Difference between revisions of "Aufgaben:Exercise 5.1Z: Cosine Square Noise Limitation"

From LNTwww
Line 68: Line 68:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Die Varianz (Leistung) &nbsp;&#8658;&nbsp; Effektivwert zum Quadrat des Signals <i>x</i>(<i>t</i>) beträgt
+
'''(1)'''&nbsp; Die Varianz (Leistung) &nbsp;&#8658;&nbsp; Effektivwert zum Quadrat des Signals $x(t)$ beträgt
 
:$$\sigma _x ^2  = \frac{N_0 }{2} \cdot 2B_x  = N_0  \cdot B_x  = 10^{ - 12} \;{\rm{V}}^2
 
:$$\sigma _x ^2  = \frac{N_0 }{2} \cdot 2B_x  = N_0  \cdot B_x  = 10^{ - 12} \;{\rm{V}}^2
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}
 
\sigma _x  \hspace{0.15cm}\underline{ = 1\,\,{\rm \mu}{\rm V}}.$$
 
\sigma _x  \hspace{0.15cm}\underline{ = 1\,\,{\rm \mu}{\rm V}}.$$
  
:<b>2.</b>&nbsp;&nbsp;Entsprechend dem Kapitel 3.5 und der hier angegebenen Näherung erhält man:
+
'''(2)'''&nbsp; Entsprechend dem Kapitel &bdquo;Gaußverteilte Zufallsgrößen&rdquo; und der hier angegebenen Näherung (für große $x$) erhält man:
:$$\Pr \left( {\left| {x(t)} \right| > 5\;{\rm{\mu V}}} \right) = 2 \cdot {\rm Q}(5) = \frac{2}{{\sqrt {2{\rm{\pi }}}  \cdot 5}} \cdot {\rm{e}}^{ - 12.5}\hspace{0.15cm} \underline{ \approx 6 \cdot 10^{ - 7}} .$$
+
:$$\Pr \left( {\left| {x(t)} \right| > 5\;{\rm{\mu V}}} \right) = 2 \cdot {\rm Q}(5) = \frac{2}{{\sqrt {2{\rm{\pi }}}  \cdot 5}} \cdot {\rm{e}}^{ - 12.5}\hspace{0.15cm} \underline{ \approx 0.6 \cdot 10^{ - 6}} .$$
  
:<b>3.</b>&nbsp;&nbsp;Das Eingangssignal <i>x</i>(<i>t</i>) ist mittelwertfrei (<i>m<sub>x</sub></i> = 0), da sonst <i>&Phi;<sub>x</sub></i>(<i>f</i>) noch eine Diracfunktion bei <i>f</i> = 0 beinhalten müsste. Der Mittelwert wird durch das lineare Filter nicht verändert &nbsp;&#8658;&nbsp; <i>m<sub>y</sub></i> <u>= 0</u>.
+
'''(3)'''&nbsp; Das Eingangssignal $x(t)$ ist mittelwertfrei $(m_x = 0)$, da sonst ${\it Φ}_x(f)$ noch eine Diracfunktion bei $f= 0$ beinhalten müsste. Der Mittelwert wird durch das lineare Filter nicht verändert &nbsp;&#8658;&nbsp; $m_y\hspace{0.05cm}\underline{ = 0}$.
  
:<b>4.</b>&nbsp;&nbsp;Für das Leistungsdichtespektrum des Ausgangssignals gilt allgemein:
+
'''(4)'''&nbsp; Für das Leistungsdichtespektrum des Ausgangssignals gilt allgemein:
:$${\it \Phi}_y (f) = \frac{N_0 }{2} \cdot \left| {H( f )} \right|^2 .$$
+
:$${\it \Phi}_y (f) = {N_0 }/{2} \cdot \left| {H( f )} \right|^2 .$$
  
:Damit kann die Varianz <i>&sigma;<sub>y</sub></i><sup>2</sup> berechnet werden. Unter Ausnützung der Symmetrie erhält man:
+
Damit kann die Varianz $\sigma _y^2$ berechnet werden. Unter Ausnützung der Symmetrie erhält man:
:$$\sigma _y ^2  = \frac{N_0 }{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H( f )} \right|^2 \left( f \right)\hspace{0.1cm}{\rm{d}}f} =  N_0  \cdot \int_0^{f_0 } {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f .$$
+
:$$\sigma _y ^2  = {N_0 }/{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H( f )} \right|^2 \left( f \right)\hspace{0.1cm}{\rm{d}}f} =  N_0  \cdot \int_0^{f_0 } {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f .$$
  
