Difference between revisions of "Aufgaben:Exercise 2.6: Free Space Attenuation"
Line 60: | Line 60: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | '''(1)''' Entsprechend der Gleichung für die Freiraumdämpfung gilt mit $d = 10\ \rm km$ und $f_{\rm T} = 20 \ \rm MHz$: |
− | $$\frac{a_{\rm K}(d, f_{\rm T})} | + | :$$\frac{a_{\rm K}(d, f_{\rm T})}{\rm dB} = 34 + 20 \cdot {\rm lg }\hspace{0.1cm}\frac{d}{\rm km} + 20 \cdot {\rm lg }\hspace{0.1cm}\frac{f_{\rm T}}{\rm MHz}= 34 + 20 \cdot {\rm lg }\hspace{0.1cm}(10) + 20 \cdot {\rm lg }\hspace{0.1cm}(20)\approx 80\hspace{0.1cm}{\rm dB} \hspace{0.05cm}.$$ |
− | |||
Dies entspricht einer Leistungsverminderung um den Faktor $10^{8}$: | Dies entspricht einer Leistungsverminderung um den Faktor $10^{8}$: | ||
− | $$P_{\rm E}= 10^{-8} \cdot P_{\rm S}= 10^{-8} \cdot 100\,{\rm kW}\hspace{0.15cm}\underline {= | + | :$$P_{\rm E}= 10^{-8} \cdot P_{\rm S}= 10^{-8} \cdot 100\,{\rm kW}\hspace{0.15cm}\underline {= 1\, {\rm mW} \hspace{0.05cm}}.$$ |
+ | '''(2)''' Aus $P_{\rm S} = 10^5 \ \rm W$, $P_{\rm E} = 10{^–4}\ \rm W$ folgt eine Freiraumdämpfung von $90 \ \rm dB$. Daraus erhält man weiter: | ||
+ | :$$20 \cdot {\rm lg }\hspace{0.1cm}\frac{d}{\rm km} = ( 90-34 - 26)\hspace{0.1cm}{\rm dB}= 30\,{\rm dB}\hspace{0.3cm} | ||
+ | \Rightarrow \hspace{0.3cm} d = 10^{1.5}\,{\rm km}\hspace{0.15cm}\underline { = 31.6\,{\rm km}\hspace{0.05cm}}.$$ | ||
− | ''' | + | '''(3)''' Bei ZSB–AM ohne Träger, das heißt für den Modulationsgrad $m → ∞$, würde gelten: |
− | $$ | + | :$$ \rho_{v } = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{{N_0} \cdot B_{\rm NF}} = \frac{ P_{\rm E}}{{N_0} \cdot B_{\rm NF}}= \frac{10^{-4}\,{\rm W}}{10^{-14}\,{\rm W/Hz}\cdot 8 \cdot 10^{3}\,{\rm Hz} } = 1.25 \cdot 10^6\hspace{0.3cm} |
− | $$\ | + | \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg }\hspace{0.1cm}\rho_{v } \approx 61\,{\rm dB}\hspace{0.05cm}.$$ |
+ | Mit dem Modulationsgrad $m = 0.5$ wird das Sinken–SNR um den Faktor $[1 +{2}/{m^2}]^{-1} = {1}/{9}$ kleiner. Der Sinken–Störabstand ist somit ebenfalls geringer: | ||
+ | :$$ 10 \cdot {\rm lg }\hspace{0.1cm}\rho_{v } = 61\,{\rm dB}- 10 \cdot {\rm lg }\hspace{0.1cm}(9) \hspace{0.15cm}\underline {\approx 51.5\,{\rm dB}\hspace{0.05cm}}.$$ | ||
− | + | '''(4)''' Entsprechend den Berechnungen zur Teilaufgabe (3) muss nun folgende Bedingung erfüllt sein: | |
− | ''' | + | :$$ 10 \cdot {\rm lg }\hspace{0.1cm}\left({1 + {2}/{m^2}}\right) < 1\,{\rm dB}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 1 +{2}/{m^2} < 10^{0.1}=1.259 |
− | $$ | + | \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{2}/{m^2} < 0.259 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} m > \sqrt{8}\approx 2.83 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} m_{\rm min} \hspace{0.15cm}\underline {= 2.83} \hspace{0.05cm}.$$ |
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | '''(5)''' Richtig sind die <u>Vorschläge 1 und 3</u>: | |
− | ''' | + | *Bei Verwendung eines Synchrondemodulators macht die Zusetzung des Trägers keinen Sinn, außer, dass dieser für die erforderliche Trägerrückgewinnung nützlich sein könnte. |
− | + | *Da der Träger zur Demodulation nicht genutzt werden kann, steht nur ein Bruchteil der Sendeleistung für die Demodulation zur Verfügung (ein Drittel bei $m = 1$, ein Neuntel bei $m = 0.5$. | |
− | |||
− | |||
{{ML-Fuß}} | {{ML-Fuß}} |
Revision as of 14:06, 28 June 2017
Ein gemäß dem Modulationsverfahren „ZSB–AM mit Träger” betriebener Kurzwellensender arbeitet mit der Trägerfrequenz $f_{\rm T} = 20 \ \rm MHz$ und der Sendeleistung $P_{\rm S} = 100\ \rm kW$. Er ist für eine Bandbreite von $B_{\rm NF} = 8 \ \rm kHz$ ausgelegt.
