Difference between revisions of "Aufgaben:Exercise 4.1: PDF, CDF and Probability"

From LNTwww
Line 70: Line 70:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
[[File:P_ID2857__Inf_A_4_1a_neu.png|right|]]
+
[[File:P_ID2857__Inf_A_4_1a_neu.png|right|WDF und VTF der wertdiskreten Zufallsgröße ''X'']]
<b>a)</b>&nbsp;&nbsp;Die Verteilungsfunktion (VTF) <i>F<sub>X</sub></i>(<i>x</i>) ergibt sich aus der Wahrscheinlichkeitsdichtefunktion <i>f<sub>X</sub></i>(<i>x</i>) durch Integration über die (umbenannte) Zufallsgröße im Bereich von &ndash;&#8734; bis <i>x</i>. Die Umkehrung lautet: Ist die VTF gegeben, so erhält man die WDF durch Differentiation.
+
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 2</u>:
Die vorgegebene VTF beinhaltet fünf Unstetigkeitsstellen, die nach der Differentiation zu fünf Diracfunktionen führen:
+
*Die Verteilungsfunktion (VTF) $F_X(x)$ ergibt sich aus der Wahrscheinlichkeitsdichtefunktion $f_X(x)$ durch Integration über die (umbenannte) Zufallsgröße im Bereich von $- \infty$ bis $x$.  
$$f_X(x) \hspace{-0.15cm}  = \hspace{-0.15cm} 0.1 \cdot {\rm \delta}( x+2)  
+
*Die Umkehrung lautet: Ist die VTF gegeben, so erhält man die WDF durch Differentiation.
+ 0.2 \cdot {\rm \delta}( x+1)  $$ $$\
+
*Die vorgegebene VTF beinhaltet fünf Unstetigkeitsstellen, die nach der Differentiation zu fünf Diracfunktionen führen:
  + \hspace{-0.15cm} 0.4 \cdot {\rm \delta}( x) + 0.2 \cdot {\rm \delta}( x-1) $$ $$\
+
:$$f_X(x) =  0.1 \cdot {\rm \delta}( x+2)  
 +
+ 0.2 \cdot {\rm \delta}( x+1)   
 +
  + 0.4 \cdot {\rm \delta}( x) + 0.2 \cdot {\rm \delta}( x-1)  
 
   +\hspace{-0.15cm} 0.1 \cdot {\rm \delta}( x-2)\hspace{0.05cm}.$$
 
   +\hspace{-0.15cm} 0.1 \cdot {\rm \delta}( x-2)\hspace{0.05cm}.$$
Die Diracgewichte geben die Auftrittswahrscheinlichkeiten der Zufallsgröße <i>X</i>&nbsp;=&nbsp;{&ndash;2,&nbsp;&ndash;1,&nbsp;0,&nbsp;+1,&nbsp;+2} an, zum Beispiel:
+
*Die Diracgewichte geben die Auftrittswahrscheinlichkeiten der Zufallsgröße $X = \{-2, -1, 0, +1, +2\}$ an, zum Beispiel:
$${\rm Pr}(X = 0) \hspace{-0.15cm}  = \hspace{-0.15cm} F_X(x \hspace{0.05cm}\rightarrow\hspace{0.05cm}0^{+}) - F_X(x \hspace{0.05cm}\rightarrow\hspace{0.05cm}0^{-})$$ $$=\
+
:$${\rm Pr}(X = 0) = F_X(x \hspace{0.05cm}\rightarrow\hspace{0.05cm}0^{+}) - F_X(x \hspace{0.05cm}\rightarrow\hspace{0.05cm}0^{-}) =
\hspace{-0.15cm} 0.7 - 0.3 = 0.4\hspace{0.05cm}.$$
+
  0.7 - 0.3 = 0.4\hspace{0.05cm}.$$
Dementsprechend lauten die weiteren Wahrscheinlichkeiten:
+
*Dementsprechend lauten die weiteren Wahrscheinlichkeiten:
$${\rm Pr}(X = +1) = {\rm Pr}(X = -1) = 0.2\hspace{0.05cm},\hspace{0.3cm}
+
:$${\rm Pr}(X = +1) = {\rm Pr}(X = -1) = 0.2\hspace{0.05cm},\hspace{0.3cm}
 
{\rm Pr}(X = +2) = {\rm Pr}(X = -2) = 0.1\hspace{0.05cm}.$$
 
{\rm Pr}(X = +2) = {\rm Pr}(X = -2) = 0.1\hspace{0.05cm}.$$
Richtig sind somit die <u>Lösungsvorschläge 1 und 2</u>.
 
