Difference between revisions of "Aufgaben:Exercise 4.1Z: Calculation of Moments"
Line 63: | Line 63: | ||
{Mit welcher Wahrscheinlichkeiten unterscheidet sich die Zufallsgröße ($X$ bzw. $Y$) vom Mittelwert $m$ betragsmäßig um mehr als die Streuung $\sigma$? | {Mit welcher Wahrscheinlichkeiten unterscheidet sich die Zufallsgröße ($X$ bzw. $Y$) vom Mittelwert $m$ betragsmäßig um mehr als die Streuung $\sigma$? | ||
|type="{}"} | |type="{}"} | ||
− | $\text{Exponential: | + | $\text{Exponential:}\; \;{\rm Pr}( |X - m_X| > \sigma_X) \ = $ { 0.135 3% } |
− | $\text{Laplace: | + | $\text{Laplace:}\; \;{\rm Pr}( |Y - m_Y| > \sigma_Y) \ = $ { 0.243 3% } |
Line 71: | Line 71: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | < | + | '''(1)''' Richtig ist der <u>Lösungsvorschlag 2</u>: |
− | $$A_{X} \cdot\int_{0}^{\infty} \hspace{-0.01cm} {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = A_{X} \cdot (-1/\lambda)\cdot\left [{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\right ]_{0}^{\infty} = A_{X} \cdot (1/\lambda) \stackrel{!}{=} 1 | + | *Die Fläche unter der WDF muss immer 1 sein. Daraus folgt für die Exponentialverteilung: |
+ | :$$A_{X} \cdot\int_{0}^{\infty} \hspace{-0.01cm} {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = A_{X} \cdot (-1/\lambda)\cdot\left [{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\right ]_{0}^{\infty} = A_{X} \cdot (1/\lambda) \stackrel{!}{=} 1 | ||
\hspace{0.3cm} \Rightarrow\hspace{0.3cm} A_{X} = \lambda \hspace{0.05cm}. $$ | \hspace{0.3cm} \Rightarrow\hspace{0.3cm} A_{X} = \lambda \hspace{0.05cm}. $$ | ||
− | |||
− | |||
− | + | '''(2)''' Richtig ist hierder <u>Lösungsvorschlag 1</u>: | |
− | + | *Aus der Grafik auf der Angabenseite erkennt man, dass die Höhe $A_Y$ der Laplaceverteilung nur halb so groß ist wie das Maximum der Exponentialverteilung ⇒ $A_Y = \lambda/2$. | |
− | |||
− | |||
− | < | + | |
− | + | '''(3)''' Richtig ist <u>JA</u>, obwohl für $z \ne 0$ stets $f_X(z) = f_Y(z)$ gilt. Betrachten wir nun den Sonderfall $z= 0$: | |
− | $$m_1 = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} x \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \lambda \cdot \left [\frac{{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}}{(-\lambda)^2}\cdot(-\lambda \cdot x-1)\right ]_{0}^{\infty}= {1}/{\lambda} \hspace{0.05cm},$$ | + | * Für die Laplaceverteilung gilt $f_Y(y = 0) = \lambda/2$. |
− | + | * Bei der Exponentialverteilung unterscheiden sich der links- und der rechtsseitige Grenzwert für $x \to 0$. Der WDF–Wert an der Stelle $x= 0$ ist der Mittelwert dieser beiden Grenzwerte: | |
− | $$m_2 = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} x^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \lambda \cdot\left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\cdot | + | :$$f_X(0) = \frac{1}{2} \cdot [ 0 + \lambda] = \lambda/2 = f_Y(0)\hspace{0.05cm}.$$ |
+ | |||
+ | '''(4)''' Bei der Exponentialverteilung erhält man entsprechend [http://en.lntwww.de/Biografien_und_Bibliografien/Buchstaben_A_-_D#Buchstabe_B '''[BS01]'''] für | ||
+ | * den linearen Mittelwert (Moment erster Ordnung): | ||
