Difference between revisions of "Gesetzmäßigkeiten der Fouriertransformation (Lernvideo)"

From LNTwww
(Die Seite wurde neu angelegt: „ === Teil 1 === Verdeutlicht wird die Fourierreihen-Approximation für ein periodisches, mittelwertfreies und gerades Zeitsignal $x(t)$. Ein solches führt na…“)
 
Line 16: Line 16:
 
</lntmedia>
 
</lntmedia>
  
Dieses Lernvideo wurde 2005 am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert.<br>
+
Dieses Lernvideo wurde 2006 am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert.<br>
Buch und Regie: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]] und [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Dr.-Ing._Klaus_Eichin_.28am_LNT_von_1972-2011.29|Klaus Eichin]] &nbsp; Sprecher: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Dr.-Ing._Klaus_Eichin_.28am_LNT_von_1972-2011.29|Klaus Eichin]] &nbsp; Realisierung: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Ji_Li_.28Bachelorarbeit_EI_2003.2C_Diplomarbeit_EI_2005.29|Ji Li]].
+
Buch und Regie: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]] und [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Dr.-Ing._Klaus_Eichin_.28am_LNT_von_1972-2011.29|Klaus Eichin]] &nbsp; Sprecher: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]] &nbsp; Realisierung: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Franz_Kohl_.28Diplomarbeit_LB_2004.2C_danach_freie_Mitarbeit_bis_2006.29|Franz Kohl]] und [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Manfred_J.C3.BCrgens_.28am_LNT_von_1981-2010.29|Manfred Jürgens]] .
  
 
Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 durch [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28am_LNT_seit_2014.29|Tasnád Kernetzky]] und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern wie Firefox, Chrome und Safari, als auch von Smartphones wiedergegeben werden zu können.
 
Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 durch [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28am_LNT_seit_2014.29|Tasnád Kernetzky]] und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern wie Firefox, Chrome und Safari, als auch von Smartphones wiedergegeben werden zu können.

Revision as of 16:46, 16 May 2017

Teil 1

Verdeutlicht wird die Fourierreihen-Approximation für ein periodisches, mittelwertfreies und gerades Zeitsignal $x(t)$. Ein solches führt nach der Fouriertransformation stets zu einem Linienspektrum $X(f)$. Der Abstand zweier Spektrallinien ist dabei gleich dem Kehrwert der Periodendauer $T_0$. Eingegangen wird auch auf die vereinfachte Forierkoeffizientenberechnung aufgrund von Symmetrieeigenschaften (Dauer 3:25).

Teil 2

Nun wird die Fourierreihendarstellung beispielhaft für das Dreiecksignal und das Rechtecksignal hergeleitet. Anhand von Simulationsergebnissen wird insbesondere der entstehende Fehler durch Abbruch der Fourierreihe angegeben. Abschließend wird das Gibbsche Phänomen am Beispiel des Rechtecksignals erläutert (Dauer 8:34).

Dieses Lernvideo wurde 2006 am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.
Buch und Regie: Günter Söder und Klaus Eichin   Sprecher: Günter Söder   Realisierung: Franz Kohl und Manfred Jürgens .

Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 durch Tasnád Kernetzky und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern wie Firefox, Chrome und Safari, als auch von Smartphones wiedergegeben werden zu können.