  
<b>b)</b>&nbsp;&nbsp;Aus der eben berechneten WDF erhält man:
+
'''(2)'''&nbsp; Aus der eben berechneten WDF erhält man:
$${\rm Pr}(X >0) \hspace{-0.15cm}  = \hspace{-0.15cm} {\rm Pr}(X = +1) + {\rm Pr}(X = +2)
+
:$${\rm Pr}(X >0) = {\rm Pr}(X = +1) + {\rm Pr}(X = +2)
\hspace{0.15cm}\underline {= 0.3}\hspace{0.05cm},$$ $$\
+
\hspace{0.15cm}\underline {= 0.3}\hspace{0.05cm},$$
{\rm Pr}(|X| \le 1) \hspace{-0.15cm}  = \hspace{-0.15cm}
+
:$${\rm Pr}(|X| \le 1) ={\rm Pr}(X = -1) + {\rm Pr}(X = 0) + {\rm Pr}(X = +1) = 0.2 + 0.4 +0.2
{\rm Pr}(X = -1) + {\rm Pr}(X = 0) + {\rm Pr}(X = +1) = 0.2 + 0.4 +0.2
 
 
\hspace{0.15cm}\underline {= 0.8}\hspace{0.05cm}.$$
 
\hspace{0.15cm}\underline {= 0.8}\hspace{0.05cm}.$$
  
 
Zum gleichen Ergebnis kommt man über die Verteilungsfunktion. Hier lautet die allgemeine Gleichung, die für wertdiskrete und wertkontinuierliche Zufallsgrößen gleichermaßen gilt:
 
Zum gleichen Ergebnis kommt man über die Verteilungsfunktion. Hier lautet die allgemeine Gleichung, die für wertdiskrete und wertkontinuierliche Zufallsgrößen gleichermaßen gilt:
$${\rm Pr}(A < X \le B) =F_X(B) - F_X(A) \hspace{0.05cm}.$$  
+
:$${\rm Pr}(A < X \le B) =F_X(B) - F_X(A) \hspace{0.05cm}.$$  
  
:* Mit <i>A</i> = 0 und <i>B</i> = +2 erhält man somit:
+
* Mit $A= 0$ und $B = +2$ erhält man somit:
$${\rm Pr}(0 < X \le +2) = {\rm Pr}(X >0)= F_X(+2) - F_X(0) = 1 - 0.7 \hspace{0.15cm}\underline {= 0.3} \hspace{0.05cm}.$$
+
:$${\rm Pr}(0 < X \le +2) = {\rm Pr}(X >0)= F_X(+2) - F_X(0) = 1 - 0.7 \hspace{0.15cm}\underline {= 0.3} \hspace{0.05cm}.$$
:*Setzt man A = –2 und B = +1, so ergibt sich:
+
*Setzt man $A=-2$ und $B = +1$, so ergibt sich:
$${\rm Pr}(-2 < X \le +1) = {\rm Pr}(|X|  \le 1)= F_X(+1) - F_X(-2) = 0.9 - 0.1 \hspace{0.15cm}\underline {= 0.8} \hspace{0.05cm}.$$
+
:$${\rm Pr}(-2 < X \le +1) = {\rm Pr}(|X|  \le 1)= F_X(+1) - F_X(-2) = 0.9 - 0.1 \hspace{0.15cm}\underline {= 0.8} \hspace{0.05cm}.$$
  
