Difference between revisions of "Aufgaben:Exercise 2.11: Envelope Demodulation of an SSB Signal"
m (Guenter verschob die Seite 2.10 Verzerrungen durch ESB/HKD nach 2.11 Verzerrungen durch ESB/HKD) |
|||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID1047__Mod_A_2_10.png|right|]] | + | [[File:P_ID1047__Mod_A_2_10.png|right|frame|Hüllkurve bei Einseitenband–Modulation]] |
Wir betrachten die Übertragung des Cosinussignals | Wir betrachten die Übertragung des Cosinussignals | ||
− | $$ q(t) = A_{\rm N} \cdot \cos(\omega_{\rm N} \cdot t)$$ | + | :$$ q(t) = A_{\rm N} \cdot \cos(\omega_{\rm N} \cdot t)$$ |
− | gemäß dem Modulationsverfahren „OSB–AM mit Träger”. Beim Empfänger wird das hochfrequente Signal mittels eines Hüllkurvendemodulators in den NF-Bereich zurückgesetzt | + | gemäß dem Modulationsverfahren „OSB–AM mit Träger”. Beim Empfänger wird das hochfrequente Signal mittels eines [[Modulationsverfahren/Hüllkurvendemodulation|Hüllkurvendemodulators]] in den NF-Bereich zurückgesetzt |
+ | |||
+ | Der Kanal wird als ideal vorausgesetzt, so dass das Empfangssignal $r(t)$ identisch mit dem Sendesignal $s(t)$ ist. Mit dem Seitenband–zu–Träger–Verhältnis | ||
+ | :$$ \mu = \frac{A_{\rm N}}{2 \cdot A_{\rm T}}$$ | ||
+ | kann für das äquivalente Tiefpass–Signal auch geschrieben werden: | ||
+ | :$$r_{\rm TP}(t) = A_{\rm T} \cdot \left( 1 + \mu \cdot {\rm e}^{{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}\omega_{\rm N}\cdot \hspace{0.03cm}\hspace{0.03cm}t} \right) \hspace{0.05cm}$$ | ||
− | |||
− | |||
− | |||
− | |||
Die Hüllkurve – also der Betrag dieses komplexen Signals – kann durch geometrische Überlegungen ermittelt werden. Man erhält abhängig vom Parameter $μ$: | Die Hüllkurve – also der Betrag dieses komplexen Signals – kann durch geometrische Überlegungen ermittelt werden. Man erhält abhängig vom Parameter $μ$: | ||
− | $$a(t ) = A_{\rm T} \cdot \sqrt{1+ \mu^2 + 2 \mu \cdot \cos(\omega_{\rm N} \cdot t)}\hspace{0.05cm}.$$ | + | :$$a(t ) = A_{\rm T} \cdot \sqrt{1+ \mu^2 + 2 \mu \cdot \cos(\omega_{\rm N} \cdot t)}\hspace{0.05cm}.$$ |
In der Grafik ist die zeitabhängige Hüllkurve a(t) für $μ = 1$ und $μ = 0.5$ dargestellt. Als gestrichelte Vergleichskurven sind jeweils die in der Amplitude angepassten Cosinusschwingungen eingezeichnet, die für eine verzerrungsfreie Demodulation Voraussetzung wären. | In der Grafik ist die zeitabhängige Hüllkurve a(t) für $μ = 1$ und $μ = 0.5$ dargestellt. Als gestrichelte Vergleichskurven sind jeweils die in der Amplitude angepassten Cosinusschwingungen eingezeichnet, die für eine verzerrungsfreie Demodulation Voraussetzung wären. | ||
− | Das periodische Signal a(t) kann durch eine Fourierreihe angenähert werden: | + | |
− | $$a(t ) = A_{\rm 0} + A_{\rm 1} \cdot \cos(\omega_{\rm N} \cdot t) + A_{\rm 2} \cdot \cos(2\omega_{\rm N} \cdot t)+ A_{\rm 3} \cdot \cos(3\omega_{\rm N} \cdot t)\hspace{0.05cm}+...$$ | + | Das periodische Signal $a(t)$ kann durch eine [[Signaldarstellung/Fourierreihe|Fourierreihe]] angenähert werden: |