+ | :$$m_1 = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} x \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \lambda \cdot \left [\frac{{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}}{(-\lambda)^2}\cdot(-\lambda \cdot x-1)\right ]_{0}^{\infty}= {1}/{\lambda} \hspace{0.05cm},$$ | ||
+ | * den quadratischen Mittelwert (Moment zweiter Ordnung): | ||
+ | :$$m_2 = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} x^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \lambda \cdot\left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\cdot | ||
(\frac{x^2}{-\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3}) | (\frac{x^2}{-\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3}) | ||
\right ]_{0}^{\infty} ={2}/{\lambda^2} \hspace{0.05cm}.$$ | \right ]_{0}^{\infty} ={2}/{\lambda^2} \hspace{0.05cm}.$$ | ||
Daraus ergibt sich mit dem Satz von Steiner für die Varianz der Exponentialverteilung: | Daraus ergibt sich mit dem Satz von Steiner für die Varianz der Exponentialverteilung: | ||
− | $$\sigma^2 = m_2 - m_1^2 = {2}/{\lambda^2} -{1}/{\lambda^2} = {1}/{\lambda^2} | + | :$$\sigma^2 = m_2 - m_1^2 = {2}/{\lambda^2} -{1}/{\lambda^2} = {1}/{\lambda^2} |
\hspace{0.3cm} \Rightarrow\hspace{0.3cm} | \hspace{0.3cm} \Rightarrow\hspace{0.3cm} | ||
\sigma = {1}/{\lambda}\hspace{0.05cm}.$$ | \sigma = {1}/{\lambda}\hspace{0.05cm}.$$ | ||
Richtig sind also <u>alle Lösungsvorschläge</u>. <i>Hinweis:</i> Bei der Exponentialverteilung berechnet sich das Moment <i>k</i>–ter Ordnung allgemein zu <i>m<sub>k</sub></i> = <i>k</i>!/<i>λ</i><sup><i>k</i></sup> ⇒ <i>m</i><sub>1</sub> = 1/<i>λ</i>, <i>m</i><sub>2</sub> = 2/<i>λ</i><sup>2</sup>, <i>m</i><sub>3</sub> = 6/<i>λ</i><sup>3</sup>, ... | Richtig sind also <u>alle Lösungsvorschläge</u>. <i>Hinweis:</i> Bei der Exponentialverteilung berechnet sich das Moment <i>k</i>–ter Ordnung allgemein zu <i>m<sub>k</sub></i> = <i>k</i>!/<i>λ</i><sup><i>k</i></sup> ⇒ <i>m</i><sub>1</sub> = 1/<i>λ</i>, <i>m</i><sub>2</sub> = 2/<i>λ</i><sup>2</sup>, <i>m</i><sub>3</sub> = 6/<i>λ</i><sup>3</sup>, ... | ||
− | + | '''(5)''' Richtig ist nur der <u>Lösungsvorschlag 2</u>: Der quadratische Mittelwert der Laplaceverteilung ist aufgrund der symmetrischen WDF genau so groß wie bei der Exponentialverteilung: | |
$$m_2 = \frac{\lambda}{2} \cdot \int_{-\infty}^{\infty} \hspace{-0.01cm} y^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}|y|}\hspace{0.1cm}{\rm d}y = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} y^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}y}\hspace{0.1cm}{\rm d}y = {2}/{\lambda^2} \hspace{0.05cm}.$$ | $$m_2 = \frac{\lambda}{2} \cdot \int_{-\infty}^{\infty} \hspace{-0.01cm} y^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}|y|}\hspace{0.1cm}{\rm d}y = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} y^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}y}\hspace{0.1cm}{\rm d}y = {2}/{\lambda^2} \hspace{0.05cm}.$$ | ||
Der Mittelwert der Laplaceverteilung ist <i>m</i><sub>1</sub> = 0. Damit ist die Varianz der Laplaceverteilung doppelt so groß wie bei der Exponentialverteilung: | Der Mittelwert der Laplaceverteilung ist <i>m</i><sub>1</sub> = 0. Damit ist die Varianz der Laplaceverteilung doppelt so groß wie bei der Exponentialverteilung: | ||