:Das bestimmte Integral ist vorgegeben. Bei jedem der drei Lösungsterme ergibt sich für die untere Grenze der Wert 0. Daraus folgt:
+
Das bestimmte Integral ist vorgegeben. Bei jedem der drei Lösungsterme ergibt sich für die untere Grenze der Wert $0$. Daraus folgt:
:$$\sigma _y ^2  = \frac{N_0}{2} \cdot \left( {\frac{3}{8} \cdot f_0  + \frac{f_0 }{{2{\rm{\pi }}}} \cdot \sin ( {\rm{\pi }} ) + \frac{f_0 }{{16{\rm{\pi }}}} \cdot \sin ( {{\rm{2\pi }}} )} \right) = \frac{3}{8} \cdot N_0  \cdot f_0 .$$
+
:$$\sigma _y ^2  = {N_0}/{2} \cdot \left( {\frac{3}{8} \cdot f_0  + \frac{f_0 }{{2{\rm{\pi }}}} \cdot \sin ( {\rm{\pi }} ) + \frac{f_0 }{{16{\rm{\pi }}}} \cdot \sin ( {{\rm{2\pi }}} )} \right) = \frac{3}{8} \cdot N_0  \cdot f_0 .$$
:$$f_0 = B_x/2:\hspace{0.2cm}\sigma _y ^2  = \frac{3}{16} \cdot N_0  \cdot B_x  = \frac{3}{16} \cdot \sigma _x ^2  = 0.1875 \cdot 10^{ - 12} \;{\rm{V}}^2  \hspace{0.2cm}\Rightarrow \hspace{0.2cm}\sigma _y \hspace{0.15cm}\underline{ = 0.433\;{\rm{\mu V}}}{\rm{.}}$$
+
:$$f_0 = B_x/2\text{:}\hspace{0.2cm}\sigma _y ^2  = \frac{3}{16} \cdot N_0  \cdot B_x  = \frac{3}{16} \cdot \sigma _x ^2  = 0.1875 \cdot 10^{ - 12} \;{\rm{V}}^2  \hspace{0.2cm}\Rightarrow \hspace{0.2cm}\sigma _y \hspace{0.15cm}\underline{ = 0.433\;{\rm{\mu V}}}{\rm{.}}$$
  
:<b>5.</b>&nbsp;&nbsp;Nun besitzt das Eingangs-LDS für |<i>f</i>| > <i>B<sub>x</sub></i> keine Anteile. Deshalb gilt:
+
'''(5)'''&nbsp; Nun besitzt das Eingangs-LDS für $|f| > B_x$ keine Anteile. Deshalb gilt:
 
:$$\sigma _y ^2  = N_0\cdot \int_0^{B_x } {\cos ^4 \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f = N_0  \cdot \int_0^{f_0 /2} {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f.}$$
 
:$$\sigma _y ^2  = N_0\cdot \int_0^{B_x } {\cos ^4 \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f = N_0  \cdot \int_0^{f_0 /2} {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f.}$$
  
:Die numerische Auswertung liefert hierfür:
+
Die numerische Auswertung liefert hierfür:
:$$\sigma _y ^2  = N_0 \left( {\frac{3}{8} \cdot B_x  + \frac{B_x }{{2{\rm{\pi }}}} \cdot \sin ( {\frac{{\rm{\pi }}}{2}} ) + \frac{B_x }{{{\rm{16\pi }}}} \cdot \sin ( {\rm{\pi }} )} \right)$$
+
:$$\sigma _y ^2  = N_0 \left( {\frac{3}{8} \cdot B_x  + \frac{B_x }{{2{\rm{\pi }}}} \cdot \sin ( {\frac{{\rm{\pi }}}{2}} ) + \frac{B_x }{{{\rm{16\pi }}}} \cdot \sin ( {\rm{\pi }} )} \right) = N_0  \cdot B_x \left( {\frac{3}{8} + \frac{1}{{2{\rm{\pi }}}}} \right) = 0.534\cdot \sigma _x ^2  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\sigma _y \hspace{0.15cm}\underline{  = 0.731\;{\rm{\mu V}}}{\rm{.}}$$
:$$ \Rightarrow \sigma _y ^2  = N_0  \cdot B_x \left( {\frac{3}{8} + \frac{1}{{2{\rm{\pi }}}}} \right) = 0.534\cdot \sigma _x ^2  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\sigma _y \hspace{0.15cm}\underline{  = 0.731\;{\rm{\mu V}}}{\rm{.}}$$
 
  
:<b>6.</b>&nbsp;&nbsp;Analog zur Musterlösung der Teilaufgabe (b) gilt:
+
'''(6)'''&nbsp; Analog zur Musterlösung der Teilaufgabe (2) gilt:
 
