Difference between revisions of "Aufgaben:Exercise 1.5: Binary Markov Source"

From LNTwww
Line 67: Line 67:
 
{Welche Näherungen $H_k$ ergeben sich aufgrund der Markoveigenschaften?
 
{Welche Näherungen $H_k$ ergeben sich aufgrund der Markoveigenschaften?
 
|type="{}"}
 
|type="{}"}
$H_2 \  =$ { 0.897 1% } $\ \rm bit/Symbol$
+
$H_2 \  =$ { 0.897 0.5% } $\ \rm bit/Symbol$
$H_3 \  =$ { 0.889 1% } $\ \rm bit/Symbol$
+
$H_3 \  =$ { 0.889 0.5% } $\ \rm bit/Symbol$
$H_4 \  =$ { 0.886 1% } $\ \rm bit/Symbol$
+
$H_4 \  =$ { 0.886 0.5% } $\ \rm bit/Symbol$
  
  
Line 82: Line 82:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
[[File:P_ID2757__Inf_A_1_5.png|right|]]
+
[[File:P_ID2757__Inf_A_1_5.png|right|Markovdiagramm für die Teilaufgaben (1), ... , (5)]]
:<b>1.</b>&nbsp;&nbsp;Hier gilt für die Übergangswahrscheinlichkeiten:
+
'''(1)'''&nbsp; Hier gilt für die Übergangswahrscheinlichkeiten:
:$$p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \hspace{0.1cm} =  \hspace{0.1cm} 1 - p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}= 1 - q \hspace{0.15cm} \underline {= 0.5} \hspace{0.05cm},\\
+
:$$p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \hspace{0.1cm} =  \hspace{0.1cm} 1 - p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}= 1 - q \hspace{0.15cm} \underline {= 0.5} \hspace{0.05cm},$$
  p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B} \hspace{0.1cm} =  \hspace{0.1cm} 1 - p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}= 1 - p \hspace{0.15cm} \underline {= 0.75} \hspace{0.05cm}.$$
+
:$$ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B} \hspace{0.1cm} =  \hspace{0.1cm} 1 - p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}= 1 - p \hspace{0.15cm} \underline {= 0.75} \hspace{0.05cm}.$$
:Nach <b>A</b> sind <b>A</b> und <b>B</b> gleichwahrscheinlich. Nach <b>B</b> tritt <b>B</b> sehr viel häufiger als <b>A</b> auf.
+
:Nach $\rm A$ sind $\rm A$ und $\rm B$ gleichwahrscheinlich. Nach $\rm B$ tritt $\rm B$ sehr viel häufiger als $\rm A$ auf.
  
:<b>2.</b>&nbsp;&nbsp;Entsprechend den angegebenen Gleichungen gilt:
+
'''(2)'''&nbsp; Entsprechend den angegebenen Gleichungen gilt:
:$$p_{\rm A}= \frac{p}{p+q} = \frac{0.25}{0.25 + 0.50} \hspace{0.15cm} \underline {= 0.333} \hspace{0.05cm}, \hspace{2cm}$$
+
:$$p_{\rm A}= \frac{p}{p+q} = \frac{0.25}{0.25 + 0.50} \hspace{0.15cm} \underline {= 0.333} \hspace{0.05cm}, \hspace{0.5cm}
:$$  p_{\rm B} = \frac{q}{p+q} = \frac{0.50}{0.25 + 0.50} \hspace{0.15cm} \underline {= 0.667}  \hspace{0.05cm}.$$
+
p_{\rm B} = \frac{q}{p+q} = \frac{0.50}{0.25 + 0.50} \hspace{0.15cm} \underline {= 0.667}  \hspace{0.05cm}.$$
  
:<b>3.</b>&nbsp;&nbsp;Mit den unter (b) berechneten Wahrscheinlichkeiten gilt:
+
'''(3)'''&nbsp; Mit den in der letzten Teilaufgabe berechneten Wahrscheinlichkeiten gilt:
 