<b>c)</b>&nbsp;&nbsp;Die Verteilungsfunktion <i>F<sub>Y</sub></i>(<i>y</i>) ergibt sich aus der (umbenannten) WDF <i>f<sub>Y</sub></i>(<i>&eta;</i>) durch Integration von <nobr>&ndash;&#8734; bis <i>y</i></nobr>. Aufgrund der Symmetrie kann hierfür im Bereich 0 &#8804; <i>y</i> &#8804; 2 geschrieben werden:
+
'''(3)'''&nbsp; Die Verteilungsfunktion $F_Y(y)$ ergibt sich aus der (umbenannten) WDF $f_Y(\eta)$ durch Integration von $- \infty$ bis $x$. Aufgrund der Symmetrie kann hierfür im Bereich $0 \le y \le +2$ geschrieben werden:
$$F_Y(y) = \int_{-\infty}^{\hspace{0.05cm}y} \hspace{-0.1cm}f_Y(\eta) \hspace{0.1cm}{\rm d}\eta =\frac{1}{2}+\int_{0}^{\hspace{0.05cm}y} \hspace{-0.1cm}f_Y(\eta) \hspace{0.1cm}{\rm d}\eta.$$
+
[[File:P_ID2858__Inf_A_4_1c_neu.png|right|WDF und VTF der wertkontinuierlichen Zufallsgröße ''Y'']]
$$\Rightarrow \hspace{0.3cm}F_Y(y) = \frac{1}{2}+\int_{0}^{\hspace{0.05cm}y} \hspace{0.1cm}\frac{1}{2} \cdot \cos^2(\frac{\pi}{4} \cdot \eta) \hspace{0.1cm}{\rm d}\eta = \frac{1}{2}+\frac{y}{4} + \frac{1}{2\pi} \cdot \sin(\frac{\pi}{2} \cdot y).$$
+
:$$F_Y(y) = \int_{-\infty}^{\hspace{0.05cm}y} \hspace{-0.1cm}f_Y(\eta) \hspace{0.1cm}{\rm d}\eta ={1}/{2}+\int_{0}^{\hspace{0.05cm}y} \hspace{-0.1cm}f_Y(\eta) \hspace{0.1cm}{\rm d}\eta.$$
[[File:P_ID2858__Inf_A_4_1c_neu.png|right|]]
+
:$$\Rightarrow \hspace{0.3cm}F_Y(y) = \frac{1}{2}+\int_{0}^{\hspace{0.05cm}y} \hspace{0.1cm}\frac{1}{2} \cdot \cos^2({\pi}/{4} \cdot \eta) \hspace{0.1cm}{\rm d}\eta = \frac{1}{2}+\frac{y}{4} + \frac{1}{2\pi} \cdot \sin({\pi}/{2} \cdot y).$$
Die Gleichung gilt im gesamten Bereich &ndash;2 &#8804; <i>y</i> &#8804; +2. Die gesuchten VTF&ndash;Werte sind damit:
+
Die Gleichung gilt im gesamten Bereich $0 \le y \le +2$. Die gesuchten VTF&ndash;Werte sind damit:
:*<i>F<sub>Y</sub></i>(<i>y</i> = 0)<u> = 0.5</u> (Integral über die halbe WDF)
+
*$F_Y(y=0)\hspace{0.15cm}\underline{= 0.5}$ (Integral über die halbe WDF),
:*<i>F<sub>Y</sub></i>(<i>y</i> = 2)<u> = 1</u> (Integral über die gesamte WDF)
+
*$F_Y(y=2)\hspace{0.15cm}\underline{= 1}$ (Integral über die gesamte WDF)
:*<i>F<sub>Y</sub></i>(<i>y</i><u> = 1)</u> = 3/4 + 1/(2 <i>&pi;</i>) <u>&asymp; 0.909</u> (rot hinterlegte Fläche in der WDF)
+
*$F_Y(y=1)= 3/4 + 1/(2 \pi)\hspace{0.15cm}\underline{= 0.909}$ (rot hinterlegte Fläche in der WDF)
  
<br><b>d)</b>&nbsp;&nbsp;Die Wahrscheinlichkeit, dass die wertkontinuierliche Zufallsgröße <i>Y</i> im Bereich von &ndash;<i>&epsilon;</i> bis +<i>&epsilon;</i> liegt, kann mit der angegebenen Gleichung wie folgt berechnet werden:
 
$${\rm Pr}(-\varepsilon \le Y \le +\varepsilon) = F_Y(+\varepsilon) - F_Y(-\varepsilon) \hspace{0.05cm}.$$
 
  
Berücksichtigt wurde, dass man bei der kontinuierlichen Zufallsgröße <i>Y</i> das &bdquo;<&rdquo;&ndash;Zeichen ohne Verfälschung durch das &bdquo;&#8804;&rdquo;&ndash;Zeichen ersetzen kann. Mit dem Grenzübergang <i>&epsilon;</i> &#8594; 0  ergibt sich die gesuchte Wahrscheinlichkeit:
+
'''(4)'''&nbsp; Die Wahrscheinlichkeit, dass die wertkontinuierliche Zufallsgröße $Y$ im Bereich von $-\varepsilon$ bis $+\varepsilon$ liegt, kann mit der angegebenen Gleichung wie folgt berechnet werden:
$${\rm Pr}(Y = 0)  \hspace{-0.15cm}  =  \hspace{-0.15cm} \ lim_{\varepsilon\hspace{0.05cm}\rightarrow\hspace{0.05cm}0}\hspace{0.1cm}{\rm Pr}(-\varepsilon \le Y \le +\varepsilon) =  
+
:$${\rm Pr}(-\varepsilon \le Y \le +\varepsilon) = F_Y(+\varepsilon) - F_Y(-\varepsilon) \hspace{0.05cm}.$$
\lim_{\varepsilon\hspace{0.05cm}\rightarrow\hspace{0.05cm}0}\hspace{0.1cm} F_Y(+\varepsilon) - \lim_{\varepsilon\hspace{0.05cm}\rightarrow\hspace{0.05cm}0}\hspace{0.1cm} F_Y(-\varepsilon)$$ $$=\
 