Line 105: | Line 108: | ||
[[File:P_ID2864__Inf_Z_4_1f_neu.png|right|]] | [[File:P_ID2864__Inf_Z_4_1f_neu.png|right|]] | ||
− | + | '''(6)''' Für die Exponentialverteilung ergibt sich entsprechend der oberen Grafik mit <i>m<sub>X</sub></i> = <i>σ<sub>X</sub></i> = 1/<i>λ</i>: | |
$${\rm Pr}( |X - m_X| > \sigma_X) = | $${\rm Pr}( |X - m_X| > \sigma_X) = | ||
{\rm Pr}( X > 2/\lambda) $$ $$\ | {\rm Pr}( X > 2/\lambda) $$ $$\ |
Revision as of 11:03, 6 April 2017
Die Grafik zeigt oben die Wahrscheinlichkeitsdichtefunktion (WDF) der Exponentialverteilung:
- $$f_X(x) = \left\{ \begin{array}{c} A_{ X} \cdot {\rm exp}(-\lambda \cdot x) \\ A_{ X}/2 \\ 0 \\ \end{array} \right. \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \hspace{0.1cm}x>0, \\ {\rm{f\ddot{u}r}} \hspace{0.1cm}x=0, \\ {\rm{f\ddot{u}r}} \hspace{0.1cm}x<0. \\ \end{array}$$
Darunter gezeichnet ist die WDF der Laplaceverteilung, die für alle $y$–Werte wie folgt angegeben werden kann:
- $$f_Y(y) = A_{ Y} \cdot {\rm exp}(-\lambda \cdot |y|)\hspace{0.05cm}.$$
Die zwei wertkontinuierlichen Zufallsgrößen $X$ und $Y$ sollen hinsichtlich der folgenden Kenngrößen verglichen werden:
- dem linearen Mittelwert $m_1$ (Moment erster Ordnung),
- dem Moment zweiter Ordnung ⇒ $m_2$,
- der Varianz $\sigma^2 = m_2 - m_1^2$ ⇒ Satz von Steiner,
- der Streuung $\sigma$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Differentielle Entropie.
- Nützliche Hinweise zur Lösung dieser Aufgabe und weitere Informationen zu den wertkontinuierlichen Zufallsgrößen finden Sie im Kapitel „Kontinuierliche Zufallsgrößen” des Buches Stochastische Signaltheorie.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Gegeben sind außerdem die beiden unbestimmten Integrale:
- $$\int \hspace{-0.01cm} x \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \frac{{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}}{(-\lambda)^2}\cdot(-\lambda \cdot x-1)\hspace{0.05cm}, $$
- $$\int \hspace{-0.01cm} x^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\cdot (\frac{x^2}{-\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3}) \hspace{0.05cm}. $$
Fragebogen
Musterlösung
- Die Fläche unter der WDF muss immer 1 sein. Daraus folgt für die Exponentialverteilung:
- $$A_{X} \cdot\int_{0}^{\infty} \hspace{-0.01cm} {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = A_{X} \cdot (-1/\lambda)\cdot\left [{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\right ]_{0}^{\infty} = A_{X} \cdot (1/\lambda) \stackrel{!}{=} 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} A_{X} = \lambda \hspace{0.05cm}. $$
(2) Richtig ist hierder Lösungsvorschlag 1:
- Aus der Grafik auf der Angabenseite erkennt man, dass die Höhe $A_Y$ der Laplaceverteilung nur halb so groß ist wie das Maximum der Exponentialverteilung ⇒ $A_Y = \lambda/2$.
(3) Richtig ist JA, obwohl für $z \ne 0$ stets $f_X(z) = f_Y(z)$ gilt. Betrachten wir nun den Sonderfall $z= 0$:
- Für die Laplaceverteilung gilt $f_Y(y = 0) = \lambda/2$.