:$$H_{\rm 1}  =  H_{\rm bin}(p_{\rm A})  =  1/3 \cdot {\rm log}_2\hspace{0.01cm} (3) + 2/3 \cdot {\rm log}_2\hspace{0.01cm} (1.5) =
 
:$$H_{\rm 1}  =  H_{\rm bin}(p_{\rm A})  =  1/3 \cdot {\rm log}_2\hspace{0.01cm} (3) + 2/3 \cdot {\rm log}_2\hspace{0.01cm} (1.5) =
 
  1.585 - 2/3\hspace{0.15cm} \underline {= 0.918 \,{\rm bit/Symbol}}  
 
  1.585 - 2/3\hspace{0.15cm} \underline {= 0.918 \,{\rm bit/Symbol}}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
:<b>4.</b>&nbsp;&nbsp;Die Entropie der Markovquelle lautet entsprechend der Angabe
+
'''(4)'''&nbsp; Die Entropie der Markovquelle lautet entsprechend der Angabe
 
:$$H = p_{\rm AA}  \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm AB}  \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} +  p_{\rm BA}  \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}} + p_{\rm BB}  \cdot   
 
:$$H = p_{\rm AA}  \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm AB}  \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} +  p_{\rm BA}  \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}} + p_{\rm BB}  \cdot   
 
{\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B}}
 
{\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
:Für die Verbundwahrscheinlichkeiten gilt:
+
Für die Verbundwahrscheinlichkeiten gilt:
:$$p_{\rm AA} \hspace{0.1cm} = \hspace{0.1cm} p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \cdot p_{\rm A} = (1-q) \cdot \frac{p}{p+q} =
+
:$$p_{\rm AA} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \cdot p_{\rm A} = (1-q) \cdot \frac{p}{p+q} =
  \frac{1/2 \cdot 1/4}{3/4} =  \frac{1}{6} \hspace{0.05cm},\\
+
  \frac{1/2 \cdot 1/4}{3/4} =  {1}/{6} \hspace{0.05cm},$$
p_{\rm AB} \hspace{0.1cm} =  \hspace{0.1cm} p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A} \cdot p_{\rm A} = q \cdot \frac{p}{p+q} =
+
:$$ p_{\rm AB} =  p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A} \cdot p_{\rm A} = q \cdot \frac{p}{p+q} =
  \frac{1/2 \cdot 1/4}{3/4} =  \frac{1}{6} \hspace{0.05cm},\\
+
  \frac{1/2 \cdot 1/4}{3/4} =  {1}/{6} \hspace{0.05cm},$$
p_{\rm BA} \hspace{0.1cm} =  \hspace{0.1cm} p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B} \cdot p_{\rm B} = p \cdot \frac{q}{p+q} =
+
:$$ p_{\rm BA} =  p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B} \cdot p_{\rm B} = p \cdot \frac{q}{p+q} =
  p_{\rm AB} =  \frac{1}{6} \hspace{0.05cm},\\
+
  p_{\rm AB} =  {1}/{6} \hspace{0.05cm},$$
p_{\rm BB} \hspace{0.1cm} =  \hspace{0.1cm} p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B} \cdot p_{\rm B} = (1-p) \cdot \frac{q}{p+q} =
+
:$$ p_{\rm BB} =  p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B} \cdot p_{\rm B} = (1-p) \cdot \frac{q}{p+q} =
  \frac{3/4 \cdot 1/2}{3/4} =  \frac{1}{2} $$
+
  \frac{3/4 \cdot 1/2}{3/4} =  {1}/{2} $$
:$$\Rightarrow\hspace{0.3cm} H  \hspace{0.1cm} = \hspace{0.1cm}  1/6 \cdot {\rm log}_2\hspace{0.01cm} (2) + 1/6 \cdot {\rm log}_2\hspace{0.01cm} (2) + 1/6 \cdot  
+
:$$\Rightarrow\hspace{0.3cm} H  = 1/6 \cdot {\rm log}_2\hspace{0.01cm} (2) + 1/6 \cdot {\rm log}_2\hspace{0.01cm} (2) + 1/6 \cdot  
{\rm log}_2\hspace{0.01cm} (4) + 1/2 \cdot {\rm log}_2\hspace{0.1cm} (4/3) = \\
+
{\rm log}_2\hspace{0.01cm} (4) + 1/2 \cdot {\rm log}_2\hspace{0.1cm} (4/3) =  
  \hspace{0.1cm} =  \hspace{0.1cm} 1/6 + 1/6 + 2/6 + 1 - 1/2 \cdot {\rm log}_2\hspace{0.01cm} (3) \hspace{0.15cm} \underline {= 0.875 \,{\rm bit/Symbol}}  
+
  10/6 - 1/2 \cdot {\rm log}_2\hspace{0.01cm} (3) \hspace{0.15cm} \underline {= 0.875 \,{\rm bit/Symbol}}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
:<b>5.</b>&nbsp;&nbsp;Allgemein gilt mit <i>H</i><sub>M</sub> = <i>H</i> für die <i>k</i>&ndash;Entropienäherung:
+
'''(5)'''&nbsp; Allgemein gilt mit $H_{\rm M} = H$ für die $k$&ndash;Entropienäherung: $H_k =  {1}/{k} \cdot [ H_{\rm 1} + (k-1) \cdot H_{\rm M}] \hspace{0.05cm}.$ Daraus folgt:
:$$H_k =  \frac{1}{k} \cdot [ H_{\rm 1} + (k-1) \cdot H_{\rm M}]  
+
:$$H_2 =  {1}/{2} \cdot [ 0.918 + 1  \cdot 0.875] \hspace{0.15cm} \underline {= 0.897 \,{\rm bit/Symbol}}
 +
\hspace{0.05cm},$$
 +
:$$ H_3 = {1}/{3} \cdot [ 0.918 + 2  \cdot 0.875] \hspace{0.15cm} \underline {= 0.889 \,{\rm bit/Symbol}}
 +
\hspace{0.05cm},$$
 +
:$$ H_4 =  {1}/{4} \cdot [ 0.918 + 3  \cdot 0.875] \hspace{0.15cm} \underline {= 0.886 \,{\rm bit/Symbol}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
:Daraus folgt:
 
