Difference between revisions of "Aufgaben:Exercise 4.4Z: Signal-to-Noise Ratio with PCM"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1619__Mod_Z_4_4.png|right|frame|Störabstand von PCM 30/32 im Vergleich zu AM]]
+
[[File:P_ID1619__Mod_Z_4_4.png|right|frame|Störabstand von PCM 30/32 im Vergleich zur ZSB–Amplitudenmodulation]]
 
Die Grafik zeigt den Sinken–Störabstand $10 · \lg \ ρ_v$ für die Pulscodemodulation (PCM) im Vergleich zur analogen Zweiseitenband–Amplitudenmodulation, abgekürzt mit ZSB–AM. Für letztere gilt $ρ_v = ξ$, wobei die Leistungskenngröße
 
Die Grafik zeigt den Sinken–Störabstand $10 · \lg \ ρ_v$ für die Pulscodemodulation (PCM) im Vergleich zur analogen Zweiseitenband–Amplitudenmodulation, abgekürzt mit ZSB–AM. Für letztere gilt $ρ_v = ξ$, wobei die Leistungskenngröße
 
:$$\xi = \frac{\alpha^2 \cdot P_{\rm S}}{N_0 \cdot f_{\rm N}} \hspace{0.05cm}.$$
 
:$$\xi = \frac{\alpha^2 \cdot P_{\rm S}}{N_0 \cdot f_{\rm N}} \hspace{0.05cm}.$$
Line 13: Line 13:
  
  
Für das PCM–System wurde auf der Seite [[Modulationsverfahren/Pulscodemodulation#Absch.C3.A4tzung_der_SNR-Degradation_durch_.C3.9Cbertragungsfehler|Abschätzung der SNR-Degradation durch Übertragungsfehler]] folgende Näherung für das Sinken–SNR angegeben, die auch Bitfehler aufgrund des AWGN–Rauschens berücksichtigt:
+
Für das PCM–System wurde auf der Seite [[Modulationsverfahren/Pulscodemodulation#Absch.C3.A4tzung_der_SNR-Degradation_durch_.C3.9Cbertragungsfehler|Abschätzung der SNR-Degradation durch Bitfehler]] folgende Näherung für das Sinken–SNR angegeben, die auch Übertragungsfehler aufgrund des AWGN–Rauschens berücksichtigt:
 
:$$ \rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \hspace{0.05cm}.$$
 
:$$ \rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \hspace{0.05cm}.$$
 
Hierbei bezeichnet $N$ die Anzahl der Bit pro Abtastwert und $p_{\rm B}$ die Bitfehlerwahrscheinlichkeit. Da $ξ$ bei digitaler Modulation auch als die ''Signalenergie pro Bit''  bezogen auf die ''Rauschleistungsdichte'' ($E_{\rm B}/N_0$) interpretiert werden kann, gilt mit dem komplementären Gaußschen Fehlersignal ${\rm Q}(x)$ näherungsweise:
 
Hierbei bezeichnet $N$ die Anzahl der Bit pro Abtastwert und $p_{\rm B}$ die Bitfehlerwahrscheinlichkeit. Da $ξ$ bei digitaler Modulation auch als die ''Signalenergie pro Bit''  bezogen auf die ''Rauschleistungsdichte'' ($E_{\rm B}/N_0$) interpretiert werden kann, gilt mit dem komplementären Gaußschen Fehlersignal ${\rm Q}(x)$ näherungsweise:
Line 21: Line 21:
 
''Hinweise:''  
 
''Hinweise:''  
 
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Pulscodemodulation|Pulscodemodulation]].
 
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Pulscodemodulation|Pulscodemodulation]].
*Bezug genommen wird insbesondere auf die Seiten  [[Modulationsverfahren/Pulscodemodulation#Einfluss_von_.C3.9Cbertragungsfehlern|Einfluss von Übertragungsfehlern]] und [[Modulationsverfahren/Pulscodemodulation#Absch.C3.A4tzung_der_SNR-Degradation_durch_.C3.9Cbertragungsfehler|Abschätzung der SNR-Degradation durch Übertragungsfehler]].
+
*Bezug genommen wird insbesondere auf die Seiten  [[Modulationsverfahren/Pulscodemodulation#Einfluss_von_.C3.9Cbertragungsfehlern|Einfluss von Übertragungsfehlern]] und [[Modulationsverfahren/Pulscodemodulation#Absch.C3.A4tzung_der_SNR-Degradation_durch_.C3.9Cbertragungsfehler|Abschätzung der SNR-Degradation durch Bitfehler]].
 