    \hspace{-0.15cm} F_Y(y \hspace{0.05cm}\rightarrow\hspace{0.05cm}0^{+}) - F_Y(y \hspace{0.05cm}\rightarrow\hspace{0.05cm}0^{-})\hspace{0.05cm}.$$
 
  
Da bei einer kontinuierlichen Zufallsgröße die beiden Grenzwerte gleich sind, gilt <u>Pr(<i>Y</i> = 0) = 0</u>.
+
Berücksichtigt wurde, dass man bei der kontinuierlichen Zufallsgröße $Y$ das &bdquo;<&rdquo;&ndash;Zeichen ohne Verfälschung durch das &bdquo;&#8804;&rdquo;&ndash;Zeichen ersetzen kann. Mit dem Grenzübergang $\varepsilon \to 0$  ergibt sich die gesuchte Wahrscheinlichkeit:
 +
:$${\rm Pr}(Y = 0)  =\lim_{\varepsilon\hspace{0.05cm}\rightarrow\hspace{0.05cm}0}\hspace{0.1cm}{\rm Pr}(-\varepsilon \le Y \le +\varepsilon) =  
 +
\lim_{\varepsilon\hspace{0.05cm}\rightarrow\hspace{0.05cm}0}\hspace{0.1cm} F_Y(+\varepsilon) - \lim_{\varepsilon\hspace{0.05cm}\rightarrow\hspace{0.05cm}0}\hspace{0.1cm} F_Y(-\varepsilon) =
 +
    F_Y(y \hspace{0.05cm}\rightarrow\hspace{0.05cm}0^{+}) - F_Y(y \hspace{0.05cm}\rightarrow\hspace{0.05cm}0^{-})\hspace{0.05cm}.$$
  
<u>Allgemein gilt:</u> Die Wahrscheinlichkeit Pr(<i>Y</i> = <i>y</i><sub>0</sub>), dass eine wertkontinuierliche Zufallsgröße <i>Y</i> einen festen Wert <i>y</i><sub>0</sub> annimmt, ist stets 0.
+
Da bei einer kontinuierlichen Zufallsgröße die beiden Grenzwerte gleich sind, gilt $\underline{{\rm Pr}(Y = 0) = 0}$.
  
<b>e)</b>&nbsp;&nbsp;Richtig ist der <u>Lösungsvorschlag 2</u>: Aufgrund der vorliegenden WDF kann das Ergebnis <i>Y</i> = 3 ausgeschlossen werden. Das Ergebnis <i>Y</i> = 0 ist dagegen durchaus möglich, obwohl Pr(<i>Y</i> = 0) = 0 ist. Führt man zum Beispiel ein Zufallsexperiment <i>N</i> &#8594; &#8734; mal durch und erhält dabei <i>N</i><sub>0</sub> mal das Ergebnis <i>Y</i> = 0, so gilt bei endlichem <i>N</i><sub>0</sub> nach der klassischen Definition:
+
<u>Allgemein gilt:</u> Die Wahrscheinlichkeit ${\rm Pr}(Y = y_0)$, dass eine wertkontinuierliche Zufallsgröße $Y$ einen festen Wert $y_0$ annimmt, ist stets $0$.
$${\rm Pr}(Y = 0) = \lim_{N\hspace{0.05cm}\rightarrow\hspace{0.05cm}\infty}\hspace{0.1cm}{N_0}/{N} = 0\hspace{0.05cm}.$$
 