:$$H_2 \hspace{0.1cm} =  \hspace{0.1cm}  \frac{1}{2} \cdot [ 0.918 + 1  \cdot 0.875] \hspace{0.15cm} \underline {= 0.897 \,{\rm bit/Symbol}}
 
\hspace{0.05cm},\\
 
H_3 \hspace{0.1cm} =  \hspace{0.1cm}  \frac{1}{3} \cdot [ 0.918 + 2  \cdot 0.875] \hspace{0.15cm} \underline {= 0.889 \,{\rm bit/Symbol}}
 
\hspace{0.05cm},\\
 
H_4 \hspace{0.1cm} =  \hspace{0.1cm}  \frac{1}{4} \cdot [ 0.918 + 3  \cdot 0.875] \hspace{0.15cm} \underline {= 0.886 \,{\rm bit/Symbol}}
 
\hspace{0.05cm}.$$
 
[[File:P_ID2251__Inf_A_1_5f.png|right|]]
 
  
:<b>6.</b>&nbsp;&nbsp;Mit dem neuen Parametersatz (<i>p</i> = 1/4, <i>q</i> = 3/4) erhält man für die Symbolwahrscheinlichkeiten: <i>p</i><sub>A</sub> = 1/4 und <i>p</i><sub>B</sub> = 3/4. Dieser Sonderfall führt demnach zu statistisch unabhängigen Symbolen:
+
[[File:P_ID2251__Inf_A_1_5f.png|right|Markovdiagramm zur Teilaufgaben (6)]]
 +
'''(6)'''&nbsp; Mit dem neuen Parametersatz ($p = 1/4, q = 3/4$) erhält man für die Symbolwahrscheinlichkeiten: $ p_{\rm A} = 1/4$ und $ p_{\rm B} = 3/4$. Dieser Sonderfall führt demnach zu statistisch unabhängigen Symbolen:
 