*Bei der hier betrachteten PCM handelt es sich um die PCM 30/32, deren Systemparameter zum Beispiel in der [[Aufgaben:4.1_PCM–System_30/32 |Aufgabe 4.1]] angegeben sind.
 
*Bei der hier betrachteten PCM handelt es sich um die PCM 30/32, deren Systemparameter zum Beispiel in der [[Aufgaben:4.1_PCM–System_30/32 |Aufgabe 4.1]] angegeben sind.
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Line 35: Line 35:
 
{Wieviele Bit pro Abtastwert    ⇒   $N = N_2$ müsste man verwenden, damit $10 · \lg \ ρ_v > 64 \ \rm dB$ (Musikqualität) erreicht wird?
 
{Wieviele Bit pro Abtastwert    ⇒   $N = N_2$ müsste man verwenden, damit $10 · \lg \ ρ_v > 64 \ \rm dB$ (Musikqualität) erreicht wird?
 
|type="{}"}
 
|type="{}"}
$N_1 \ = \ $ { 11 3%  }  
+
$N_2 \ = \ $ { 11 3%  }  
  
 
{Welche (logarithmierte) Leistungskenngröße $ξ_{40\ \rm dB}$ ist erforderlich, damit bei 8–Bit–PCM der Sinkenstörabstand gleich $40\ \rm  dB$ ist?
 
{Welche (logarithmierte) Leistungskenngröße $ξ_{40\ \rm dB}$ ist erforderlich, damit bei 8–Bit–PCM der Sinkenstörabstand gleich $40\ \rm  dB$ ist?
Line 41: Line 41:
 
$10 · \lg \ ξ_{40\ \rm dB} \ = \ $ { 10 3% } $\ \rm dB$  
 
$10 · \lg \ ξ_{40\ \rm dB} \ = \ $ { 10 3% } $\ \rm dB$  
  
{Um welchen Faktor könnte man bei PCM die Sendeleistung gegenüber der ZSB–Amplitudenmodulation reduzieren, um trotzdem $10 · \lg  \ ρ_v = 40\ \rm  dB$ zu erreichen?
+
{Um welchen Faktor könnte man bei PCM die Sendeleistung gegenüber der ZSB–AM reduzieren, um trotzdem $10 · \lg  \ ρ_v = 40\ \rm  dB$ zu erreichen?
 
|type="{}"}
 
|type="{}"}
 
$K_\text{AM → PCM} \ = \ $ { 1000 3% }  
 
$K_\text{AM → PCM} \ = \ $ { 1000 3% }  
Line 57: Line 57:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  Der horizontale Abschnitt der PCM–Kurve wird allein durch das Quantisierungsrauschen bestimmt. Hier gilt mit der Quantisierungsstufenzahl $M = 2^N$:
+
'''(1)'''  Der horizontale Abschnitt der PCM–Kurve wird allein durch das Quantisierungsrauschen bestimmt. Hier gilt mit der Quantisierungsstufenzahl $M = 2^N$:
$$ \rho_{v} (\xi \rightarrow \infty) = \rho_{\rm Q} = M^2 = 2^{2N} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{v} \approx 6\,{\rm dB} \cdot N\hspace{0.05cm}.$$
+
:$$ \rho_{v} (\xi \rightarrow \infty) = \rho_{\rm Q} = M^2 = 2^{2N} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{v} \approx 6\,{\rm dB} \cdot N\hspace{0.05cm}.$$
Aus dem ablesbaren Störabstand $10 · lg ρ_υ ≈ 48 dB$ folgt daraus $N = 8 Bit$ pro Abtastwert und für die Quantisierungsstufenzahl $M = 256$.
+
Aus dem ablesbaren Störabstand $10 · \lg \ ρ_v ≈ 48 \ \rm dB$ folgt daraus $N_1\hspace{0.15cm}\underline { = 8}$ Bit pro Abtastwert und für die Quantisierungsstufenzahl $M = 256$.
  
