Difference between revisions of "Aufgaben:Exercise 3.2Z: Laplace and Fourier"
Line 26: | Line 26: | ||
* die Rechteckfunktion $c(t)$, | * die Rechteckfunktion $c(t)$, | ||
− | * die Rampenfunktion | + | * die Rampenfunktion $d(t)$. |
− | + | Die [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation|Gesetzmäßigkeiten der Fourier–Transformation]] gelten meist (allerdings nicht immer) auch für die Laplace–Transformation, wobei $p ={\rm j} \cdot 2 \pi f$ zu setzen ist: | |
− | + | * Zum Beispiel lautet der [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Verschiebungssatz|Verschiebungssatz]]in Laplace– bzw. Fourier–Darstellung: | |
:$$x(t- \tau) \quad | :$$x(t- \tau) \quad | ||
\circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm | \circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm | ||
Line 39: | Line 39: | ||
X(f)\cdot {\rm e}^{-{\rm j}2\pi f \tau}\hspace{0.05cm} .$$ | X(f)\cdot {\rm e}^{-{\rm j}2\pi f \tau}\hspace{0.05cm} .$$ | ||
− | + | * Dagegen ergeben sich beim [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Integrationssatz|Integrationssatz]] Unterschiede: | |
:$$\int {x(\tau)} \hspace{0.1cm}{\rm | :$$\int {x(\tau)} \hspace{0.1cm}{\rm | ||
d}\tau \quad | d}\tau \quad | ||
Line 48: | Line 48: | ||
d}\tau \quad | d}\tau \quad | ||
\circ\!\!-\!\!\!-^{\hspace{-0.05cm}}\!\!\!-\!\!\hspace{-0.05cm}\bullet\quad | \circ\!\!-\!\!\!-^{\hspace{-0.05cm}}\!\!\!-\!\!\hspace{-0.05cm}\bullet\quad | ||
− | X(f)\cdot \left [ | + | X(f)\cdot \left [ {1}/{2} \cdot{\rm \delta } (f) + |
\frac{1}{{\rm j} \cdot 2\pi f} \right ] \hspace{0.05cm} .$$ | \frac{1}{{\rm j} \cdot 2\pi f} \right ] \hspace{0.05cm} .$$ | ||
+ | |||
''Hinweise:'' | ''Hinweise:'' | ||
*Die Aufgabe gehört zum Kapitel [[Lineare_zeitinvariante_Systeme/Laplace–Transformation_und_p–Übertragungsfunktion|Laplace–Transformation und p–Übertragungsfunktion]]. | *Die Aufgabe gehört zum Kapitel [[Lineare_zeitinvariante_Systeme/Laplace–Transformation_und_p–Übertragungsfunktion|Laplace–Transformation und p–Übertragungsfunktion]]. | ||
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Revision as of 18:26, 7 February 2017
Die Fourier–Transformation kann für jedes deterministische Signal $x(t)$ angewandt werden. Für die Spektralfunktion gilt dann:
- $$X(f) = \int_{-\infty}^{ +\infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi f t}}\hspace{0.1cm}{\rm d}t\hspace{0.05cm}\hspace{0.05cm} .$$
Bei leistungsbegrenzten Signalen – Kennzeichen: unendlich große Energie – beinhaltet $X(f)$ auch Distributionen (Diracfunktionen).
Bei allen kausalen Signalen (und nur bei diesen) ist daneben auch die Laplace-Transformation anwendbar: $$X_{\rm L}(p) = \int_{0}^{ \infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm d}t\hspace{0.05cm}\hspace{0.05cm} .$$
In der Grafik sehen Sie verschiedene kausale Zeitfunktionen, die in dieser Aufgabe behandelt werden:
- die Diracfunktion $a(t)$,
- die Sprungfunktion $b(t)$,
- die Rechteckfunktion $c(t)$,
- die Rampenfunktion $d(t)$.