:$$ p_{\rm A} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}
 
:$$ p_{\rm A} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}
 
  \hspace{0.05cm}, \hspace{0.2cm} p_{\rm B} = p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A} = p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B}
 
  \hspace{0.05cm}, \hspace{0.2cm} p_{\rm B} = p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A} = p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
:Damit ist die Entropie <i>H</i> identisch mit der Entropienäherung <i>H</i><sub>1</sub>:
+
Damit ist die Entropie $H$ identisch mit der Entropienäherung $H_1$:
 
:$$H = H_{\rm 1}  =  1/4 \cdot {\rm log}_2\hspace{0.01cm} (4) + 3/4 \cdot {\rm log}_2\hspace{0.01cm} (4/3) =
 
:$$H = H_{\rm 1}  =  1/4 \cdot {\rm log}_2\hspace{0.01cm} (4) + 3/4 \cdot {\rm log}_2\hspace{0.01cm} (4/3) =
 
  2 - 0.75 \cdot {\rm log}_2\hspace{0.01cm} (3) \hspace{0.15cm} \underline {= 0.811 \,{\rm bit/Symbol}}  
 
  2 - 0.75 \cdot {\rm log}_2\hspace{0.01cm} (3) \hspace{0.15cm} \underline {= 0.811 \,{\rm bit/Symbol}}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
:Die Entropienäherungen <i>H</i><sub>2</sub>, <i>H</i><sub>3</sub>, <i>H</i><sub>4</sub>, ... liefern hier ebenfalls das Ergebnis 0.811 bit/Symbol.
+
Die Entropienäherungen $H_2$, $H_3$, $H_4$, ... liefern hier ebenfalls das Ergebnis $0.811 \, \rm bit/Symbol$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 16:11, 1 May 2017

Binäres Markovdiagramm

Die Aufgabe 1.4 hat gezeigt, dass die Berechnung der Entropie bei einer gedächtnisbehafteten Quelle sehr aufwändig sein kann. Man muss dann zunächst (sehr viele) Entropienäherungen $H_k$ für $k$–Tupel berechnen und kann erst dann mit dem Grenzübergang $k \to \infty$ die Quellenentropie ermitteln:

$$H = \lim_{k \rightarrow \infty } H_k \hspace{0.05cm}.$$

Oft tendiert dabei $H_k$ nur sehr langsam gegen den Grenzwert $H$.

Der Rechengang wird drastisch reduziert, wenn die Nachrichtenquelle Markoveigenschaften besitzt. Die Grafik zeigt das Übergangsdiagramm für eine binäre Markovquelle mit den zwei Zuständen (Symbolen) $\rm A$ und $\rm B$.

  • Dieses ist durch die beiden bedingten Wahrscheinlichkeiten $p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B} = p$ und $p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A} = q$ eindeutig bestimmt.
  • Die bedingten Wahrscheinlichkeiten $p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}$ und $p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B}$ sowie die Symbolwahrscheinlichkeiten $p_{\rm A}$ und $p_{\rm B}$ lassen sich daraus ermitteln.


Die Entropie der binären Markovkette (mit der Einheit „bit/Symbol”) lautet dann:

$$H = H_{\rm M} = p_{\rm AA} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm AB} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm BA} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}} + p_{\rm BB} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B}} \hspace{0.05cm}.$$

Bei dieser Gleichung ist zu beachten, dass im Argument des Logarithmus dualis jeweils die bedingten Wahrscheinlichkeiten $p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}$, $p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}$, ... einzusetzen sind, während für die Gewichtung die Verbundwahrscheinlichkeiten $p_{\rm AA}$, $p_{\rm AB}$, ... zu verwenden sind.