  
'''2.''' Aus der obigen Näherung erhält man für $N = 11 ⇒  M = 2048$ den Störabstand $66 dB$. Mit $N = 10 ⇒ M = 1024$ erreicht man nur ca. $60 dB$. Bei der Compact Disc (CD) werden die PCM–Parameter $N = 16  ⇒  M = 65536  ⇒  10 · lg ρ_υ > 96 dB$ verwendet.
+
'''(2)'''   Aus der obigen Näherung erhält man für $N_2\hspace{0.15cm}\underline { = 11}$ Bit pro Abtastwert    ⇒    $M = 2048$ den Störabstand $66 \ \rm dB$.  
 +
*Mit $N = 10$      $M = 1024$ erreicht man nur ca. $60 \ \rm dB$.  
 +
*Bei der Compact Disc (CD) werden die PCM–Parameter $N = 16$   ⇒     $M = 65536$   ⇒     $10 · \lg \ ρ_v > 96 \ \rm dB$ verwendet.
  
  
'''3.''' Bei Zweiseitenband–Amplitudenmodulation wären hierfür $10 · lg ξ = 40 dB$ erforderlich. Wie aus der Grafik auf der Angabenseite hervorgeht, ist dieser Abszissenwert für die vorgegebene PCM um $30 dB$ geringer  ⇒  $10 · lg ξ_·{40 dB} = 10 dB$.  
+
'''(3)'''   Bei Zweiseitenband–Amplitudenmodulation wären hierfür $10 · \lg \ ξ = 40\ \rm  dB$ erforderlich. Wie aus der Grafik auf der Angabenseite hervorgeht, ist dieser Abszissenwert für die vorgegebene PCM um $30 dB$ geringer  ⇒  $10 · \lg \ ξ_{40\ \rm dB}\hspace{0.15cm}\underline { = 10 \ \rm dB}$.  
  
  
'''4.'''  Der logarithmische Wert $30 dB$ entspricht einer um den $Faktor 10^3 = 1000$ reduzierten Leistung.
+
'''(4)'''  Der logarithmische Wert $30 \ \rm  dB$ entspricht einer um den $Faktor 10^3\hspace{0.15cm}\underline {  = 1000}$ reduzierten Leistung.
  
  
'''5.''' Aus der Grafik auf der Angabenseite erkennt man, dass der Abszissenwert $10 · lg ξ = 6 dB$ den Störabstand $20 dB$ zur Folge hat. Aus $10 · lg ρ_υ = 20 dB$ folgt $ρ_υ = 100$ und damit weiter (mit $N = 8$):
+
'''(5)'''   Aus der Grafik auf der Angabenseite erkennt man, dass der Abszissenwert $10 · \lg \ ξ= 6 \ \rm  dB$ den Störabstand $20 \ \rm  dB$ zur Folge hat. Aus $10 · \lg \ ρ_v = 20 \ \rm  dB$ folgt $ρ_v = 100$ und damit weiter (mit $N = N_1 = 8$):
$$\rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \approx \frac{1}{ 1.5 \cdot 10^{-5} + 4 \cdot p_{\rm B}} = 100$$
+
:$$\rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \approx \frac{1}{ 1.5 \cdot 10^{-5} + 4 \cdot p_{\rm B}} = 100 \hspace{0.3cm}
$$\Rightarrow \hspace{0.3cm} p_{\rm B} = \frac{0.01 - 1.5 \cdot 10^{-5}}{ 4} \hspace{0.15cm}\underline {\approx 0.025} \hspace{0.05cm}.$$
+
\Rightarrow \hspace{0.3cm} p_{\rm B} = \frac{0.01 - 1.5 \cdot 10^{-5}}{ 4} \hspace{0.15cm}\underline {\approx 2.5\%} \hspace{0.05cm}.$$
  