Zum Testbetrieb wird ein mobiler Empfänger eingesetzt, der mit einem Synchrondemodulator arbeitet. Befindet sich dieser in der Distanz $d$ zum Sender, so kann die Dämpfungsfunktion des Übertragungskanals wie folgt angenähert werden:
- $$\frac{a_{\rm K}(d, f)}{\rm dB} = 34 + 20 \cdot {\rm lg }\hspace{0.2cm}\frac{d}{\rm km} + 20 \cdot {\rm lg }\hspace{0.2cm}\frac{f}{\rm MHz} \hspace{0.05cm}.$$
Die Gleichung beschreibt die so genannte Freiraumdämpfung, die auch von der (Träger-)Frequenz abhängt.
Es kann davon ausgegangen werden, dass das gesamte ZSB–AM–Spektrum wie die Trägerfrequenz gedämpft wird. Das bedeutet, dass
- die etwas größere Dämpfung des oberen Seitenbandes (OSB), bzw.
- die geringfügig kleinere Dämpfung des des unteren Seitenbandes (USB)
durch eine entsprechende Vorverzerrung beim Sender ausgeglichen wird.
Die am Empfänger wirksame Rauschleistungsdichte sei $N_0 = 10^{–14} \ \rm W/Hz.$
Für die beiden ersten Teilaufgaben wird vorausgesetzt, dass der Sender nur den Träger überträgt, was gleichbedeutend dafür ist, dass der Modulationsgrad $m = 0$ ist.
Hinweise:
- Die Aufgabe gehört zum Kapitel Synchrondemodulation.
- Bezug genommen wird insbesondere auf die Seite Sinken-SNR und Leistungskenngröße.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- $$\frac{a_{\rm K}(d, f_{\rm T})}{\rm dB} = 34 + 20 \cdot {\rm lg }\hspace{0.1cm}\frac{d}{\rm km} + 20 \cdot {\rm lg }\hspace{0.1cm}\frac{f_{\rm T}}{\rm MHz}= 34 + 20 \cdot {\rm lg }\hspace{0.1cm}(10) + 20 \cdot {\rm lg }\hspace{0.1cm}(20)\approx 80\hspace{0.1cm}{\rm dB} \hspace{0.05cm}.$$
Dies entspricht einer Leistungsverminderung um den Faktor $10^{8}$:
- $$P_{\rm E}= 10^{-8} \cdot P_{\rm S}= 10^{-8} \cdot 100\,{\rm kW}\hspace{0.15cm}\underline {= 1\, {\rm mW} \hspace{0.05cm}}.$$
(2) Aus $P_{\rm S} = 10^5 \ \rm W$, $P_{\rm E} = 10{^–4}\ \rm W$ folgt eine Freiraumdämpfung von $90 \ \rm dB$. Daraus erhält man weiter:
- $$20 \cdot {\rm lg }\hspace{0.1cm}\frac{d}{\rm km} = ( 90-34 - 26)\hspace{0.1cm}{\rm dB}= 30\,{\rm dB}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} d = 10^{1.5}\,{\rm km}\hspace{0.15cm}\underline { = 31.6\,{\rm km}\hspace{0.05cm}}.$$
(3) Bei ZSB–AM ohne Träger, das heißt für den Modulationsgrad $m → ∞$, würde gelten:
- $$ \rho_{v } = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{{N_0} \cdot B_{\rm NF}} = \frac{ P_{\rm E}}{{N_0} \cdot B_{\rm NF}}= \frac{10^{-4}\,{\rm W}}{10^{-14}\,{\rm W/Hz}\cdot 8 \cdot 10^{3}\,{\rm Hz} } = 1.25 \cdot 10^6\hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg }\hspace{0.1cm}\rho_{v } \approx 61\,{\rm dB}\hspace{0.05cm}.$$
Mit dem Modulationsgrad $m = 0.5$ wird das Sinken–SNR um den Faktor $[1 +{2}/{m^2}]^{-1} = {1}/{9}$ kleiner. Der Sinken–Störabstand ist somit ebenfalls geringer:
- $$ 10 \cdot {\rm lg }\hspace{0.1cm}\rho_{v } = 61\,{\rm dB}- 10 \cdot {\rm lg }\hspace{0.1cm}(9) \hspace{0.15cm}\underline {\approx 51.5\,{\rm dB}\hspace{0.05cm}}.$$
(4) Entsprechend den Berechnungen zur Teilaufgabe (3) muss nun folgende Bedingung erfüllt sein:
- $$ 10 \cdot {\rm lg }\hspace{0.1cm}\left({1 + {2}/{m^2}}\right) < 1\,{\rm dB}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 1 +{2}/{m^2} < 10^{0.1}=1.259 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{2}/{m^2} < 0.259 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} m > \sqrt{8}\approx 2.83 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} m_{\rm min} \hspace{0.15cm}\underline {= 2.83} \hspace{0.05cm}.$$
(5) Richtig sind die Vorschläge 1 und 3:
- Bei Verwendung eines Synchrondemodulators macht die Zusetzung des Trägers keinen Sinn, außer, dass dieser für die erforderliche Trägerrückgewinnung nützlich sein könnte.
- Da der Träger zur Demodulation nicht genutzt werden kann, steht nur ein Bruchteil der Sendeleistung für die Demodulation zur Verfügung (ein Drittel bei $m = 1$, ein Neuntel bei $m = 0.5$.