Mit der Entropienäherung erster Ordnung,

$$H_1 = p_{\rm A} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm A}} + p_{\rm B} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B}} \hspace{0.5cm}({\rm Einheit\hspace{-0.1cm}: \hspace{0.1cm}bit/Symbol})\hspace{0.05cm},$$

sowie der oben angegebenen (tatsächlichen) Entropie $H = H_{\rm M}$ lassen sich bei einer Markovquelle auch alle weiteren Entropienäherungen ($k = 2,, 3$, ...) direkt berechnen:

$$H_k = \frac{1}{k} \cdot [ H_{\rm 1} + (k-1) \cdot H_{\rm M}] \hspace{0.05cm}.$$


Hinweise:

  • Die Aufgabe gehört zum Kapitel Nachrichtenquellen mit Gedächtnis.
  • Bezug genommen wird insbesondere auch auf die beiden Seiten Schnittmenge und Bedingte Wahrscheinlichkeit.
  • Mit Ausnahme der Teilaufgabe (6) gelte stets $p = 1/4$ und $q = 1/2$.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Für die (ergodischen) Symbolwahrscheinlichkeiten einer Markovkette erster Ordnung gilt:
$$ p_{\rm A} = \frac {p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}} { p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B} + p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} \hspace{0.05cm}, \hspace{0.3cm} p_{\rm B} = \frac {p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} { p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B} + p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} \hspace{0.05cm}.$$


Fragebogen

1

Geben Sie die Übergangswahrscheinlichkeiten für $p = 1/4$ und $q = 1/2$ an.

$p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \ = $

$p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B} \ = $

2

Wie groß sind die Symbolwahrscheinlichkeiten? Es gelte weiterhin $p = 1/4$ und $q = 1/2$.

$p_{\rm A} \ = $

$p_{\rm B} \ = $

3

Geben Sie die dazugehörige Entropienäherung erster Ordnung an.

$H_1 \ = $

$\ \rm bit/Symbol$

4

Welche Entropie $H = H_{\rm M}$ besitzt diese Markovquelle mit $p = 1/4$ und $q = 1/2$?

$H \ =$

$\ \rm bit/Symbol$

5

Welche Näherungen $H_k$ ergeben sich aufgrund der Markoveigenschaften?

$H_2 \ =$

$\ \rm bit/Symbol$
$H_3 \ =$

$\ \rm bit/Symbol$
$H_4 \ =$

$\ \rm bit/Symbol$

6

Welche Entropie $H = H_{\rm M}$ besitzt die Markovquelle mit $p = 1/4$ und $q = 3/4$?

$H \ =$

$\ \rm bit/Symbol$


Musterlösung

Markovdiagramm für die Teilaufgaben (1), ... , (5)

(1)  Hier gilt für die Übergangswahrscheinlichkeiten:

$$p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \hspace{0.1cm} = \hspace{0.1cm} 1 - p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}= 1 - q \hspace{0.15cm} \underline {= 0.5} \hspace{0.05cm},$$
$$ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B} \hspace{0.1cm} = \hspace{0.1cm} 1 - p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}= 1 - p \hspace{0.15cm} \underline {= 0.75} \hspace{0.05cm}.$$
Nach $\rm A$ sind $\rm A$ und $\rm B$ gleichwahrscheinlich. Nach $\rm B$ tritt $\rm B$ sehr viel häufiger als $\rm A$ auf.

(2)  Entsprechend den angegebenen Gleichungen gilt:

$$p_{\rm A}= \frac{p}{p+q} = \frac{0.25}{0.25 + 0.50} \hspace{0.15cm} \underline {= 0.333} \hspace{0.05cm}, \hspace{0.5cm} p_{\rm B} = \frac{q}{p+q} = \frac{0.50}{0.25 + 0.50} \hspace{0.15cm} \underline {= 0.667} \hspace{0.05cm}.$$