  
<b>f)</b>&nbsp;&nbsp;Wir gehen wieder von der Gleichung Pr(<i>A</i> &#8804; <i>Y</i> &#8804; <i>B</i>) = <i>F<sub>Y</sub></i>(<i>B</i>) &ndash; <i>F<sub>Y</Sub></i>(<i>A</i>) aus. Mit <i>A</i> = 0 und <i>B</i> &#8594; &#8734; (bzw. <i>B</i> = 2) erhält man:
+
 
$${\rm Pr}( Y > 0) = {\rm Pr}(0 \le Y \le \infty)  
+
'''(5)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:
 +
*Aufgrund der vorliegenden WDF kann das Ergebnis $Y=3$ ausgeschlossen werden.
 +
*Das Ergebnis $Y=0$ ist dagegen durchaus möglich, obwohl ${\rm Pr}(Y = 0) = 0$ ist.
 +
*Führt man zum Beispiel ein Zufallsexperiment $N \to \infty$ mal durch und erhält dabei $N_0$ mal das Ergebnis $Y= 0$, so gilt bei endlichem $N_0$ nach der klassischen Definition der Wahrscheinlichkeit:
 +
:$${\rm Pr}(Y = 0) = \lim_{N\hspace{0.05cm}\rightarrow\hspace{0.05cm}\infty}\hspace{0.1cm}{N_0}/{N} = 0\hspace{0.05cm}.$$
 +
 
 +
'''(6)'''&nbsp; Wir gehen wieder von der von der für kontinuierliche Zufallsgrößen gültigen Gleichung $ {\rm Pr}(A \le Y \le B) = F_Y(B) - F_Y(A)$ aus:
 +
*Mit $A = 0$ und $B \to \infty$ (bzw. $B = 2$) erhält man:
 +
:$${\rm Pr}( Y > 0) = {\rm Pr}(0 \le Y \le \infty)  
 
= {\rm Pr}(0 \le Y \le 2) = F_Y(2) - F_Y(0)  
 
= {\rm Pr}(0 \le Y \le 2) = F_Y(2) - F_Y(0)  
 
\hspace{0.15cm}\underline {= 0.5}\hspace{0.05cm}.$$
 
\hspace{0.15cm}\underline {= 0.5}\hspace{0.05cm}.$$
 
+
*Bei der symmetrischen kontinuierlichen Zufallsgröße $Y$ ist erwartungsgemäß ${\rm Pr}( Y > 0) = 1/2$.  
Bei der symmetrischen kontinuierlichen Zufallsgröße <i>Y</i> ist erwartungsgemäß Pr(<i>Y</i> > 0) = 1/2. Obwohl auch die wertdiskrete Zufallsgröße <i>X</i> symmetrisch um <i>x</i> = 0 ist, wurde dagegen oben Pr(<i>X</i> > 0) = 0.3 ermittelt. Weiter erhält man mit <i>A</i> = &ndash;1 und <i>B</i> = +1 wegen <i>F<sub>Y</Sub></i>(&ndash;1) = 1 &ndash;
+
*Obwohl auch die wertdiskrete Zufallsgröße $X$ symmetrisch um $x= 0$ ist, wurde dagegen oben ${\rm Pr}( X > 0) = 0.3$ ermittelt.  
<i>F<sub>Y</sub></i>(+1):
+
*Weiter erhält man mit $A = -1$ und $B = +1$ wegen $F_Y(-1) = 1- F_Y(+1)$:
 
+
:$${\rm Pr}( |Y| \le 1)  =  {\rm Pr}(-1 \le Y \le +1)  
$${\rm Pr}( |Y| \le 1)  =  {\rm Pr}(-1 \le Y \le +1)  
+
=  F_Y(+1) - F_Y(-1)  =  2 \cdot F_Y(+1) -1 = 2 \cdot 0.909 -1 \hspace{0.15cm}\underline {= 0.818}. $$
=  F_Y(+1) - F_Y(-1) $$ $$\
 
   =  2 \cdot F_Y(+1) -1 = 2 \cdot 0.909 -1 \hspace{0.15cm}\underline {= 0.818}. $$
 
  
  

Revision as of 11:59, 5 April 2017

VTF (oben) und WDF (unten)

Zur Wiederholung einiger wichtiger Grundlagen aus dem Buch „Stochastische Signaltheorie” beschäftigen wir uns mit


Die obere Darstellung zeigt die Verteilungsfunktion $F_X(x)$ einer wertdiskreten Zufallsgröße $X$. Die zugehörige WDF $f_X(x)$ ist in der Teilaufgabe (1) zu bestimmen. Die Gleichung

$$ {\rm Pr}(A < X \le B) = F_X(B) - F_X(A) = \lim_{\varepsilon \hspace{0.05cm}\rightarrow \hspace{0.05cm}0} \int_{A+\varepsilon}^{B+\varepsilon} \hspace{-0.15cm} f_X(x) \hspace{0.1cm}{\rm d}x $$

stellt zwei Möglichkeiten dar, um die Wahrscheinlichkeit für das Ereignis „Die Zufallsgröße $X$ liegt in einem Intervall” aus der VTF bzw. der WDF zu berechnen.

