Difference between revisions of "Aufgaben:Exercise 4.12: Root-Nyquist Systems"
m (Guenter verschob die Seite 4.11 Wurzel–Nyquist–Systeme nach 4.12 Wurzel–Nyquist–Systeme) |
|||
Line 18: | Line 18: | ||
Die obere Grafik zeigt das Sendespektrum $G_s(f)$ für die Rolloff–Faktoren r = 0, r = 0.5 und r = 1. Unten ist das Spektrum $G_d(f)$ vor dem Entscheider dargestellt. Der dazugehörige Impuls $g_d(t)$ ist für alle gültigen Rolloff–Faktoren (0 ≤ r ≤ 1) ein Nyquistimpuls im Gegensatz zum Sendegrundimpuls $g_s(t)$. Für diesen wird in der Literatur – zum Beispiel in '''[Kam04]''' – folgende Gleichung angegeben: | Die obere Grafik zeigt das Sendespektrum $G_s(f)$ für die Rolloff–Faktoren r = 0, r = 0.5 und r = 1. Unten ist das Spektrum $G_d(f)$ vor dem Entscheider dargestellt. Der dazugehörige Impuls $g_d(t)$ ist für alle gültigen Rolloff–Faktoren (0 ≤ r ≤ 1) ein Nyquistimpuls im Gegensatz zum Sendegrundimpuls $g_s(t)$. Für diesen wird in der Literatur – zum Beispiel in '''[Kam04]''' – folgende Gleichung angegeben: | ||
$$g_s(t) = g_0 \cdot \frac{4 r t/T \cdot \cos \left [\pi \cdot (1+r) \cdot t/T \right ]+ \sin \left [\pi \cdot (1-r) \cdot t/T \right ]}{\left [1- (4 r t/T)^2 \right ] \cdot \pi \cdot t/T}\hspace{0.05cm}.$$ | $$g_s(t) = g_0 \cdot \frac{4 r t/T \cdot \cos \left [\pi \cdot (1+r) \cdot t/T \right ]+ \sin \left [\pi \cdot (1-r) \cdot t/T \right ]}{\left [1- (4 r t/T)^2 \right ] \cdot \pi \cdot t/T}\hspace{0.05cm}.$$ | ||
+ | |||
+ | |||
+ | ''Hinweise:'' | ||
+ | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Quadratur%E2%80%93Amplitudenmodulation|Quadratur–Amplitudenmodulation]]. | ||
+ | *Bezug genommen wird aber auch auf die Seite [[Modulationsverfahren/Lineare_digitale_Modulation#Fehlerwahrscheinlichkeiten_-_ein_kurzer_.C3.9Cberblick|Fehlerwahrscheinlichkeiten – ein kurzer Überblick]] im vorherigen Kapitel. | ||
+ | * Gehen Sie stets von den folgenden Zahlenwerten aus: $s_0 = 2\,{\rm V}, \hspace{0.05cm} N_0 = 0.25 \cdot 10^{-6}\,{\rm V^2/Hz}\hspace{0.05cm}.$ | ||
+ | *Die Bitdauer beträgt $T_{\rm B} = 1 \ \rm μs$ (Teilaufgabe 1) bzw. $T_{\rm B} = 2 \ \rm μs$ (ab Teilaufgabe 2). | ||
+ | *In der Tabelle sind die beiden gebräuchlichen Gaußschen Fehlerfunktionen ${\rm Q}(x)$ und $1/2 \cdot {\rm erfc}(x)$ angegeben. | ||
+ | *Energien sind in $\rm V^2s$ anzugeben; sie beziehen sich somit auf den Bezugswiderstand $R = 1 \ \rm \Omega$. | ||
+ | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
+ | |||
'''Hinweis:''' Die Aufgabe bezieht sich auf die vorletzte Seite von [http://en.lntwww.de/Modulationsverfahren/Quadratur%E2%80%93Amplitudenmodulation Kapitel 4.3] dieses Buches. Alle Details über Nyquistsysteme erfahren Sie im Kapitel 1.3 des Buches „Digitalsignalübertragung”. | '''Hinweis:''' Die Aufgabe bezieht sich auf die vorletzte Seite von [http://en.lntwww.de/Modulationsverfahren/Quadratur%E2%80%93Amplitudenmodulation Kapitel 4.3] dieses Buches. Alle Details über Nyquistsysteme erfahren Sie im Kapitel 1.3 des Buches „Digitalsignalübertragung”. | ||
Revision as of 14:11, 26 July 2017
Bei den Quadraturamplitudenmodulationssystemen wird häufig anstelle eines rechteckigen Sendegrundimpulses die Wurzel–Nyquist–Variante gewählt, wobei dieser Name aus dem Spektralbereich abgeleitet ist. Der Grund hierfür ist die signifikant kleinere Bandbreite.
In diesem Fall erfüllt der Detektionsgrundimpuls $g_d(t)$ die erste Nyquistbedingung, da $G_d(f)$ punktsymmetrisch um die so genannte Nyquistfrequenz $f_{Nyq} = 1/T$ ist. $G_d(f)$ ist ein Cosinus–Rolloff–Spektrum, wobei der Rolloff–Faktor r Werte zwischen 0 und 1 (einschließlich dieser Grenzen) annehmen kann.
