Difference between revisions of "Aufgaben:Exercise 3.2: CDF for Exercise 3.1"
m (Guenter verschob die Seite 3.2 cos²- und Dirac-VTF nach Aufgabe 3.2: cos²- und Dirac-VTF) |
|
(No difference)
|
Revision as of 14:33, 3 January 2018
Es gelten die gleichen Voraussetzungen wie bei Aufgabe 3.1.
- Die WDF der wertkontinuierlichen Zufallsgröße ist in den Bereichen $|x| > 2$ identisch Null, und im Bereich $-2 \le x \le +2$ gilt:
- $$f_x(x)={1}/{2}\cdot \cos^2({\pi}/{4}\cdot x).$$
- Auch die diskrete Zufallsgröße $y$ ist auf den Bereich $\pm 2$ begrenzt. Es gelten folgende Wahrscheinlichkeiten:
- $${\rm \Pr}(y=0)=0.4,$$
- $${\rm \Pr}(y=+1)={\rm \Pr}(y=-1)=0.2,$$
- $${\rm \Pr}(y=+2)={\rm \Pr}(y=-2)=0.1.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Wahrscheinlichkeitsdichtefunktion.
- Eine Zusammenfassung der hier behandelten Thematik bietet das Lernvideo Zusammenhang zwischen WDF und VTF.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Gegeben ist die folgende Gleichung:
- $$\int \cos^{\rm 2}( ax)\, {\rm d}x=\frac{x}{2}+\frac{1}{4 a}\cdot \sin(2 ax).$$
Fragebogen
Musterlösung
(2) Richtig sind hier nur die Aussagen 2 und 3:
- Bei einer diskreten Zufallsgröße steigt die Verteilungsfunktion nur schwach monoton an, d. h. es gibt außer Sprüngen ausschließlich horizontale Abschnitte der VTF.
- Da an den Sprungstellen jeweils der rechtsseitige Grenzwert gilt, ist demzufolge $F_y(-2) = 0.1$, also ungleich $0$.
(3) Die VTF $F_x(r)$ berechnet sich als das Integral von $-\infty$ bis $r$ über die WDF $f_x(x)$. Aufgrund der Symmetrie kann hierfür im Bereich $0 \le r \le +2$ geschrieben werden:
$$F_{x} (r) =\frac{1}{2} + \int_{0}^{r} f_x(x)\;{\rm d}x = \frac{1}{2} + \int_{0}^{ r} {1}/{2}\cdot \cos^2 ({\pi}/{4}\cdot x)\;{\rm d}x.$$
In gleicher Weise wie bei der Teilaufgabe (7) der Aufgabe 3.1 erhält man somit: $$F_{x} (r) =\rm \frac{1}{2} + \frac{\it r}{\rm 4} + \rm \frac{1}{2 \pi} \cdot\rm sin({\pi}/{2}\cdot \it r),$$ $$F_{x} (r=0) =\rm \frac{1}{2} + \rm \frac{1}{2 \pi} \cdot\rm sin(\rm 0)\hspace{0.15cm}{= 0.500},$$ $$F_{x} (r=1) =\rm \frac{1}{2} + \frac{\rm 1}{\rm 4} + \rm \frac{1}{2 \pi}\cdot \rm sin({\pi}/{2})\hspace{0.15cm}\underline{=0.909},$$ $$F_{x} (r=2) =\rm \frac{1}{2} + \frac{\rm1}{\rm 2} + \rm \frac{1}{2 \pi} \cdot \rm sin(\pi)\hspace{0.15cm}{= 1.000}.$$
(41) Aufgrund der Punktsymmetrie um $r=0$ bzw. $F_{x} (0) = 1/2$ und wegen $\sin(-x) = -sin(x)$ gilt diese Formel im gesamten Bereich, wie die folgende Kontrollrechnung zeigt: $$F_{x} (r=-2) =\rm \frac{1}{2} - \frac{\rm1}{\rm 2} - \rm \frac{1}{2 \pi} \cdot\rm sin(\pi)=0,$$ $$F_{x} (r=-1) =\rm \frac{1}{2} - \frac{\rm1}{\rm 4} - \rm \frac{1}{2 \pi} \cdot\rm sin({\pi}/{2})\hspace{0.15cm}\underline{= 0.091}.$$
(5) Für die Wahrscheinlichkeit, dass $x$ zwischen $-1$ und $+1$ liegt, gilt: $${\rm Pr}(|x|< 1)= F_{x}(1) - F_{ x}(-1)= 0.909-0.091\hspace{0.15cm}\underline{= 0.818}.$$
Dieses Ergebnis stimmt exakt mit dem Resultat der Teilaufgabe (7) der Aufgabe 3.1 überein, das durch direkte Integration über die WDF ermittelt wurde.
(6) Die VTF der diskreten Zufallsgröße $y$ an der Stelle $y =0$ ist die Summe der Wahrscheinlichkeiten von $-2$, $-1$ und $0$, also gilt $F_y(r = 0)\hspace{0.15cm}\underline{= 0.7}$.