Die untere Grafik zeigt die Wahrscheinlichkeitsdichtefunktion

$$ f_Y(y) = \left\{ \begin{array}{c} \hspace{0.1cm}1/2 \cdot \cos^2(\pi/4 \cdot y) \\ \hspace{0.1cm} 0 \\ \end{array} \right.\quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}l} | y| \le 2, \\ y < -2 \hspace{0.1cm}{\rm und}\hspace{0.1cm}y > +2 \\ \end{array}$$

einer wertkontinuierlichen Zufallsgröße $Y$, die auf den Bereich $|Y| \le 2$ begrenzt ist.

Prinzipiell besteht bei der kontinuierlichen Zufallsgröße $Y$ der gleiche Zusammenhang zwischen WDF, VTF und Wahrscheinlichkeiten wie bei einer diskreten Zufallsgröße. Sie werden trotzdem einige Detailunterschiede feststellen. Beispielsweise kann bei der kontinuierlichen Zufallsgröße $Y$ in obiger Gleichung auf den Grenzübergang verzichtet werden, und man erhält vereinfacht:

$${\rm Pr}(A \le Y \le B) = F_Y(B) - F_Y(A) =\int_{A}^{B} \hspace{-0.01cm} f_Y(y) \hspace{0.1cm}{\rm d}y\hspace{0.05cm}.$$

Hinweise:

  • Die Aufgabe gehört zum Kapitel Differentielle Entropie.
  • Nützliche Hinweise zur Lösung dieser Aufgabe und weitere Informationen zu den wertkontinuierlichen Zufallsgrößen finden Sie im Kapitel „Kontinuierliche Zufallsgrößen” des Buches Stochastische Signaltheorie.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Gegeben ist zudem das folgende unbstimmte Integral:
$$\int \hspace{0.1cm} \cos^2(A \eta) \hspace{0.1cm}{\rm d}\eta = \frac{\eta}{2} + \frac{1}{4A} \cdot \sin(2A \eta).$$

Fragebogen

1

Bestimmen Sie die WDF $f_X(x)$ der wertdiskreten Zufallsgröße $X$. Welche der folgenden Aussagen sind zutreffend?

Die WDF setzt sich aus fünf Diracfunktionen zusammen.
Es gilt ${\rm Pr}(X= 0) = 0.4$ und ${\rm Pr}(X= 1) = 0.2$.
Es gilt ${\rm Pr}(X= 2) = 0.4$.

2

Berechnen Sie die folgenden Wahrscheinlichkeiten:

${\rm Pr}(X > 0) \ = $

${\rm Pr}(|X| ≤ 1) \ = $

3

Welche Werte ergeben sich für die Verteilungsfunktion $F_Y(y) ={\rm Pr}(Y \le y)$ der wertkontinuierlichen Zufallsgröße $Y$, insbesondere:

$F_Y(y = 0) \ = $

$F_Y(y = 1) \ = $

$F_Y(y = 2) \ = $

4

Wie groß ist die Wahrscheinlichkeit, dass $Y = 0$ ist?

${\rm Pr}(Y = 0) \ = $

5

Welche der folgenden Aussagen sind richtig?

Das Ergebnis $Y = 0$ ist unmöglich.
Das Ergebnis $Y = 3$ ist unmöglich.

6

Wie groß sind die folgenden Wahrscheinlichkeiten?