Weiterhin gilt für den Nyquist–Frequenzgang:
- Für $|f| < f_1 = f_{Nyq} · (1 – r)$ ist $G_d(f)$ konstant gleich $g_0 · T$.
- Bei Frequenzen größer als $f_2 = f_{Nyq} · (1 + r)$ hat $G_d(f)$ keine Anteile.
- Dazwischen verläuft die Flanke cosinusförmig.
Die Optimierung digitaler Nachrichtenübertragungssysteme ergibt, dass der Empfängerfrequenzgang $H_E(f)$ formgleich mit dem Sendespektrum $G_s(f)$ sein sollte. Um dimensionsrichtige Spektralfunktionen zu erhalten, wird für diese Aufgabe und die Grafik vorausgesetzt: $$G_s(f) = \sqrt{g_0 \cdot T \cdot G_d(f)},\hspace{0.4cm} H_{\rm E}(f) = \frac{1}{g_0 \cdot T}\cdot G_s(f)\hspace{0.05cm}.$$
Die obere Grafik zeigt das Sendespektrum $G_s(f)$ für die Rolloff–Faktoren r = 0, r = 0.5 und r = 1. Unten ist das Spektrum $G_d(f)$ vor dem Entscheider dargestellt. Der dazugehörige Impuls $g_d(t)$ ist für alle gültigen Rolloff–Faktoren (0 ≤ r ≤ 1) ein Nyquistimpuls im Gegensatz zum Sendegrundimpuls $g_s(t)$. Für diesen wird in der Literatur – zum Beispiel in [Kam04] – folgende Gleichung angegeben: $$g_s(t) = g_0 \cdot \frac{4 r t/T \cdot \cos \left [\pi \cdot (1+r) \cdot t/T \right ]+ \sin \left [\pi \cdot (1-r) \cdot t/T \right ]}{\left [1- (4 r t/T)^2 \right ] \cdot \pi \cdot t/T}\hspace{0.05cm}.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Quadratur–Amplitudenmodulation.
- Bezug genommen wird aber auch auf die Seite Fehlerwahrscheinlichkeiten – ein kurzer Überblick im vorherigen Kapitel.
- Gehen Sie stets von den folgenden Zahlenwerten aus: $s_0 = 2\,{\rm V}, \hspace{0.05cm} N_0 = 0.25 \cdot 10^{-6}\,{\rm V^2/Hz}\hspace{0.05cm}.$
- Die Bitdauer beträgt $T_{\rm B} = 1 \ \rm μs$ (Teilaufgabe 1) bzw. $T_{\rm B} = 2 \ \rm μs$ (ab Teilaufgabe 2).
- In der Tabelle sind die beiden gebräuchlichen Gaußschen Fehlerfunktionen ${\rm Q}(x)$ und $1/2 \cdot {\rm erfc}(x)$ angegeben.
- Energien sind in $\rm V^2s$ anzugeben; sie beziehen sich somit auf den Bezugswiderstand $R = 1 \ \rm \Omega$.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Hinweis: Die Aufgabe bezieht sich auf die vorletzte Seite von Kapitel 4.3 dieses Buches. Alle Details über Nyquistsysteme erfahren Sie im Kapitel 1.3 des Buches „Digitalsignalübertragung”.
[Kam04] : Kammeyer, K.D.: Nachrichtenübertragung. Stuttgart: B.G. Teubner, 4. Auflage, 2004.
Fragebogen
Musterlösung
2. Für r = 1 lässt sich die angegebene Gleichung wie folgt vereinfachen: $$g_s(t) = \frac{4 \cdot g_0}{\pi} \cdot \frac{ \cos \left (2 \pi \cdot t/T \right )}{\left [1- (4 t/T)^2 \right ] }\hspace{0.3cm}\Rightarrow \hspace{0.3cm} g_s(t = 0) = \frac{4 \cdot g_0}{\pi} \hspace{0.15cm}\underline {= 1.273 }\cdot g_0 \hspace{0.05cm}.$$
3. Nulldurchgänge sind für r = 1 nur dann möglich, wenn die Cosinusfunktion im Zähler den Wert 0 liefert, also für alle ganzzahligen Werte von k: $$2 \pi \cdot t/T = {\pi}/{2} + k \cdot \pi \hspace{0.3cm}\Rightarrow \hspace{0.3cm} t = \pm 0.25T, \hspace{0.15cm} \pm 0.75T, \hspace{0.15cm}\pm 1.25T, \hspace{0.15cm} ...$$ Richtig ist aber nur der letzte Lösungsvorschlag, da die Nullstellen bei ± T/4 durch die Nullstelle im Nenner aufgehoben wird. Die Anwendung der Regel von de l'Hospital liefert $g_s(t = ± T/4) = g_0$.
