Difference between revisions of "Aufgaben:Exercise 1.1Z: Sum of Two Ternary Signals"
Line 2: | Line 2: | ||
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Einige grundlegende Definitionen}} | {{quiz-Header|Buchseite=Stochastische Signaltheorie/Einige grundlegende Definitionen}} | ||
− | [[File:P_ID146__Sto_Z1_1.png|right|Summe zweier Ternärsignale]] | + | [[File:P_ID146__Sto_Z1_1.png|right|framed|Summe zweier Ternärsignale]] |
Gegeben seien zwei dreistufige Nachrichtenquellen $X$ und $Y$, deren Ausgangssignale jeweils nur die Werte $–1$, $0$ und $+1$ annehmen können. Die Signalquellen sind statistisch voneinander unabhängig. | Gegeben seien zwei dreistufige Nachrichtenquellen $X$ und $Y$, deren Ausgangssignale jeweils nur die Werte $–1$, $0$ und $+1$ annehmen können. Die Signalquellen sind statistisch voneinander unabhängig. | ||
Revision as of 09:26, 29 March 2017
Gegeben seien zwei dreistufige Nachrichtenquellen $X$ und $Y$, deren Ausgangssignale jeweils nur die Werte $–1$, $0$ und $+1$ annehmen können. Die Signalquellen sind statistisch voneinander unabhängig.
- Eine einfache Schaltung bildet nun das Summensignal $S = X + Y$.
- Bei der Signalquelle $X$ treten die Werte $–1$, $0$ und $+1$ mit gleicher Wahrscheinlichkeit auf.
- Bei der Quelle ist $Y$ der Signalwert $0$ doppelt so wahrscheinlich wie die beiden anderen Werte $–1$ bzw. $+1$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Einige grundlegende Definitionen der Wahrscheinlichkeitsrechnung.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Lösen Sie die Teilaufgaben (3) und (4) nach der klassischen Definition. Berücksichtigen Sie trotzdem die unterschiedlichen Auftrittshäufigkeiten des Signals $Y$.
- Der Inhalt dieses Abschnitts ist in einem Lernvideo zusammengefasst:
Fragebogen
Musterlösung
$${\rm Pr}(Y = 1) + {\rm Pr}(Y = 0) + {\rm Pr}(Y = -1) = 1/2 \cdot {\rm Pr}(Y = 0) + {\rm Pr}(Y = 0) + 1/2\cdot {\rm Pr}(Y = 0) = 1\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm Pr}(Y = 0)\;\underline { = 1/2}. $$
(2) $S$ kann insgesamt $\underline {I =5}$ Werte annehmen, nämlich $0$, $\pm 1$ und $\pm 2$.
(3) Da $Y$ nicht gleichverteilt ist, kann man hier (eigentlich)die „Klassische Definition der Wahrscheinlichkeit” nicht anwenden. Teilt man $Y$ jedoch gemäß der Grafik in vier Bereiche auf, wobei man zwei der Bereiche dem Ereignis $Y = 0$ zuordnet, so kann man die klassische Definition dennoch anwenden. Man erhält dann:
$${\rm Pr}(S = 0) = {4}/{12} = {1}/{3},$$ $${\rm Pr}(S = +1) = {\rm Pr}(S = -1) ={3}/{12} = {1}/{4},$$ $${\rm Pr}(S = +2) = {\rm Pr}(S = -2) ={1}/{12}$$ $$\Rightarrow \hspace{0.3cm}{\rm Pr}(S = S_{\rm max}) = {\rm Pr}(S = +2) =1/12 \;\underline {= 0.0833}.$$
(4) Aus der Grafik ist auch ersichtlich, dass das Differenzsignal $D$ und das Summensignal $S$ die gleichen Werte mit gleichen Wahrscheinlichkeiten annehmen. Dies war zu erwarten, da ${\rm Pr}(Y = +1) ={\rm Pr}(Y = -1)$ vorgegeben ist ⇒ Lösungsvorschlag 1.