Difference between revisions of "Aufgaben:Exercise 5.2: Determination of the Frequency Response"
Line 54: | Line 54: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | + | '''(1)''' Die <u>Aussagen 2 und 3</u> sind zutreffend, da folgende Gleichungen gelten: | |
− | |||
− | |||
:$$\varphi _{xy} ( \tau ) = h( \tau ) * \varphi _x ( \tau )\quad \Rightarrow \quad H( f ) = \frac{{{\it \Phi} _{xy} ( f )}}{{{\it \Phi} _x ( f )}},$$ | :$$\varphi _{xy} ( \tau ) = h( \tau ) * \varphi _x ( \tau )\quad \Rightarrow \quad H( f ) = \frac{{{\it \Phi} _{xy} ( f )}}{{{\it \Phi} _x ( f )}},$$ | ||
:$$\varphi _y ( \tau) = \varphi _{xy} ( \tau) * h(- \tau)\quad \Rightarrow \quad H^{\star}( f ) = \frac{{{\it \Phi} _y ( f )}}{{{\it \Phi} _{xy} ( f )}}.$$ | :$$\varphi _y ( \tau) = \varphi _{xy} ( \tau) * h(- \tau)\quad \Rightarrow \quad H^{\star}( f ) = \frac{{{\it \Phi} _y ( f )}}{{{\it \Phi} _{xy} ( f )}}.$$ | ||
+ | *Dagegen ist die erste Aussage falsch: Bei der AKF-Berechnung gehen die Phasenbeziehungen verloren. Die zugehörigen Funktionen zu $\varphi_x(\tau)$ und $\varphi_x(\tau)$ im Spektralbereich – nämlich ${\it \Phi}_x$ und ${\it \Phi}_y$ – sind rein reell, so dass nur der Betrag $|H(f)|$ angegeben werden kann. | ||
− | |||
− | |||
− | |||
− | |||
− | + | '''(2)''' Bei diracförmiger Eingangs-AKF $\varphi_x(\tau)$ ist die Impulsantwort $h(t)$ formgleich mit der KKF: | |
− | :$$h(t) = \frac{ | + | :$$h(t) = \frac{{K \cdot {\rm{e}}^{ - t/T_0 } }}{N_0 /2} = 1.256 \cdot 10^{ - 2} \frac{1}{{\rm{s}}} \cdot {\rm{e}}^{ - t/T_0 } $$ |
+ | $$\Rightarrow \hspace{0.3cm}h(t = T_0)\hspace{0.15cm}\underline{ = 4.62 \cdot 10^{-3}\ \rm 1/s}.$$ | ||
− | + | '''(3)''' Die angegebene Fourierkorrespondenz lautet mit $T_0 = 1/\omega_0$ und der Konstanten $C= N_0/2 \cdot T_0/K$: | |
− | :$$ | + | :$$h(t) = \frac{C}{T_0 } \cdot {\rm{e}}^{ - t/T_0 }\hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\hspace{0.15cm} H( \omega ) = \frac{C}{{1 + {\rm{j}}\omega T_0 }}.$$ |
− | + | Die Konstante ergibt sich zu $C = 0.08$. Mit $H(f) = 2 \pi \cdot H(\omega)$ folgt daraus: | |
+ | :$$H(f) = \frac{0.5}{1 + {\rm{j2\pi }}fT_0 } \hspace{0.3cm}\Rightarrow \hspace{0.3cm} H(f= 0) \hspace{0.15cm}\underline{=2}.$$ | ||
− | |||
− | |||
− | + | '''(4)''' Für das Ausgangs-LDS gilt im Allgemeinen bzw. speziell hier: | |
− | :$${\it \Phi}_y (f) = {N_0 }/{8} \cdot \frac{1}{1 + \left( {{\rm{2\pi }}fT_0 } \right)^2 }.$$ | + | :$${\it \Phi}_y (f) = {\it \Phi} _x (f) \cdot \left| {H(f)} \right|^2 = \frac{N_0 }{2} \cdot \frac{0.5^2 }{{\left( {1 + {\rm{j2\pi }}fT_0 } \right)\left( {1 - {\rm{j2\pi }}fT_0 } \right)}} = {N_0 }/{8} \cdot \frac{1}{1 + \left( {{\rm{2\pi }}fT_0 } \right)^2 }.$$ |
− | + | Bei der angegebenen Frequenz $f = 1/(2\pi T_0)$ ist ${\it \Phi}_y (f)$ gegenüber seinem Maximum bei $f=0$ um die Hälfte abgefallen: | |
:$${\it \Phi}_y (f = 1/(2 \pi T_0)) ={N_0 }/{16}\hspace{0.15cm} \underline{ = 6.25 \cdot 10^{ - 12} \;{\rm{W/Hz}}}.$$ | :$${\it \Phi}_y (f = 1/(2 \pi T_0)) ={N_0 }/{16}\hspace{0.15cm} \underline{ = 6.25 \cdot 10^{ - 12} \;{\rm{W/Hz}}}.$$ | ||
Revision as of 16:14, 18 April 2017
Wir betrachten die abgebildete Messanordnung zur Bestimmung des blau hervorgehobenen Frequenzgangs $H(f)$.