4. Mit r = 0.5 und der Abkürzung x = t/T erhält man: $$g_s(x) = \frac{g_0}{\pi} \cdot \frac{2 \cdot x \cdot \cos \left (1.5\pi \cdot x \right )+ \sin \left (0.5\pi \cdot x \right )}{\left (1- 4 \cdot x^2 \right ) \cdot x}\hspace{0.05cm}.$$
Für die Berechnung zum Zeitpunkt t = 0 muss die Regel von de l'Hospital angewandt werden. Die Ableitungen von Zähler und Nenner ergeben: $$Z'(x) = 2 \cdot \cos \left (1.5\pi \cdot x \right ) - 3 \pi \cdot x \cdot \sin \left (1.5\pi \cdot x \right ) + 0.5 \pi \cdot \cos \left (0.5\pi \cdot x \right ),$$ $$N'(x) = \left (1- 4 \cdot x^2 \right ) - 8 \cdot x^2 \hspace{0.05cm}.$$ Die beiden Grenzübergänge für x → 0 liefern: $$\lim_{x \rightarrow 0} Z'(x) = 2 +{\pi }/{2},\hspace{0.2cm} \lim_{x \rightarrow 0} N'(x) = 1 \hspace{0.05cm}.$$ Damit gilt für die Signalamplitude zum Zeitpunkt t = 0: $$g_s(t=0) = \frac{g_0}{\pi} \cdot \left ( 2 +{\pi }/{2} \right ) = {g_0} \cdot \left ( 0.5 + {2}/{\pi } \right )\hspace{0.15cm}\underline {= 1.137} \cdot g_0 \hspace{0.05cm}.$$ Die Grafik verdeutlicht nochmals die hier berechneten Ergebnisse. Der Impuls $g_d(t)$ ist ein Nyquistimpuls, das heißt, dass $g_d(t)$ zumindest bei allen Vielfachen der Symboldauer T Nulldurchgänge besitzt (je nach Rolloff–Faktor noch andere Nullstellen). Der Sendegrundimpuls $g_s(t)$ erfüllt die Nyquistbedingung nicht. Außerdem erkennt man aus dieser Darstellung nochmals, dass für r ≠ 0 die Impulsamplitude $g_s(t = 0)$ stets größer als $g_0$ ist.
5. Richtig ist nur der letzte Lösungsvorschlag. Der erste Lösungsvorschlag scheidet bereits nach den Ergebnissen der Teilaufgaben b) und d) aus. Die Gültigkeit der Schranken $g_0$ und $4g_0/π$ lässt sich wie folgt nachweisen:
- Die Impulsamplitude $g_s(t = 0)$ ist gleich der Fläche unter $G_s(f)$.
- Die kleinste Fläche ergibt sich für r = 0. Hier ist $G_s(f) = g_0 · T$ im Bereich $|f| < ±1/(2T)$. Die Fläche ist somit gleich $g_0$.
- Die größtmögliche Fläche ergibt sich für r = 1. Hier ist $G_s(f)$ auf den Bereich ±1/T ausgedehnt und hat einen cosinusförmigen Verlauf. Das Ergebnis $g_s(t = 0) = 4g_0/π$ wurde bereits in Teilaufgabe c) berechnet. Es gilt aber auch:
$$g_s(t=0) = 2 \cdot {g_0} \cdot \int_{ 0 }^{1/T} {\cos\left(\frac{\pi }{2}\cdot f \cdot T \right)}\hspace{0.1cm} {\rm d}f = \frac{4 g_0}{\pi} \cdot \int_{ 0 }^{\pi/2} {\cos\left(x \right)}\hspace{0.1cm} {\rm d}x =$$ $$ = {4 g_0}/{\pi} \cdot \left[\sin(\pi/2) - \sin(0) \right] = {4 g_0}/{\pi}\hspace{0.05cm}.$$
6. Die Energie des Sendegrundimpulses $g_s(t)$ kann nach dem Satz von Parseval sowohl im Zeit– als auch im Frequenzbereich ermittelt werden: $$E_{g_s} = \int_{ -\infty }^{+\infty} {[g_s(t)]^2}\hspace{0.1cm} {\rm d}t = \int_{ -\infty }^{+\infty} {|G_s(f)|^2}\hspace{0.1cm} {\rm d}f \hspace{0.05cm}.$$ Aus den Gleichungen und der Grafik auf der Angabenseite erkennt man, dass $|G_s(f)|^2$ formgleich mit $G_d(f)$ ist, mit dem Unterschied, dass die Höhe ($g_0 · T)^2$ anstelle von $g_0 · T$ ist: $$E_{g_s} = \int_{ -\infty }^{+\infty} {|G_s(f)|^2}\hspace{0.1cm} {\rm d}f = \frac{g_0^2 \cdot T^2}{g_0 \cdot T} \cdot \int_{ -\infty }^{+\infty} {G_d(f)}\hspace{0.1cm} {\rm d}f \hspace{0.05cm}.$$ Aufgrund der Nyquistform von $G_d(f)$ gilt aber unabhängig von r: $$\int_{ -\infty }^{+\infty} {G_d(f)}\hspace{0.1cm} {\rm d}f = g_0 \hspace{0.05cm}.$$ Damit ist die Impulsenergie unabhängig von r, also auch gültig für r = 0 und r = 1: $E_ {gs} = 1.0 · g_0^2 · T.$