Die Gesetzmäßigkeiten der Fourier–Transformation gelten meist (allerdings nicht immer) auch für die Laplace–Transformation, wobei $p ={\rm j} \cdot 2 \pi f$ zu setzen ist:
- Zum Beispiel lautet der Verschiebungssatzin Laplace– bzw. Fourier–Darstellung:
- $$x(t- \tau) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\hspace{-0.05cm}\bullet\quad X_{\rm L}(p)\cdot {\rm e}^{-p \tau}\hspace{0.05cm} ,$$
- $$x(t- \tau) \quad \circ\!\!-\!\!\!-^{\hspace{-0.05cm}}\!\!\!-\!\!\hspace{-0.05cm}\bullet\quad X(f)\cdot {\rm e}^{-{\rm j}2\pi f \tau}\hspace{0.05cm} .$$
- Dagegen ergeben sich beim Integrationssatz Unterschiede:
- $$\int {x(\tau)} \hspace{0.1cm}{\rm d}\tau \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\hspace{-0.05cm}\bullet\quad X_{\rm L}(p)\cdot \frac{1}{p}\hspace{0.05cm} ,$$
- $$\int {x(\tau)} \hspace{0.1cm}{\rm d}\tau \quad \circ\!\!-\!\!\!-^{\hspace{-0.05cm}}\!\!\!-\!\!\hspace{-0.05cm}\bullet\quad X(f)\cdot \left [ {1}/{2} \cdot{\rm \delta } (f) + \frac{1}{{\rm j} \cdot 2\pi f} \right ] \hspace{0.05cm} .$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Laplace–Transformation und p–Übertragungsfunktion.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- 1. Berücksichtigt man, dass die Diracfunktion nur bei t = 0 ungleich 0 ist und das Integral über den Dirac den Wert 1 liefert, solange das Integrationsintervall den Zeitpunkt t = 0 einschließt, so erhält man:
- $$A(f) = 1, \hspace{0.2cm}A_{\rm L}(p) = 1 \hspace{0.05cm} .$$
- Richtig sind die Lösungsvorschläge 1 und 3.
- 2. Richtig sind wiederum die Lösungsvorschläge 1 und 3. Die Sprungfunktion γ(t) ist das Integral über die Diracfunktion δ(t), so dass man den Integrationssatz anwenden kann:
- $$b(t) = \int\limits_{-\infty}^t {a(\tau)} \hspace{0.1cm}{\rm d}\tau \hspace{0.3cm}\Rightarrow \hspace{0.3cm} B_{\rm L}(p) =A_{\rm L}(p)\cdot \frac{1}{p} = \frac{1}{p}\hspace{0.05cm} ,\\ B(f) = A(f)\cdot \left [ \frac{1}{2} \cdot{\rm \delta } (f) + \frac{1}{{\rm j} \cdot 2\pi f} \right ] = \frac{1}{2} \cdot{\rm \delta } (f) + \frac{1}{{\rm j} \cdot 2\pi f}\hspace{0.05cm} .$$
- 3. Richtig sind die vorgeschlagenen Alternativen 2 und 3. Nachdem die (kausale) Rechteckfunktion als Differenz zweier Sprungfunktionen dargestellt werden kann, erhält man mit dem Verschiebungssatz:
- $$c(t)= b(t) - b(t-T) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} C_{\rm L}(p) =B_{\rm L}(p)- B_{\rm L}(p) \cdot {\rm e}^{-p T} = \frac{1}{p} \cdot \left [ 1- {\rm e}^{-p T} \right ] \hspace{0.05cm} .$$
- Da die Rechteckfunktion eine endliche Energie besitzt, gilt für das Fourierspektrum:
- $$C(f) = C_{\rm L}(p)\Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm}2\pi \it f}} = \frac{1}{{\rm j} \cdot 2\pi f} \cdot \left [ 1- {\rm e}^{-{\rm j} \cdot 2\pi f T} \right ] \hspace{0.05cm}.$$
- Nach einigen trigonometrischen Umformungen kann hierfür auch geschrieben werden:
- $$C(f) = T \cdot {\rm si} (2 \pi f{T})+ {\rm j} \cdot \frac{{\rm cos} (2 \pi f{T})-1}{2\pi f} \hspace{0.05cm}.$$
- 4. Richtig ist der erste Lösungsvorschlag. Es gilt:
- $$d(t) = \frac{1}{T} \cdot \int\limits_{-\infty}^t {c(\tau)} \hspace{0.1cm}{\rm d}\tau \hspace{0.3cm}\Rightarrow \hspace{0.3cm} D_{\rm L}(p) =C_{\rm L}(p)\cdot \frac{1}{p \cdot T} = \frac{1- {\rm e}^{-p T}}{p^2 \cdot T}\hspace{0.05cm} .$$
- Da sich d(t) bis ins Unendliche erstreckt, ist der einfache Zusammenhang zwischen DL(p) und D(f) entsprechend dem Lösungsvorschlag 3 nicht gegeben. D(f) beinhaltet vielmehr auch eine Diracfunktion bei der Frequenz f = 0.