:$$\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{\mu V}}} \right) = 2 \cdot {\rm Q}\left( {\frac{{5\;{\rm{\mu V}}}}{{0.731\;{\rm{\mu V}}}}} \right) = 2 \cdot {\rm Q}( {6.84} ).$$
 
:$$\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{\mu V}}} \right) = 2 \cdot {\rm Q}\left( {\frac{{5\;{\rm{\mu V}}}}{{0.731\;{\rm{\mu V}}}}} \right) = 2 \cdot {\rm Q}( {6.84} ).$$
  
:Mit der angegebenen Näherung hat diese Wahrscheinlichkeit den Wert <u>8 &middot; 10<sup>&ndash;12</sup></u>.
+
Mit der angegebenen Näherung hat diese Wahrscheinlichkeit den Wert $\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{\mu V}}} \right) \hspace{0.15cm} \underline{ \approx 8 \cdot 10^{ - 12}}$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 11:22, 18 April 2017

Zur Cosinus-Quadrat-Rauschbegrenzung

Wir betrachten ein bandbegrenztes weißes Rauschsignal $x(t)$ mit dem oben skizzierten Leistungsdichtespektrum ${\it Φ}_x(f)$. Dieses ist im Bereich $|f| \le B_x$ konstant gleich $N_0/2$ und außerhalb gleich Null.

Gehen Sie von folgenden Zahlenwerten aus:

  • Rauschleistungsdichte $N_0 = 10^{-16} \ \rm V^2/Hz$,
  • Rauschbandbreite $B_x = 10 \ \rm kHz$.

Dieses Signal wird an den Eingang eines Tiefpassfilters mit dem Frequenzgang $$H(f) = \left\{ {\begin{array}{*{20}c} {\cos ^2 \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)} & {\rm{f\ddot{u}r}\quad \left| \it f \right| \le \it f_{\rm 0} ,} \\ 0 & {{\rm{sonst}}} \\\end{array}} \right.$$

angelegt. Hierbei bezeichnet $f_0$ die absolute Filterbandbreite, die zwischen $B_x/2$ und $2B_x$ variieren kann.

Das Filterausgangssignal wird mit $y(t)$ bezeichnet.


Hinweise:

$${\rm Q}(x) \approx \frac{1}{{\sqrt {2{\rm{\pi }}} \cdot x}} \cdot {\rm{e}}^{ - x^2 /2} \quad {\rm{(f\ddot{u}r }}\;{\rm{grösse }}\;x{\rm{)}}{\rm{,}}$$
$$\int {\rm{cos}}^{\rm{2}}( {ax} )\hspace{0.1cm}{\rm{d}}x = \frac{1}{2} \cdot x + \frac{1}{4a} \cdot \sin ( {2ax} ),$$
$$\int {\cos ^4 } ( {ax} )\hspace{0.1cm}{\rm{d}}x = \frac{3}{8} \cdot x + \frac{1}{4a} \cdot \sin ( {2ax} ) + \frac{1}{32a} \cdot \sin ( {4ax} ).$$


Fragebogen

1

Wie groß ist der Effektivwert des Eingangssignals $x(t)$?

$\sigma_x \ = $

$\ \rm \mu V$

2

Wie groß ist die Wahrscheinlichkeit, dass ein momentaner Spannungswert des Eingangssignals betragsmäßig größer als $5 \hspace{0.05cm} \rm \mu V$ ist?

${\rm Pr}(|x(t)| > 5 \hspace{0.05cm} \rm \mu V) \ = $

$\ \cdot 10^{-6}$

3

Wie groß ist der Mittelwert (Gleichanteil) des Ausgangssignals $y(t)$?

$m_y\ \ = $

$\ \rm \mu V$

4

Berechnen Sie den Effektivwert des Ausgangssignals $y(t)$ für $f_0 = B_x/2$.

$f_0 = B_x/2\text{:}\ \ \sigma_y \ = $

$\ \rm \mu V$

5

Berechnen Sie den Effektivwert von $y(t)$ unter der Bedingung $f_0 = 2 \cdot B_x$.

$f_0 = 2 \cdot B_x\text{:}\ \ \sigma_y \ = $

$\ \rm \mu V$

6

Es gelte weiter $f_0 = 2 \cdot B_x$. Wie groß ist die Wahrscheinlichkeit, dass das Ausgangssignal $y(t)$ betragsmäßig größer als $5 \hspace{0.05cm} \rm \mu V$ ist?

