Difference between revisions of "Aufgaben:Exercise 2.3Z: Asymmetrical Characteristic Operation"
Line 93: | Line 93: | ||
− | '''(3)''' Die Klirrfaktoren zweiter und dritter Ordnung ergeben sich bei dieser Aufgabe zu $K_2 = 2/27 approx 7.41\%$ und $K_3 = 1/81 approx 1.23\%$ Damit ist der Gesamtklirrfaktor | + | '''(3)''' Die Klirrfaktoren zweiter und dritter Ordnung ergeben sich bei dieser Aufgabe zu $K_2 = 2/27 \approx 7.41\%$ und $K_3 = 1/81 \approx 1.23\%$ Damit ist der Gesamtklirrfaktor |
$$K = \sqrt{K_2^2 + K_3^2} \hspace{0.15cm}\underline{\approx7.51 \%}.$$ | $$K = \sqrt{K_2^2 + K_3^2} \hspace{0.15cm}\underline{\approx7.51 \%}.$$ | ||
+ | |||
'''(4)''' Der Maximalwert tritt zum Zeitpunkt $t = 0$ und bei Vielfachen von $T$ auf: | '''(4)''' Der Maximalwert tritt zum Zeitpunkt $t = 0$ und bei Vielfachen von $T$ auf: | ||
Line 104: | Line 105: | ||
-0.448}.$$ | -0.448}.$$ | ||
− | Das Signal | + | Das Signal $y(t)$ ist gegenüber dem in der Skizze auf der Angabenseite eingezeichnetem Signal um $0.448$ nach unten verschoben. Dieser Signalwert ergibt sich aus folgender Gleichung mit $A = C = 1/2$: |
− | $$C - \frac{C \cdot A^2}{4}- | + | $$C - \frac{C \cdot A^2}{4}- {C^3}/{6} = {1}/{2} - {1}/{32}- {1}/{48} = 0.448.$$ |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Revision as of 13:47, 2 February 2017
Am Eingang eines Systems $S$ liegt das Cosinussignal $$x(t) = A \cdot \cos(\omega_0 t)$$
an, wobei für die Amplitude stets $A = 0.5$ gelten soll. Das System C besteht
- aus der Addition eines Gleichanteils C, einer Nichtlinearität mit der Kennlinie
- $$g(x) = \sin(x) \hspace{0.05cm} \approx x \hspace{0.05cm} - \hspace{-0.1cm}{x^3}\hspace{-0.1cm}/{6} = g_3(x)$$
- sowie einem idealen Hochpass, der alle Frequenzen bis auf ein Gleichsignal (f = 0) unverfälscht passieren lässt.
Das Ausgangssignal des Gesamtsystems kann allgemein in folgender Form dargestellt werden: $$y(t) = A_0 + A_1 \cdot \cos(\omega_0 t) + A_2 \cdot \cos(2\omega_0 t) + A_3 \cdot \cos(3\omega_0 t) + \hspace{0.05cm}...$$
Die sinusförmige Kennlinie $g(x)$ soll in der gesamten Aufgabe entsprechend der obigen Gleichung durch die kubische Näherung $g_3(x)$ approximiert werden. Für $C = 0.$ ergäbe sich somit die exakt gleiche Konstellation wie in Aufgabe 2.3, in deren Unterpunkt (2) der Klirrfaktor berechnet wurde:
- $K = K_{g3} \approx 1.08 \%$ für $A = 0.5$,
- $K = K_{g3} \approx 4.76 \%$ für $A = 1.0$.
Unter Berücksichtigung der Konstanten $A = C = 0.5$ gilt für das Eingangssignal der Nichtlinearität:
- $$x_C(t) = C + A \cdot \cos(\omega_0 t) = {1}/{2} + {1}/{2}\cdot \cos(\omega_0 t).$$
Die Kennlinie wird also unsymmetrisch betrieben mit Werten zwischen $0$ und $1$. In obiger Grafik sind zusätzlich die Signale $x_{C}(t)$ und $y_{C}(t)$ direkt vor und nach der Kennlinie $g(x)$ eingezeichnet.
Hinweise:
- Die Aufgabe bezieht sich auf das Kapitel Lineare_zeitinvariante_Systeme/Nichtlineare_Verzerrungen|Nichtlineare Verzerrungen]].
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Als bekannt vorausgesetzt werden die folgenden trigonometrischen Beziehungen:
$$\cos^2(\alpha) = {1}/{2} + {1}/{2} :\cdot \cos(2\alpha)\hspace{0.05cm}, \hspace{0.3cm} \cos^3(\alpha) = {3}/{4} \cdot \cos(\alpha) + {1}/{4} \cdot \cos(3\alpha) \hspace{0.05cm}.$$
Fragebogen
Musterlösung
Das Signal $y_{C}(t)$ beinhaltet eine Gleichsignalkomponente $C- C^3/6$, die jedoch aufgrund des Hochpasses im Signal $y(t)$ nicht mehr enthalten ist: $\underline A_0 = 0$.
(2) Bei Anwendung der angegebenen trigonometrischen Beziehungen erhält man folgende Koeffizienten mit $A= C0 = 0.5$:
$$A_1 = A - {1}/{6}\cdot 3 \cdot C^2 \cdot A - {1}/{6} cdot {3}/{4}\cdot
A^3 = {1}/{2} - {1}/{16} - {1}/{64} = {27}/{64}
\hspace{0.15cm}\underline{ \approx 0.422},$$
$$A_2 = - {1}/{6}\cdot 3 \cdot {1}/{2}\cdot
C \cdot A^2 = - \frac{1}{32} \hspace{0.15cm}\underline{\approx -0.031},$$
$$A_3 = - {1}/{6}\cdot \frac{1}{4}\cdot
A^3 = - {1}/{192} \hspace{0.15cm}\underline{\approx -0.005}.$$
Terme höherer Ordnung kommen nicht vor. Somit ist auch $A_4 = 0$.
(3) Die Klirrfaktoren zweiter und dritter Ordnung ergeben sich bei dieser Aufgabe zu $K_2 = 2/27 \approx 7.41\%$ und $K_3 = 1/81 \approx 1.23\%$ Damit ist der Gesamtklirrfaktor
$$K = \sqrt{K_2^2 + K_3^2} \hspace{0.15cm}\underline{\approx7.51 \%}.$$
(4) Der Maximalwert tritt zum Zeitpunkt $t = 0$ und bei Vielfachen von $T$ auf:
$$y_{\rm max}= y(t=0) = A_1 + A_2 + A_3 = 0.422 -0.031 -0.005 \hspace{0.15cm}\underline{=
0.386}.$$
Die Minimalwerte liegen genau in der Mitte zwischen den Maxima und es gilt: $$y_{\rm min}= - A_1 + A_2 - A_3 = -0.422 -0.031 +0.005\hspace{0.15cm}\underline{ = -0.448}.$$
Das Signal $y(t)$ ist gegenüber dem in der Skizze auf der Angabenseite eingezeichnetem Signal um $0.448$ nach unten verschoben. Dieser Signalwert ergibt sich aus folgender Gleichung mit $A = C = 1/2$: $$C - \frac{C \cdot A^2}{4}- {C^3}/{6} = {1}/{2} - {1}/{32}- {1}/{48} = 0.448.$$