(3)  Mit den in der letzten Teilaufgabe berechneten Wahrscheinlichkeiten gilt:

$$H_{\rm 1} = H_{\rm bin}(p_{\rm A}) = 1/3 \cdot {\rm log}_2\hspace{0.01cm} (3) + 2/3 \cdot {\rm log}_2\hspace{0.01cm} (1.5) = 1.585 - 2/3\hspace{0.15cm} \underline {= 0.918 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$

(4)  Die Entropie der Markovquelle lautet entsprechend der Angabe

$$H = p_{\rm AA} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm AB} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm BA} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}} + p_{\rm BB} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B}} \hspace{0.05cm}.$$

Für die Verbundwahrscheinlichkeiten gilt:

$$p_{\rm AA} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \cdot p_{\rm A} = (1-q) \cdot \frac{p}{p+q} = \frac{1/2 \cdot 1/4}{3/4} = {1}/{6} \hspace{0.05cm},$$
$$ p_{\rm AB} = p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A} \cdot p_{\rm A} = q \cdot \frac{p}{p+q} = \frac{1/2 \cdot 1/4}{3/4} = {1}/{6} \hspace{0.05cm},$$
$$ p_{\rm BA} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B} \cdot p_{\rm B} = p \cdot \frac{q}{p+q} = p_{\rm AB} = {1}/{6} \hspace{0.05cm},$$
$$ p_{\rm BB} = p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B} \cdot p_{\rm B} = (1-p) \cdot \frac{q}{p+q} = \frac{3/4 \cdot 1/2}{3/4} = {1}/{2} $$
$$\Rightarrow\hspace{0.3cm} H = 1/6 \cdot {\rm log}_2\hspace{0.01cm} (2) + 1/6 \cdot {\rm log}_2\hspace{0.01cm} (2) + 1/6 \cdot {\rm log}_2\hspace{0.01cm} (4) + 1/2 \cdot {\rm log}_2\hspace{0.1cm} (4/3) = 10/6 - 1/2 \cdot {\rm log}_2\hspace{0.01cm} (3) \hspace{0.15cm} \underline {= 0.875 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$

(5)  Allgemein gilt mit $H_{\rm M} = H$ für die $k$–Entropienäherung: $H_k = {1}/{k} \cdot [ H_{\rm 1} + (k-1) \cdot H_{\rm M}] \hspace{0.05cm}.$ Daraus folgt:

$$H_2 = {1}/{2} \cdot [ 0.918 + 1 \cdot 0.875] \hspace{0.15cm} \underline {= 0.897 \,{\rm bit/Symbol}} \hspace{0.05cm},$$
$$ H_3 = {1}/{3} \cdot [ 0.918 + 2 \cdot 0.875] \hspace{0.15cm} \underline {= 0.889 \,{\rm bit/Symbol}} \hspace{0.05cm},$$
$$ H_4 = {1}/{4} \cdot [ 0.918 + 3 \cdot 0.875] \hspace{0.15cm} \underline {= 0.886 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$
Markovdiagramm zur Teilaufgaben (6)

(6)  Mit dem neuen Parametersatz ($p = 1/4, q = 3/4$) erhält man für die Symbolwahrscheinlichkeiten: $ p_{\rm A} = 1/4$ und $ p_{\rm B} = 3/4$. Dieser Sonderfall führt demnach zu statistisch unabhängigen Symbolen:

$$ p_{\rm A} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B} \hspace{0.05cm}, \hspace{0.2cm} p_{\rm B} = p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A} = p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B} \hspace{0.05cm}.$$

Damit ist die Entropie $H$ identisch mit der Entropienäherung $H_1$:

$$H = H_{\rm 1} = 1/4 \cdot {\rm log}_2\hspace{0.01cm} (4) + 3/4 \cdot {\rm log}_2\hspace{0.01cm} (4/3) = 2 - 0.75 \cdot {\rm log}_2\hspace{0.01cm} (3) \hspace{0.15cm} \underline {= 0.811 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$

Die Entropienäherungen $H_2$, $H_3$, $H_4$, ... liefern hier ebenfalls das Ergebnis $0.811 \, \rm bit/Symbol$.