'''6.'''Bei gleichem $ξ$ kann wieder mit der Bitfehlerwahrscheinlichkeit $p_B = 0.025$ gerechnet werden. Damit erhält man mit $N = 3$ (Bit pro Abtastwert)
+
'''(6)'''   Bei gleichem $ξ$ ist die Bitfehlerwahrscheinlichkeit weiterhin $p_{\rm B} = 0.025$ gerechnet werden. Damit erhält man mit $N = 3$ (Bit pro Abtastwert):
$$\rho_{\upsilon}= \frac{1}{ 2^{-6 } + 4 \cdot p_{\rm B}} = \frac{1}{ 0.015625 + 0.01} \approx 39 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\upsilon}\hspace{0.15cm}\underline {\approx 15.9\,{\rm dB}} \hspace{0.05cm}.$$
+
:$$\rho_{\upsilon}= \frac{1}{ 2^{-6 } + 4 \cdot p_{\rm B}} = \frac{1}{ 0.015625 + 0.01} \approx 39 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\upsilon}\hspace{0.15cm}\underline {\approx 15.9\,{\rm dB}} \hspace{0.05cm}.$$
Bei 3 Bit pro Abtastwert ist die Quantisierungsrauschleistung ($P_Q = 0.015625$) schon größer als die Fehlerrauschleistung ($P_F = 0.01$). Durch Erhöhung der Sendeleistung könnte wegen der Quantisierung der Sinkenstörabstand maximal 18 dB betragen, wenn keine Bitfehler vorkommen ($P_F = 0$).
+
Weiter ist anzumerken:
 +
*Bei nur drei Bit pro Abtastwert ist die Quantisierungsrauschleistung ($P_{\rm Q} = 0.015625$) schon größer als die Fehlerrauschleistung ($P_{\rm F} = 0.01$).  
 +
*Durch Erhöhung der Sendeleistung könnte wegen der Quantisierung der Sinkenstörabstand maximal $10 · \lg \ ρ_v =18 \ \rm dB$ betragen, wenn keine Bitfehler vorkommen ($P_{\rm F} = 0$).
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 13:58, 20 July 2017

Störabstand von PCM 30/32 im Vergleich zur ZSB–Amplitudenmodulation

Die Grafik zeigt den Sinken–Störabstand $10 · \lg \ ρ_v$ für die Pulscodemodulation (PCM) im Vergleich zur analogen Zweiseitenband–Amplitudenmodulation, abgekürzt mit ZSB–AM. Für letztere gilt $ρ_v = ξ$, wobei die Leistungskenngröße

$$\xi = \frac{\alpha^2 \cdot P_{\rm S}}{N_0 \cdot f_{\rm N}} \hspace{0.05cm}.$$

folgende Systemparameter zusammenfasst:

  • den frequenzunabhängigen Dämpfungsfaktor $α$ des Übertragungskanals,
  • die Leistung $P_{\rm S}$ des Sendsignals $s(t)$, auch kurz Sendeleistung genannt,
  • die Nachrichtenfrequenz $f_{\rm N}$ (Bandbreite) des cosinusförmigen Quellensignals $q(t)$,
  • die Rauschleistungsdichte $N_0$ des AWGN–Rauschens.


Für das PCM–System wurde auf der Seite Abschätzung der SNR-Degradation durch Bitfehler folgende Näherung für das Sinken–SNR angegeben, die auch Übertragungsfehler aufgrund des AWGN–Rauschens berücksichtigt:

$$ \rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \hspace{0.05cm}.$$

Hierbei bezeichnet $N$ die Anzahl der Bit pro Abtastwert und $p_{\rm B}$ die Bitfehlerwahrscheinlichkeit. Da $ξ$ bei digitaler Modulation auch als die Signalenergie pro Bit  bezogen auf die Rauschleistungsdichte ($E_{\rm B}/N_0$) interpretiert werden kann, gilt mit dem komplementären Gaußschen Fehlersignal ${\rm Q}(x)$ näherungsweise:

$$ p_{\rm B}= {\rm Q} \left ( \sqrt{2 \xi }\right ) \hspace{0.05cm}.$$


Hinweise:


Fragebogen

1

Wieviele Bit pro Abtastwert   ⇒   $N = N_1$ verwendet das betrachtete PCM–System?

$N_1 \ = \ $

2

Wieviele Bit pro Abtastwert   ⇒   $N = N_2$ müsste man verwenden, damit $10 · \lg \ ρ_v > 64 \ \rm dB$ (Musikqualität) erreicht wird?

$N_2 \ = \ $

3

Welche (logarithmierte) Leistungskenngröße $ξ_{40\ \rm dB}$ ist erforderlich, damit bei 8–Bit–PCM der Sinkenstörabstand gleich $40\ \rm dB$ ist?

$10 · \lg \ ξ_{40\ \rm dB} \ = \ $

$\ \rm dB$

4

Um welchen Faktor könnte man bei PCM die Sendeleistung gegenüber der ZSB–AM reduzieren, um trotzdem $10 · \lg \ ρ_v = 40\ \rm dB$ zu erreichen?