+ | :$$a(t ) = A_{\rm 0} + A_{\rm 1} \cdot \cos(\omega_{\rm N} \cdot t) + A_{\rm 2} \cdot \cos(2\omega_{\rm N} \cdot t)+ A_{\rm 3} \cdot \cos(3\omega_{\rm N} \cdot t)\hspace{0.05cm}+\text{...}$$ | ||
Die Fourierkoeffizienten wurden mit Hilfe eines Simulationsprogrammes ermittelt. Für $μ = 1$ ergaben sich folgende Werte: | Die Fourierkoeffizienten wurden mit Hilfe eines Simulationsprogrammes ermittelt. Für $μ = 1$ ergaben sich folgende Werte: | ||
− | $$A_{\rm 0} = 1.273\,{\rm V},\hspace{0.3cm} A_{\rm 1} = 0.849\,{\rm V},\hspace{0.3cm}A_{\rm 2} = -0.170\,{\rm V},\hspace{0.3cm} A_{\rm 3} = 0.073\,{\rm V},\hspace{0.3cm}A_{\rm 4} = 0.040\,{\rm V} \hspace{0.05cm}.$$ | + | :$$A_{\rm 0} = 1.273\,{\rm V},\hspace{0.3cm} A_{\rm 1} = 0.849\,{\rm V},\hspace{0.3cm}A_{\rm 2} = -0.170\,{\rm V},\hspace{0.3cm} A_{\rm 3} = 0.073\,{\rm V},\hspace{0.3cm}A_{\rm 4} = 0.040\,{\rm V} \hspace{0.05cm}.$$ |
Entsprechend ergab die Simulation mit $μ = 0.5$: | Entsprechend ergab die Simulation mit $μ = 0.5$: | ||
− | $$A_{\rm 0} = 1.064\,{\rm V},\hspace{0.3cm} A_{\rm 1} = 0.484\,{\rm V},\hspace{0.3cm}A_{\rm 2} = 0.058\,{\rm V} \hspace{0.05cm}.$$ | + | :$$A_{\rm 0} = 1.064\,{\rm V},\hspace{0.3cm} A_{\rm 1} = 0.484\,{\rm V},\hspace{0.3cm}A_{\rm 2} = 0.058\,{\rm V} \hspace{0.05cm}.$$ |
− | Die hier nicht angegebenen Werte können bei der | + | Die hier nicht angegebenen Werte können bei der Klirrfaktorberechnung vernachlässigt werden. Das Sinkensignal $v(t)$ ergibt sich aus $a(t)$ wie folgt: |
− | $$v(t) = 2 \cdot [a(t ) - A_{\rm 0}] \hspace{0.05cm}.$$ | + | :$$v(t) = 2 \cdot [a(t ) - A_{\rm 0}] \hspace{0.05cm}.$$ |
− | Der Faktor 2 korrigiert dabei die Amplitudenminderung durch die ESB–AM, während die Subtraktion des Gleichsignalkoeffizienten $A_0$ den Einfluss des Hochpasses innerhalb des Hüllkurvendemodulators berücksichtigt. | + | Der Faktor $2$ korrigiert dabei die Amplitudenminderung durch die ESB–AM, während die Subtraktion des Gleichsignalkoeffizienten $A_0$ den Einfluss des Hochpasses innerhalb des Hüllkurvendemodulators berücksichtigt. |
+ | |||
+ | Für die Teilaufgaben (1) bis (3) wird $A_{\rm N} = 2 \ \rm V$, $A_{\rm T} = 1 \ \rm V$ und somit $μ = 1$ vorausgesetzt, während ab Frage (4) für den Parameter $μ = 0.5$ ⇒ $A_{\rm N} = A_{\rm T} = 1 \ \rm V$ gelten soll. | ||
+ | |||
+ | |||
+ | ''Hinweise:'' | ||
+ | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Einseitenbandmodulation|Einseitenbandmodulation]]. | ||
+ | *Bezug genommen wird insbesondere auf die Seite [[Modulationsverfahren/Einseitenbandmodulation#Seitenband.E2.80.93zu.E2.80.93Tr.C3.A4ger.E2.80.93Verh.C3.A4ltnis|Seitenband-zu-Träger-Verhältnis]]. | ||
+ | *Vergleichen Sie Ihre Ergebnisse auch mit der Faustformel, die besagt, dass bei der Hüllkurvendemodulation eines ESB–AM–Signals mit dem Seitenband–zu–Träger–Verhältnis $μ$ der Klirrfaktor $K ≈ μ/4$ beträgt. | ||
+ | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
+ | |||
− | |||
− | |||