${\rm Pr}(Y > 0) \ = $

${\rm Pr}(|Y| ≤ 1) \ = $


Musterlösung

WDF und VTF der wertdiskreten Zufallsgröße X

(1)  Richtig sind die Lösungsvorschläge 1 und 2:

  • Die Verteilungsfunktion (VTF) $F_X(x)$ ergibt sich aus der Wahrscheinlichkeitsdichtefunktion $f_X(x)$ durch Integration über die (umbenannte) Zufallsgröße im Bereich von $- \infty$ bis $x$.
  • Die Umkehrung lautet: Ist die VTF gegeben, so erhält man die WDF durch Differentiation.
  • Die vorgegebene VTF beinhaltet fünf Unstetigkeitsstellen, die nach der Differentiation zu fünf Diracfunktionen führen:
$$f_X(x) = 0.1 \cdot {\rm \delta}( x+2) + 0.2 \cdot {\rm \delta}( x+1) + 0.4 \cdot {\rm \delta}( x) + 0.2 \cdot {\rm \delta}( x-1) +\hspace{-0.15cm} 0.1 \cdot {\rm \delta}( x-2)\hspace{0.05cm}.$$
  • Die Diracgewichte geben die Auftrittswahrscheinlichkeiten der Zufallsgröße $X = \{-2, -1, 0, +1, +2\}$ an, zum Beispiel:
$${\rm Pr}(X = 0) = F_X(x \hspace{0.05cm}\rightarrow\hspace{0.05cm}0^{+}) - F_X(x \hspace{0.05cm}\rightarrow\hspace{0.05cm}0^{-}) = 0.7 - 0.3 = 0.4\hspace{0.05cm}.$$
  • Dementsprechend lauten die weiteren Wahrscheinlichkeiten:
$${\rm Pr}(X = +1) = {\rm Pr}(X = -1) = 0.2\hspace{0.05cm},\hspace{0.3cm} {\rm Pr}(X = +2) = {\rm Pr}(X = -2) = 0.1\hspace{0.05cm}.$$

(2)  Aus der eben berechneten WDF erhält man:

$${\rm Pr}(X >0) = {\rm Pr}(X = +1) + {\rm Pr}(X = +2) \hspace{0.15cm}\underline {= 0.3}\hspace{0.05cm},$$
$${\rm Pr}(|X| \le 1) ={\rm Pr}(X = -1) + {\rm Pr}(X = 0) + {\rm Pr}(X = +1) = 0.2 + 0.4 +0.2 \hspace{0.15cm}\underline {= 0.8}\hspace{0.05cm}.$$

Zum gleichen Ergebnis kommt man über die Verteilungsfunktion. Hier lautet die allgemeine Gleichung, die für wertdiskrete und wertkontinuierliche Zufallsgrößen gleichermaßen gilt:

$${\rm Pr}(A < X \le B) =F_X(B) - F_X(A) \hspace{0.05cm}.$$
  • Mit $A= 0$ und $B = +2$ erhält man somit:
$${\rm Pr}(0 < X \le +2) = {\rm Pr}(X >0)= F_X(+2) - F_X(0) = 1 - 0.7 \hspace{0.15cm}\underline {= 0.3} \hspace{0.05cm}.$$
  • Setzt man $A=-2$ und $B = +1$, so ergibt sich:
$${\rm Pr}(-2 < X \le +1) = {\rm Pr}(|X| \le 1)= F_X(+1) - F_X(-2) = 0.9 - 0.1 \hspace{0.15cm}\underline {= 0.8} \hspace{0.05cm}.$$

(3)  Die Verteilungsfunktion $F_Y(y)$ ergibt sich aus der (umbenannten) WDF $f_Y(\eta)$ durch Integration von $- \infty$ bis $x$. Aufgrund der Symmetrie kann hierfür im Bereich $0 \le y \le +2$ geschrieben werden:

WDF und VTF der wertkontinuierlichen Zufallsgröße Y
$$F_Y(y) = \int_{-\infty}^{\hspace{0.05cm}y} \hspace{-0.1cm}f_Y(\eta) \hspace{0.1cm}{\rm d}\eta ={1}/{2}+\int_{0}^{\hspace{0.05cm}y} \hspace{-0.1cm}f_Y(\eta) \hspace{0.1cm}{\rm d}\eta.$$
$$\Rightarrow \hspace{0.3cm}F_Y(y) = \frac{1}{2}+\int_{0}^{\hspace{0.05cm}y} \hspace{0.1cm}\frac{1}{2} \cdot \cos^2({\pi}/{4} \cdot \eta) \hspace{0.1cm}{\rm d}\eta = \frac{1}{2}+\frac{y}{4} + \frac{1}{2\pi} \cdot \sin({\pi}/{2} \cdot y).$$

Die Gleichung gilt im gesamten Bereich $0 \le y \le +2$. Die gesuchten VTF–Werte sind damit:

  • $F_Y(y=0)\hspace{0.15cm}\underline{= 0.5}$ (Integral über die halbe WDF),
  • $F_Y(y=2)\hspace{0.15cm}\underline{= 1}$ (Integral über die gesamte WDF)
  • $F_Y(y=1)= 3/4 + 1/(2 \pi)\hspace{0.15cm}\underline{= 0.909}$ (rot hinterlegte Fläche in der WDF)