- Bei der Exponentialverteilung unterscheiden sich der links- und der rechtsseitige Grenzwert für $x \to 0$. Der WDF–Wert an der Stelle $x= 0$ ist der Mittelwert dieser beiden Grenzwerte:
- $$f_X(0) = \frac{1}{2} \cdot [ 0 + \lambda] = \lambda/2 = f_Y(0)\hspace{0.05cm}.$$
(4) Bei der Exponentialverteilung erhält man entsprechend [BS01] für
- den linearen Mittelwert (Moment erster Ordnung):
- $$m_1 = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} x \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \lambda \cdot \left [\frac{{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}}{(-\lambda)^2}\cdot(-\lambda \cdot x-1)\right ]_{0}^{\infty}= {1}/{\lambda} \hspace{0.05cm},$$
- den quadratischen Mittelwert (Moment zweiter Ordnung):
- $$m_2 = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} x^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \lambda \cdot\left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\cdot (\frac{x^2}{-\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3}) \right ]_{0}^{\infty} ={2}/{\lambda^2} \hspace{0.05cm}.$$
Daraus ergibt sich mit dem Satz von Steiner für die Varianz der Exponentialverteilung:
- $$\sigma^2 = m_2 - m_1^2 = {2}/{\lambda^2} -{1}/{\lambda^2} = {1}/{\lambda^2} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} \sigma = {1}/{\lambda}\hspace{0.05cm}.$$
Richtig sind also alle Lösungsvorschläge. Hinweis: Bei der Exponentialverteilung berechnet sich das Moment k–ter Ordnung allgemein zu mk = k!/λk ⇒ m1 = 1/λ, m2 = 2/λ2, m3 = 6/λ3, ...
(5) Richtig ist nur der Lösungsvorschlag 2: Der quadratische Mittelwert der Laplaceverteilung ist aufgrund der symmetrischen WDF genau so groß wie bei der Exponentialverteilung: $$m_2 = \frac{\lambda}{2} \cdot \int_{-\infty}^{\infty} \hspace{-0.01cm} y^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}|y|}\hspace{0.1cm}{\rm d}y = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} y^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}y}\hspace{0.1cm}{\rm d}y = {2}/{\lambda^2} \hspace{0.05cm}.$$ Der Mittelwert der Laplaceverteilung ist m1 = 0. Damit ist die Varianz der Laplaceverteilung doppelt so groß wie bei der Exponentialverteilung: $$\sigma^2 = m_2 - m_1^2 = {2}/{\lambda^2} - 0 ={2}/{\lambda^2} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} \sigma = {\sqrt{2}}/{\lambda}\hspace{0.05cm}.$$
(6) Für die Exponentialverteilung ergibt sich entsprechend der oberen Grafik mit mX = σX = 1/λ: $${\rm Pr}( |X - m_X| > \sigma_X) = {\rm Pr}( X > 2/\lambda) $$ $$\ = \lambda \cdot\int_{2/\lambda}^{\infty} \hspace{-0.01cm} {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = -\left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x} \right ]_{2/\lambda}^{\infty}$$ $$\ = {\rm e}^{-2} \hspace{0.15cm}\underline {\approx 0.135}\hspace{0.05cm}.$$ Für die Laplaceverteilung (untere Grafik) erhält man mit mY = 0 und σY = 20.5/λ: $${\rm Pr}( |Y - m_Y| > \sigma_Y) = 2 \cdot {\rm Pr}( Y > \sqrt{2}/\lambda) $$ $$\ = 2 \cdot \frac{\lambda}{2} \cdot\int_{\sqrt{2}/\lambda}^{\infty} \hspace{-0.01cm} {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x} \right ]_{\sqrt{2}/\lambda}^{\infty}$$ $$\ = - {\rm e}^{-\sqrt{2}} \hspace{0.15cm}\underline {\approx 0.243}\hspace{0.05cm}.$$
Ein Vergleich der schraffierten Flächen in nebenstehender Grafik bestätigt das Ergebnis qualitativ: Die blauen Flächen sind zusammen etwas größer als die rote Fläche.