Difference between revisions of "Aufgaben:Exercise 1.2Z: Sets of Digits"
Line 68: | Line 68: | ||
'''(2)''' Richtig ist der <u>Lösungsvorschlag 2</u>: | '''(2)''' Richtig ist der <u>Lösungsvorschlag 2</u>: | ||
− | *Keine Ziffer ist gleichzeitig in $A$, $B$ und $C$ enthalten ⇒ $ A \cap B \cap C = \phi$ ⇒ $ \overline{A \cap B \cap C} = \ | + | *Keine Ziffer ist gleichzeitig in $A$, $B$ und $C$ enthalten ⇒ $ A \cap B \cap C = \phi$ ⇒ $ \overline{A \cap B \cap C} = \overline{\phi} = G$. |
*Der erste Vorschlag ist dagegen falsch. Es fehlt die $4$. | *Der erste Vorschlag ist dagegen falsch. Es fehlt die $4$. | ||
Revision as of 14:58, 21 February 2017
Die Grundmenge $G$ sei die Menge aller Ziffern zwischen $1$ und $9$. Gegeben sind dazu die folgenden Teilmengen:
$$A = [\text{die Ziffern} \leqslant 3],$$ $$ B = [\text{die durch 3 teilbaren Ziffern}],$$ $$ C = [\text{die Ziffern 5, 6, 7, 8}],$$
Daneben seien noch weitere Mengen definiert: $$D = (A \cap \overline B) \cup (\overline A \cap B),$$ $$E = (A \cup B) \cap (\overline A \cup \overline B), $$ $$F = (A \cup C) \cap \overline B, $$ $$G = (\overline A \cap \overline C) \cup (A \cap B \cap C).$$
Überlegen Sie sich zunächst, welche Ziffern zu den Mengen $D$, $E$, $F$ und $H$ gehören und beantworten Sie dann die folgenden Fragen. Begründen Sie Ihre Antworten mengentheoretisch.
Hinweise:
- Die Aufgabe gehört zum Kapitel Mengentheoretische Grundlagen.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das nachfolgende Lernvideo:
Fragebogen
Musterlösung
$$ D = (A \cap \overline B) \cup (\overline A \cap B) =[\{1, 2, 3\} \cap \{1, 2, 4, 5, 7, 8\}] \cup [\{4, 5, 6, 7, 8, 9\} \cap \{3, 6, 9\}] = \{1, 2, 6, 9\},$$
$$ E = (A \cup B) \cap (\overline A \cup \overline B) = (A \cap \overline A) \cup (A \cap \overline B) \cup (\overline A \cap B) \cup (\overline A \cap \overline B) = (A \cap \overline B) \cup (\overline A \cap B) = D = \{1, 2, 6, 9\},$$
$$F = (A \cup C= \cap \overline B = \{1, 2, 3, 5, 6, 7, 8\} \cap \{1, 2, 4, 5, 7, 8\} = \{1, 2, 5, 7, 8\},$$
$$H = (\bar A \cap \overline C) \cup (A \cap B \cap C) = (\overline A \cap \overline C) \cup \phi = \{4, 9\}.$$
(1) Richtig ist nur der Lösungsvorschlag 2:
- $A$ und $C$ haben kein gemeinsames Element.
- $A$ und $B$ beinhalten jeweils die $3$.
- $B$ und $C$ beinhalten jeweils die $6$.
(2) Richtig ist der Lösungsvorschlag 2:
- Keine Ziffer ist gleichzeitig in $A$, $B$ und $C$ enthalten ⇒ $ A \cap B \cap C = \phi$ ⇒ $ \overline{A \cap B \cap C} = \overline{\phi} = G$.
- Der erste Vorschlag ist dagegen falsch. Es fehlt die $4$.
(3) Richtig sind dier Lösungsvorschläge 1, 2 und 4:
- Der erste Vorschlag ist richtig: Die Mengen $D$ und $E$ enthalten genau die gleichen Elemente und somit auch deren Komplementärmengen.
- Auch der zweite Vorschlag ist richtig. Allgemein, das heißt für beliebige $X$ und $B$ gilt: $X \cap \bar B \subset \bar B \Rightarrow$ Mit $X = A \cup C$ folgt somit $F \subset \bar B$
- Auch der letzte Vorschlag ist richtig. $A = \{1, 2, 3\},$ $C = \{5, 6, 7, 8\}$ und $H = \{4, 9\}$ bilden ein „vollständiges System”.
- Der dritte Vorschlag ist dagegen falsch, weil $B$ und $C$ nicht disjunkt sind.