${\rm Pr}(|y(t)| > 5 \hspace{0.05cm} \rm \mu V) \ = $

$\ \cdot 10^{-12}$


Musterlösung

(1)  Die Varianz (Leistung)  ⇒  Effektivwert zum Quadrat des Signals $x(t)$ beträgt

$$\sigma _x ^2 = \frac{N_0 }{2} \cdot 2B_x = N_0 \cdot B_x = 10^{ - 12} \;{\rm{V}}^2 \hspace{0.3cm}\Rightarrow\hspace{0.3cm} \sigma _x \hspace{0.15cm}\underline{ = 1\,\,{\rm \mu}{\rm V}}.$$

(2)  Entsprechend dem Kapitel „Gaußverteilte Zufallsgrößen” und der hier angegebenen Näherung (für große $x$) erhält man:

$$\Pr \left( {\left| {x(t)} \right| > 5\;{\rm{\mu V}}} \right) = 2 \cdot {\rm Q}(5) = \frac{2}{{\sqrt {2{\rm{\pi }}} \cdot 5}} \cdot {\rm{e}}^{ - 12.5}\hspace{0.15cm} \underline{ \approx 0.6 \cdot 10^{ - 6}} .$$

(3)  Das Eingangssignal $x(t)$ ist mittelwertfrei $(m_x = 0)$, da sonst ${\it Φ}_x(f)$ noch eine Diracfunktion bei $f= 0$ beinhalten müsste. Der Mittelwert wird durch das lineare Filter nicht verändert  ⇒  $m_y\hspace{0.05cm}\underline{ = 0}$.

(4)  Für das Leistungsdichtespektrum des Ausgangssignals gilt allgemein:

$${\it \Phi}_y (f) = {N_0 }/{2} \cdot \left| {H( f )} \right|^2 .$$

Damit kann die Varianz $\sigma _y^2$ berechnet werden. Unter Ausnützung der Symmetrie erhält man:

$$\sigma _y ^2 = {N_0 }/{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H( f )} \right|^2 \left( f \right)\hspace{0.1cm}{\rm{d}}f} = N_0 \cdot \int_0^{f_0 } {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f .$$

Das bestimmte Integral ist vorgegeben. Bei jedem der drei Lösungsterme ergibt sich für die untere Grenze der Wert $0$. Daraus folgt:

$$\sigma _y ^2 = {N_0}/{2} \cdot \left( {\frac{3}{8} \cdot f_0 + \frac{f_0 }{{2{\rm{\pi }}}} \cdot \sin ( {\rm{\pi }} ) + \frac{f_0 }{{16{\rm{\pi }}}} \cdot \sin ( {{\rm{2\pi }}} )} \right) = \frac{3}{8} \cdot N_0 \cdot f_0 .$$
$$f_0 = B_x/2\text{:}\hspace{0.2cm}\sigma _y ^2 = \frac{3}{16} \cdot N_0 \cdot B_x = \frac{3}{16} \cdot \sigma _x ^2 = 0.1875 \cdot 10^{ - 12} \;{\rm{V}}^2 \hspace{0.2cm}\Rightarrow \hspace{0.2cm}\sigma _y \hspace{0.15cm}\underline{ = 0.433\;{\rm{\mu V}}}{\rm{.}}$$

(5)  Nun besitzt das Eingangs-LDS für $|f| > B_x$ keine Anteile. Deshalb gilt:

$$\sigma _y ^2 = N_0\cdot \int_0^{B_x } {\cos ^4 \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f = N_0 \cdot \int_0^{f_0 /2} {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f.}$$

Die numerische Auswertung liefert hierfür:

$$\sigma _y ^2 = N_0 \left( {\frac{3}{8} \cdot B_x + \frac{B_x }{{2{\rm{\pi }}}} \cdot \sin ( {\frac{{\rm{\pi }}}{2}} ) + \frac{B_x }{{{\rm{16\pi }}}} \cdot \sin ( {\rm{\pi }} )} \right) = N_0 \cdot B_x \left( {\frac{3}{8} + \frac{1}{{2{\rm{\pi }}}}} \right) = 0.534\cdot \sigma _x ^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\sigma _y \hspace{0.15cm}\underline{ = 0.731\;{\rm{\mu V}}}{\rm{.}}$$

(6)  Analog zur Musterlösung der Teilaufgabe (2) gilt:

$$\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{\mu V}}} \right) = 2 \cdot {\rm Q}\left( {\frac{{5\;{\rm{\mu V}}}}{{0.731\;{\rm{\mu V}}}}} \right) = 2 \cdot {\rm Q}( {6.84} ).$$

Mit der angegebenen Näherung hat diese Wahrscheinlichkeit den Wert $\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{\mu V}}} \right) \hspace{0.15cm} \underline{ \approx 8 \cdot 10^{ - 12}}$.