(4)  Die Wahrscheinlichkeit, dass die wertkontinuierliche Zufallsgröße $Y$ im Bereich von $-\varepsilon$ bis $+\varepsilon$ liegt, kann mit der angegebenen Gleichung wie folgt berechnet werden:

$${\rm Pr}(-\varepsilon \le Y \le +\varepsilon) = F_Y(+\varepsilon) - F_Y(-\varepsilon) \hspace{0.05cm}.$$

Berücksichtigt wurde, dass man bei der kontinuierlichen Zufallsgröße $Y$ das „<”–Zeichen ohne Verfälschung durch das „≤”–Zeichen ersetzen kann. Mit dem Grenzübergang $\varepsilon \to 0$ ergibt sich die gesuchte Wahrscheinlichkeit:

$${\rm Pr}(Y = 0) =\lim_{\varepsilon\hspace{0.05cm}\rightarrow\hspace{0.05cm}0}\hspace{0.1cm}{\rm Pr}(-\varepsilon \le Y \le +\varepsilon) = \lim_{\varepsilon\hspace{0.05cm}\rightarrow\hspace{0.05cm}0}\hspace{0.1cm} F_Y(+\varepsilon) - \lim_{\varepsilon\hspace{0.05cm}\rightarrow\hspace{0.05cm}0}\hspace{0.1cm} F_Y(-\varepsilon) = F_Y(y \hspace{0.05cm}\rightarrow\hspace{0.05cm}0^{+}) - F_Y(y \hspace{0.05cm}\rightarrow\hspace{0.05cm}0^{-})\hspace{0.05cm}.$$

Da bei einer kontinuierlichen Zufallsgröße die beiden Grenzwerte gleich sind, gilt $\underline{{\rm Pr}(Y = 0) = 0}$.

Allgemein gilt: Die Wahrscheinlichkeit ${\rm Pr}(Y = y_0)$, dass eine wertkontinuierliche Zufallsgröße $Y$ einen festen Wert $y_0$ annimmt, ist stets $0$.


(5)  Richtig ist der Lösungsvorschlag 2:

  • Aufgrund der vorliegenden WDF kann das Ergebnis $Y=3$ ausgeschlossen werden.
  • Das Ergebnis $Y=0$ ist dagegen durchaus möglich, obwohl ${\rm Pr}(Y = 0) = 0$ ist.
  • Führt man zum Beispiel ein Zufallsexperiment $N \to \infty$ mal durch und erhält dabei $N_0$ mal das Ergebnis $Y= 0$, so gilt bei endlichem $N_0$ nach der klassischen Definition der Wahrscheinlichkeit:
$${\rm Pr}(Y = 0) = \lim_{N\hspace{0.05cm}\rightarrow\hspace{0.05cm}\infty}\hspace{0.1cm}{N_0}/{N} = 0\hspace{0.05cm}.$$

(6)  Wir gehen wieder von der von der für kontinuierliche Zufallsgrößen gültigen Gleichung $ {\rm Pr}(A \le Y \le B) = F_Y(B) - F_Y(A)$ aus:

  • Mit $A = 0$ und $B \to \infty$ (bzw. $B = 2$) erhält man:
$${\rm Pr}( Y > 0) = {\rm Pr}(0 \le Y \le \infty) = {\rm Pr}(0 \le Y \le 2) = F_Y(2) - F_Y(0) \hspace{0.15cm}\underline {= 0.5}\hspace{0.05cm}.$$
  • Bei der symmetrischen kontinuierlichen Zufallsgröße $Y$ ist erwartungsgemäß ${\rm Pr}( Y > 0) = 1/2$.
  • Obwohl auch die wertdiskrete Zufallsgröße $X$ symmetrisch um $x= 0$ ist, wurde dagegen oben ${\rm Pr}( X > 0) = 0.3$ ermittelt.
  • Weiter erhält man mit $A = -1$ und $B = +1$ wegen $F_Y(-1) = 1- F_Y(+1)$:
$${\rm Pr}( |Y| \le 1) = {\rm Pr}(-1 \le Y \le +1) = F_Y(+1) - F_Y(-1) = 2 \cdot F_Y(+1) -1 = 2 \cdot 0.909 -1 \hspace{0.15cm}\underline {= 0.818}. $$