- Das Eingangssignal $x(t)$ ist weißes Gaußsches Rauschen mit der Rauschleistungsdichte $N_0 = 10^{-10} \hspace{0.05cm} \rm W/Hz$.
Somit gilt für die AKF:
- $$\varphi _x ( \tau ) = {N_0 }/{2} \cdot \delta ( \tau ).$$
- Die gemessene Kreuzkorrelationsfunktion (KKF) zwischen den Signalen $x(t)$ und $y(t)$ kann mit $K = 0.628 \cdot 10^{-12} \hspace{0.05cm} \rm W$ und $T = 1 \hspace{0.05cm} \rm ms$ wie folgt angenähert werden (nur gültig für positive Zeiten $t$):
- $$\varphi _{xy} \left( \tau \right) = K \cdot {\rm{e}}^{ - \tau /T_0 } .$$
- Gemessen wird außerdem die AKF $\varphi_y(\tau)$ des Ausgangssignals $y(t)$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Stochastische Systemtheorie.
- Bezug genommen wird auch auf das Kapitel Leistungsdichtespektrum.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Beachten Sie bitte auch die folgende Fouriertransformation (in $\omega$):
- $$H( \omega ) = \frac{1}{{1 + {\rm{j}}\cdot \omega /\omega _0 }}\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\,\hspace{0.15cm}h(t) = \omega _0 \cdot {\rm{e}}^{ - \omega _0 t} \hspace{0.3cm}(t \ge 0).$$
- Für negative t-Werte ist dagegen stets $h(t) =0$.
Fragebogen
Musterlösung
- $$\varphi _{xy} ( \tau ) = h( \tau ) * \varphi _x ( \tau )\quad \Rightarrow \quad H( f ) = \frac{{{\it \Phi} _{xy} ( f )}}{{{\it \Phi} _x ( f )}},$$
- $$\varphi _y ( \tau) = \varphi _{xy} ( \tau) * h(- \tau)\quad \Rightarrow \quad H^{\star}( f ) = \frac{{{\it \Phi} _y ( f )}}{{{\it \Phi} _{xy} ( f )}}.$$
- Dagegen ist die erste Aussage falsch: Bei der AKF-Berechnung gehen die Phasenbeziehungen verloren. Die zugehörigen Funktionen zu $\varphi_x(\tau)$ und $\varphi_x(\tau)$ im Spektralbereich – nämlich ${\it \Phi}_x$ und ${\it \Phi}_y$ – sind rein reell, so dass nur der Betrag $|H(f)|$ angegeben werden kann.
(2) Bei diracförmiger Eingangs-AKF $\varphi_x(\tau)$ ist die Impulsantwort $h(t)$ formgleich mit der KKF:
- $$h(t) = \frac{{K \cdot {\rm{e}}^{ - t/T_0 } }}{N_0 /2} = 1.256 \cdot 10^{ - 2} \frac{1}{{\rm{s}}} \cdot {\rm{e}}^{ - t/T_0 } $$
$$\Rightarrow \hspace{0.3cm}h(t = T_0)\hspace{0.15cm}\underline{ = 4.62 \cdot 10^{-3}\ \rm 1/s}.$$
(3) Die angegebene Fourierkorrespondenz lautet mit $T_0 = 1/\omega_0$ und der Konstanten $C= N_0/2 \cdot T_0/K$:
- $$h(t) = \frac{C}{T_0 } \cdot {\rm{e}}^{ - t/T_0 }\hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\hspace{0.15cm} H( \omega ) = \frac{C}{{1 + {\rm{j}}\omega T_0 }}.$$
Die Konstante ergibt sich zu $C = 0.08$. Mit $H(f) = 2 \pi \cdot H(\omega)$ folgt daraus:
- $$H(f) = \frac{0.5}{1 + {\rm{j2\pi }}fT_0 } \hspace{0.3cm}\Rightarrow \hspace{0.3cm} H(f= 0) \hspace{0.15cm}\underline{=2}.$$
(4) Für das Ausgangs-LDS gilt im Allgemeinen bzw. speziell hier:
- $${\it \Phi}_y (f) = {\it \Phi} _x (f) \cdot \left| {H(f)} \right|^2 = \frac{N_0 }{2} \cdot \frac{0.5^2 }{{\left( {1 + {\rm{j2\pi }}fT_0 } \right)\left( {1 - {\rm{j2\pi }}fT_0 } \right)}} = {N_0 }/{8} \cdot \frac{1}{1 + \left( {{\rm{2\pi }}fT_0 } \right)^2 }.$$
Bei der angegebenen Frequenz $f = 1/(2\pi T_0)$ ist ${\it \Phi}_y (f)$ gegenüber seinem Maximum bei $f=0$ um die Hälfte abgefallen:
- $${\it \Phi}_y (f = 1/(2 \pi T_0)) ={N_0 }/{16}\hspace{0.15cm} \underline{ = 6.25 \cdot 10^{ - 12} \;{\rm{W/Hz}}}.$$