Line 34: | Line 44: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Geben Sie den | + | {Geben Sie den Maximalwert und den Minimalwert des Sinkensignals $v(t)$ für $μ = 1$ an. |
|type="{}"} | |type="{}"} | ||
− | $ | + | $v_{\rm max} \ = \ $ { 1.454 3% } $\ \rm V$ |
− | $ | + | $v_{\rm min} \ = \ $ { -2.62--2.48 } $\ \rm V$ |
− | {Berechnen Sie den Klirrfaktor für | + | {Berechnen Sie den Klirrfaktor für $μ = 1$. |
|type="{}"} | |type="{}"} | ||
− | $ | + | $K \ = \ $ { 22.3 3% } $\ \text{%}$ |
− | {Woran erkennt man die nichtlinearen Verzerrungen im vorliegenden Signal $ | + | {Woran erkennt man die nichtlinearen Verzerrungen im vorliegenden Signal $v(t)$? |
|type="[]"} | |type="[]"} | ||
+ Die untere Cosinushalbwelle ist spitzförmiger als die obere. | + Die untere Cosinushalbwelle ist spitzförmiger als die obere. | ||
− | - Der Gleichsignalanteil $Ε[ | + | - Der Gleichsignalanteil ${\rm Ε}[v(t)] = 0$. |
− | {Geben Sie den | + | {Geben Sie den Maximalwert und den Minimalwert des Sinkensignals $v(t)$ für $μ = 0.5$ an. |
|type="{}"} | |type="{}"} | ||
− | $ | + | $v_{\rm max} \ = \ $ { 0.872 3% } $\ \rm V$ |
− | $ | + | $v_{\rm min} \ = \ $ { -2.19--2.07 } $\ \rm V$ |
{Berechnen Sie den Klirrfaktor für $μ = 0.5$. | {Berechnen Sie den Klirrfaktor für $μ = 0.5$. | ||
|type="{}"} | |type="{}"} | ||
− | $ | + | $K \ = \ $ { 12 3% } $\ \text{%}$ |
− | {Geben Sie eine obere Schranke für den Klirrfaktor bei ZSB–AM | + | {Geben Sie eine obere Schranke $K_{\rm max}$ für den Klirrfaktor bei ZSB–AM mit $m = 0.5$ und Hüllkurvendemodulation an, wenn ein Seitenband durch den Kanal gedämpft wird. |
|type="{}"} | |type="{}"} | ||
− | $ | + | $K_{\rm max} \ = \ ${ 6.25 3% } $\ \text{%}$ |
Revision as of 16:07, 3 July 2017
Wir betrachten die Übertragung des Cosinussignals
- $$ q(t) = A_{\rm N} \cdot \cos(\omega_{\rm N} \cdot t)$$
gemäß dem Modulationsverfahren „OSB–AM mit Träger”. Beim Empfänger wird das hochfrequente Signal mittels eines Hüllkurvendemodulators in den NF-Bereich zurückgesetzt
Der Kanal wird als ideal vorausgesetzt, so dass das Empfangssignal $r(t)$ identisch mit dem Sendesignal $s(t)$ ist. Mit dem Seitenband–zu–Träger–Verhältnis
- $$ \mu = \frac{A_{\rm N}}{2 \cdot A_{\rm T}}$$
kann für das äquivalente Tiefpass–Signal auch geschrieben werden:
- $$r_{\rm TP}(t) = A_{\rm T} \cdot \left( 1 + \mu \cdot {\rm e}^{{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}\omega_{\rm N}\cdot \hspace{0.03cm}\hspace{0.03cm}t} \right) \hspace{0.05cm}$$
Die Hüllkurve – also der Betrag dieses komplexen Signals – kann durch geometrische Überlegungen ermittelt werden. Man erhält abhängig vom Parameter $μ$:
- $$a(t ) = A_{\rm T} \cdot \sqrt{1+ \mu^2 + 2 \mu \cdot \cos(\omega_{\rm N} \cdot t)}\hspace{0.05cm}.$$
In der Grafik ist die zeitabhängige Hüllkurve a(t) für $μ = 1$ und $μ = 0.5$ dargestellt. Als gestrichelte Vergleichskurven sind jeweils die in der Amplitude angepassten Cosinusschwingungen eingezeichnet, die für eine verzerrungsfreie Demodulation Voraussetzung wären.