$K_\text{AM → PCM} \ = \ $

5

Welche Bitfehlerwahrscheinlichkeit $p_{\rm B}$ ergibt sich für $10 · \lg \ ξ = 6\ \rm dB$ und $N = N_1$   ⇒   Ergebnis zu (1)?

$p_{\rm B} \ = \ $

$\ \%$

6

Welches SNR würde sich bei gleichem $ξ$ mit einer 3–Bit–PCM   ⇒   $N = 3$ ergeben?

$10 · \lg \ ρ_v \ = \ $

$\ \rm dB$


Musterlösung

(1)  Der horizontale Abschnitt der PCM–Kurve wird allein durch das Quantisierungsrauschen bestimmt. Hier gilt mit der Quantisierungsstufenzahl $M = 2^N$:

$$ \rho_{v} (\xi \rightarrow \infty) = \rho_{\rm Q} = M^2 = 2^{2N} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{v} \approx 6\,{\rm dB} \cdot N\hspace{0.05cm}.$$

Aus dem ablesbaren Störabstand $10 · \lg \ ρ_v ≈ 48 \ \rm dB$ folgt daraus $N_1\hspace{0.15cm}\underline { = 8}$ Bit pro Abtastwert und für die Quantisierungsstufenzahl $M = 256$.


(2)  Aus der obigen Näherung erhält man für $N_2\hspace{0.15cm}\underline { = 11}$ Bit pro Abtastwert   ⇒   $M = 2048$ den Störabstand $66 \ \rm dB$.

  • Mit $N = 10$   ⇒   $M = 1024$ erreicht man nur ca. $60 \ \rm dB$.
  • Bei der Compact Disc (CD) werden die PCM–Parameter $N = 16$   ⇒   $M = 65536$   ⇒   $10 · \lg \ ρ_v > 96 \ \rm dB$ verwendet.


(3)  Bei Zweiseitenband–Amplitudenmodulation wären hierfür $10 · \lg \ ξ = 40\ \rm dB$ erforderlich. Wie aus der Grafik auf der Angabenseite hervorgeht, ist dieser Abszissenwert für die vorgegebene PCM um $30 dB$ geringer ⇒ $10 · \lg \ ξ_{40\ \rm dB}\hspace{0.15cm}\underline { = 10 \ \rm dB}$.


(4)  Der logarithmische Wert $30 \ \rm dB$ entspricht einer um den $Faktor 10^3\hspace{0.15cm}\underline { = 1000}$ reduzierten Leistung.


(5)  Aus der Grafik auf der Angabenseite erkennt man, dass der Abszissenwert $10 · \lg \ ξ= 6 \ \rm dB$ den Störabstand $20 \ \rm dB$ zur Folge hat. Aus $10 · \lg \ ρ_v = 20 \ \rm dB$ folgt $ρ_v = 100$ und damit weiter (mit $N = N_1 = 8$):

$$\rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \approx \frac{1}{ 1.5 \cdot 10^{-5} + 4 \cdot p_{\rm B}} = 100 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm B} = \frac{0.01 - 1.5 \cdot 10^{-5}}{ 4} \hspace{0.15cm}\underline {\approx 2.5\%} \hspace{0.05cm}.$$

(6)  Bei gleichem $ξ$ ist die Bitfehlerwahrscheinlichkeit weiterhin $p_{\rm B} = 0.025$ gerechnet werden. Damit erhält man mit $N = 3$ (Bit pro Abtastwert):

$$\rho_{\upsilon}= \frac{1}{ 2^{-6 } + 4 \cdot p_{\rm B}} = \frac{1}{ 0.015625 + 0.01} \approx 39 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\upsilon}\hspace{0.15cm}\underline {\approx 15.9\,{\rm dB}} \hspace{0.05cm}.$$

Weiter ist anzumerken:

  • Bei nur drei Bit pro Abtastwert ist die Quantisierungsrauschleistung ($P_{\rm Q} = 0.015625$) schon größer als die Fehlerrauschleistung ($P_{\rm F} = 0.01$).
  • Durch Erhöhung der Sendeleistung könnte wegen der Quantisierung der Sinkenstörabstand maximal $10 · \lg \ ρ_v =18 \ \rm dB$ betragen, wenn keine Bitfehler vorkommen ($P_{\rm F} = 0$).