | $a_{\rm max}$ = { 1.414 3% } |
− | $a_{min}$ = { 1 3% } | + | $a_{\rm min}$ = { 1 3% } |
{Wie lautet die Phasenfunktion $\phi(t)$. Wie groß ist der Maximalwert? | {Wie lautet die Phasenfunktion $\phi(t)$. Wie groß ist der Maximalwert? | ||
|type="{}"} | |type="{}"} | ||
− | $\phi_{max}$ = { 45 3% } $\text{Grad}$ | + | $\phi_{\rm max}$ = { 45 3% } $\text{Grad}$ |
Revision as of 16:00, 20 January 2017
Die Grafik zeigt eine recht einfache Anordnung zur Approximation eines Phasenmodulators. Alle Signale seien hierbei dimensionslose Größen.
- Das sinusförmige Nachrichtensignal $q(t)$ der Frequenz $f_{\rm N} = 10 \ \text{kHz}$ wird mit dem Signal $m(t)$ multipliziert, das sich aus dem cosinusförmigen Trägersignal $z(t)$ durch Phasenverschiebung um $\phi = 90^\circ$ ergibt:
- $$m(t) = {\cos} ( \omega_{\rm T} \cdot t + 90^\circ).$$
Anschließend wird das Signal $z(t)$ mit der Frequenz $f_{\rm T} = 1 \ \text{MHz}$ noch direkt addiert.
Zur Abkürzung werden in dieser Aufgabe auch die
- Differenzfrequenz $f_{\rm D} = f_{\rm T} – f_{\rm N} = 0.99 \text{MHz}$,
- die Summenfrequenz $f_{\rm S} = f_{\rm T} + f_{\rm N} = 1.01 \text{MHz}$ sowie
- die beiden Kreisfrequenzen $\omega_{\rm D} = 2\pi \cdot f_{\rm D}$ und $\omega_{\rm S} = 2\pi \cdot f_{\rm S}$ verwendet.
Hinweise:
- Die Aufgabe gehört zum Kapitel Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Berücksichtigen Sie die trigonomischen Umformungen
- $$\sin(\alpha) \cdot \cos (\beta)= {1}/{2} \cdot \sin(\alpha - \beta) + {1}/{2} \cdot \sin(\alpha + \beta),$$
- $$\sin(\alpha) \cdot \sin (\beta)= {1}/{2} \cdot \cos(\alpha - \beta) - {1}/{2} \cdot \cos(\alpha + \beta).$$
Fragebogen
Musterlösung
- $${s(t)} = \cos({ \omega_{\rm T}\hspace{0.05cm} t }) - \sin({ \omega_{\rm T}\hspace{0.05cm} t }) \cdot \sin({ \omega_{\rm N}\hspace{0.05cm} t })= \\ = \cos({ \omega_{\rm T}\hspace{0.05cm} t }) - 0.5 \cdot \cos(({ \omega_{\rm T}-\omega_{\rm N})\hspace{0.05cm} t }) + 0.5 \cdot \cos(({ \omega_{\rm T}+\omega_{\rm N})\hspace{0.05cm} t }).$$
2. Das Spektrum des analytischen Signals lautet:
- $$S_{\rm +}(f) = \delta (f - f_{\rm T}) - 0.5 \cdot \delta (f - f_{\rm \Delta})+ 0.5 \cdot \delta (f - f_{\rm \Sigma}) .$$
Durch Verschiebung um $f_T$ kommt man zum Spektrum des äquivalenten Tiefpass-Signals:
- $$S_{\rm TP}(f) = \delta (f ) - 0.5 \cdot \delta (f + f_{\rm N})+ 0.5 \cdot \delta (f - f_{\rm N}) .$$
Dies führt zu der Zeitfunktion
- $$s_{\rm TP}(t) = {\rm 1 } - 0.5 \cdot {\rm e}^{{-\rm j}\hspace{0.05cm} \omega_{\rm N} \hspace{0.05cm} t }+ 0.5 \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm N} \hspace{0.05cm} t } = 1 + {\rm j} \cdot \sin(\omega_{\rm N} \hspace{0.05cm} t ).$$
Zum Zeitpunkt $t = 0$ ist $s_{TP}(t) = 1$, also reell. Somit gilt:
- $s_I(t = 0) = \text{Re}[s_{TP}(t = 0)] \underline{= 1}$,
- $s_Q(t = 0) = Im[s_{TP}(t = 0)] \underline{= 0}$.
3. Die Ortskurve ist eine vertikale Gerade $\Rightarrow$ Vorschlag 3 mit folgenden Werten:
- $$s_{\rm TP}(t = 0) = s_{\rm TP}(t = {\rm 50 \hspace{0.05cm} \mu s}) = ... = 1,$$
- $$s_{\rm TP}(t = {\rm 25 \hspace{0.05cm} \mu s}) = s_{\rm TP}(t = {\rm 125 \hspace{0.05cm} \mu s}) = ... = 1 + {\rm j},$$
- $$s_{\rm TP}(t = {\rm 75 \hspace{0.05cm} \mu s}) = s_{\rm TP}(t = {\rm 175 \hspace{0.05cm} \mu s}) = ... = 1 - {\rm j}.$$
4. Der Betrag entspricht der Zeigerlänge. Diese schwankt zwischen $a_{max} \underline{= \text{„Wurzel aus 2”}}$ und $a_{min} \underline{= 1}$. Es gilt:
- $$a(t) = \sqrt{1 + \sin^2(\omega_{\rm N} \hspace{0.05cm} t )}.$$
Bei idealer Phasenmodulation müsste die Hüllkurve $a(t)$ dagegen konstant sein.
5. Der Realteil ist stets 1, der Imaginärteil gleich $\sin(\omega_N t)$. Daraus folgt die Phasenfunktion:
- $$\phi(t)= {\rm arctan} \hspace{0.1cm}{\left(\sin(\omega_{\rm N} \hspace{0.05cm} t )\right)}.$$
Der Maximalwert der Sinusfunktion ist 1. Daraus folgt $\phi_{max} = \arctan (1) \underline{= \pi /4\ \text{(entspricht $45 °$)}}$.