Das periodische Signal $a(t)$ kann durch eine Fourierreihe angenähert werden:
- $$a(t ) = A_{\rm 0} + A_{\rm 1} \cdot \cos(\omega_{\rm N} \cdot t) + A_{\rm 2} \cdot \cos(2\omega_{\rm N} \cdot t)+ A_{\rm 3} \cdot \cos(3\omega_{\rm N} \cdot t)\hspace{0.05cm}+\text{...}$$
Die Fourierkoeffizienten wurden mit Hilfe eines Simulationsprogrammes ermittelt. Für $μ = 1$ ergaben sich folgende Werte:
- $$A_{\rm 0} = 1.273\,{\rm V},\hspace{0.3cm} A_{\rm 1} = 0.849\,{\rm V},\hspace{0.3cm}A_{\rm 2} = -0.170\,{\rm V},\hspace{0.3cm} A_{\rm 3} = 0.073\,{\rm V},\hspace{0.3cm}A_{\rm 4} = 0.040\,{\rm V} \hspace{0.05cm}.$$
Entsprechend ergab die Simulation mit $μ = 0.5$:
- $$A_{\rm 0} = 1.064\,{\rm V},\hspace{0.3cm} A_{\rm 1} = 0.484\,{\rm V},\hspace{0.3cm}A_{\rm 2} = 0.058\,{\rm V} \hspace{0.05cm}.$$
Die hier nicht angegebenen Werte können bei der Klirrfaktorberechnung vernachlässigt werden. Das Sinkensignal $v(t)$ ergibt sich aus $a(t)$ wie folgt:
- $$v(t) = 2 \cdot [a(t ) - A_{\rm 0}] \hspace{0.05cm}.$$
Der Faktor $2$ korrigiert dabei die Amplitudenminderung durch die ESB–AM, während die Subtraktion des Gleichsignalkoeffizienten $A_0$ den Einfluss des Hochpasses innerhalb des Hüllkurvendemodulators berücksichtigt.
Für die Teilaufgaben (1) bis (3) wird $A_{\rm N} = 2 \ \rm V$, $A_{\rm T} = 1 \ \rm V$ und somit $μ = 1$ vorausgesetzt, während ab Frage (4) für den Parameter $μ = 0.5$ ⇒ $A_{\rm N} = A_{\rm T} = 1 \ \rm V$ gelten soll.
Hinweise:
- Die Aufgabe gehört zum Kapitel Einseitenbandmodulation.
- Bezug genommen wird insbesondere auf die Seite Seitenband-zu-Träger-Verhältnis.
- Vergleichen Sie Ihre Ergebnisse auch mit der Faustformel, die besagt, dass bei der Hüllkurvendemodulation eines ESB–AM–Signals mit dem Seitenband–zu–Träger–Verhältnis $μ$ der Klirrfaktor $K ≈ μ/4$ beträgt.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
2. Unter Vernachlässigung der Fourierkoeffizienten $A_5$, $A_6$, usw. erhält man: $$K = \frac{\sqrt{A_2^2 + A_3^2+ A_4^2 }}{A_1}= \frac{\sqrt{0.170^2 + 0.073^2 + 0.040^2 }{\,\rm V}}{0.849\,{\rm V}}\hspace{0.15cm}\underline { \approx 22.3 \%}.$$ Die Näherung $K ≈ μ/4$ liefert hier den Wert $25%$.
3. Nur der erste Lösungsvorschlag ist richtig. Aufgrund des Hochpasses innerhalb des HKD wäre der Gleichsignalanteil auch dann 0, wenn keine Verzerrungen vorlägen.
4. Analog zur Teilaufgabe a) gilt hier: $$v_{\rm max} = 2 \cdot [a_{\rm max} - A_{\rm 0}] = 2 \cdot [1.5\,{\rm V} - 1.064\,{\rm V}] \hspace{0.15cm}\underline {= 0.872\,{\rm V}}\hspace{0.05cm},$$ $$ v_{\rm min} = -2 \cdot A_{\rm 0} \hspace{0.15cm}\underline {= -2.128\,{\rm V}}\hspace{0.05cm}.$$ 5. Bei kleinerem Seitenband–zu–Träger–Verhältnis ergibt sich auch ein kleinerer Klirrfaktor: $$K = \frac{0.058{\,\rm V}}{0.484\,{\rm V}}\hspace{0.15cm}\underline { \approx 12 \%}.$$ Die Näherung $K ≈ μ/4$ ergibt hier $12.5%$. Daraus kann geschlossen werden, dass die angegebene Faustformel bei kleinerem $μ$ genauer ist.
6.Der Klirrfaktor ist dann am größten, wenn eines der Seitenbänder völlig abgeschnitten wird. Da aber der Hüllkurvendemodulator keinerlei Kenntnis davon hat, ob eine ESB–AM oder eine durch $H_K(f)$ beeinträchtigte ZSB–AM vorliegt, gibt $K_{max} ≈ μ/4$ gleichzeitig eine obere Schranke für die ZSB–AM an.
Ein Vergleich der Parameter $m = A_N/A_T$ und $μ = A_N/(2A_T)$ führt zum Ergebnis: $$K_{\rm max} = \frac{\mu}{4} = \frac{m}{8} \hspace{0.15cm}\underline {=6.25 \%}.$$